565.

NOTE ON THE CARTESIAN.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiI. (1873), pp. 16-19.]

The following are doubtless known theorems, but the form of statement, and the demonstration of one of them, may be interesting.

A point, P on a Cartesian has three "opposite" points on the curve, viz. if the axial foci are A, B, C, then the opposite points are P_{a}, P_{b}, P_{c} where
P_{a} is intersection of line $P A$ with circle $P B C$,

P_{b}	$"$	$"$	$P B$	$"$
P_{c}	$"$	$\#$	$P C$	$\#$

And, moreover, supposing in the three circles respectively, the diameters at right angles to $P A, P B, P C$ are $\alpha \alpha^{\prime}, \beta \beta^{\prime}, \gamma \gamma^{\prime}$ respectively, then the points $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma, \gamma^{\prime}$ lie by threes in two lines passing through P, viz. one of these, say $P \alpha \beta \gamma$, is the tangent, and the other $P \alpha^{\prime} \beta^{\prime} \gamma^{\prime}$ the normal, at P; and then the tangents and normals at the opposite points are $P_{a} \alpha$ and $P_{a} \alpha^{\prime}, P_{b} \beta$ and $P_{b} \beta^{\prime}, P_{c} \gamma$, and $P_{c} \gamma^{\prime}$ respectively.

There exists a second Cartesian with the same axial foci A, B, C, and passing through the points P, P_{a}, P_{b}, P_{c} (which are obviously opposite points in regard thereto) ; the tangent at P is $P \alpha^{\prime} \beta^{\prime} \gamma^{\prime}$ and the normal is $P \alpha \beta \gamma$; and the tangent and the normal at the other points are $P_{a} \alpha^{\prime}$ and $P_{a} \alpha, P_{b} \beta^{\prime}$ and $P_{b} \beta, P_{c} \gamma^{\prime}$ and $P_{c} \gamma$ respectively: viz. the two curves cut at right angles at each of the four points.

Starting with the foci A, B, C and the point P, the points P_{a}, P_{b}, P_{c} are constructed as above, without the employment of the Cartesian; there are through P with the foci A, B, C two and only two Cartesians; and if it is shown that these pass through one of the opposite points, say P_{b}, they must, it is clear, pass through
the other two points P_{a}, P_{c}. I propose to find the two Cartesians in question. To fix the ideas, let the points C, B, A be situate in order as shown in the figure, their

distances from a fixed point O being a, b, c, so that writing $\alpha, \beta, \gamma=b-c, c-a, a-b$ respectively, we have $\alpha+\beta+\gamma=0$, and α, γ will represent the positive distances $C B$ and $B A$ respectively, and $-\beta$ the positive distance $A C$. Suppose, moreover, that the distances $P A, P B, P C$ regarded as positive are R, S, T respectively; and that the distances $P_{b} A, P_{b} B, P_{b} C$ regarded as positive are $R^{\prime}, S^{\prime \prime}, T^{\prime}$ respectively.

Suppose that for a current point Q the distances $Q A, Q B, Q C$ regarded as indifferently positive, or negative, are r, s, t respectively; then the equation of a bicircular quartic having the points A, B, C for axial foci is

$$
l r+m s+n t=0
$$

where l, m, n are constants; and this will be a Cartesian if only

$$
\frac{l^{2}}{\alpha}+\frac{m^{2}}{\beta}+\frac{n^{2}}{\gamma}=0 .
$$

We have the same curve whatever be the signs of l, m, n, and hence making the curve pass through P, we may, without loss of generality, write

$$
l R+m S+n T=0
$$

R, S, T denoting the positive distances $P A, P B, P C$ as above. We have thus for the ratios $l: m: n$, two equations, one simple, the other quadric; and there are thus two systems of values, that is, two Cartesians with the foci A, B, C, and passing through P.

I proceed to show that for one of these we have $-l R^{\prime}+m S^{\prime}+n T^{\prime}=0$, and for the other $l R^{\prime}+m S^{\prime \prime}-n T^{\prime}=0$, or, what is the same thing, that the values of $l: m: n$ are
and

$$
l: m: n=-\left(S T^{\prime}+S^{\prime} T\right): T R^{\prime}+T^{\prime} R: R S^{\prime}-R^{\prime} S
$$

$$
l: m: n=\left(S T^{\prime}-S^{\prime} T^{\prime}\right):-\left(T R^{\prime}+T^{\prime} R\right): R S^{\prime}+R^{\prime} S
$$

viz. that the equations of the two Cartesians are

$$
\left|\begin{array}{ccc}
r, & s, & t \\
R, & S, & T \\
-R^{\prime}, & S^{\prime \prime}, & T^{\prime}
\end{array}\right|=0, \text { and }\left|\begin{array}{ccc}
r, & s, & t \\
R, & S, & T \\
R^{\prime}, & S^{\prime}, & -T^{\prime}
\end{array}\right|=0
$$

respectively; this being so each of the Cartesians will, it is clear, pass through the point P_{b}, and therefore also through P_{a} and P_{c}.

The geometrical relations of the figure give

$$
\begin{aligned}
\alpha R^{2}+\beta S^{2}+\gamma T^{2} & =-\alpha \beta \gamma, \\
\alpha R^{\prime 2}+\beta S^{\prime 2}+\gamma T^{\prime 2} & =-\alpha \beta \gamma, \\
R T^{\prime \prime}+R^{\prime} T & =-\beta\left(S+S^{\prime}\right), \\
\gamma \alpha & =S S^{\prime}, \\
\gamma T T^{\prime \prime} & =\alpha R R^{\prime},
\end{aligned}
$$

to which might be joined

$$
\begin{aligned}
R^{\prime 2} S+\gamma^{2}\left(S+S^{\prime}\right)+R^{2} S^{\prime \prime} & =S S^{\prime}\left(S+S^{\prime \prime}\right) \\
T^{\prime 2} S+\alpha^{2}\left(S+S^{\prime \prime}\right)+T^{2} S^{\prime \prime} & =S S^{\prime \prime}\left(S+S^{\prime}\right), \\
S R^{\prime} T^{\prime \prime} & =S^{\prime \prime} R T, \\
S P^{\prime} R^{\prime} & =S^{\prime \prime} P R,
\end{aligned}
$$

but these are not required for the present purpose.
As regards the first Cartesian, we have to verify that

$$
\frac{\left(S T^{\prime}+S^{\prime \prime} T\right)^{2}}{\alpha}+\frac{\left(T R^{\prime}+T^{\prime \prime} R\right)^{2}}{\beta}+\frac{\left(R S^{\prime}-R^{\prime} S\right)^{2}}{\gamma}=0 .
$$

The left-hand side is

$$
\frac{S^{2} T^{\prime 2}+S^{\prime 2} T^{2}+2 \gamma \alpha T T^{\prime \prime}}{\alpha}+\frac{\beta^{2}\left(S^{2}+S^{\prime 2}+2 \gamma \alpha\right)}{\beta}+\frac{S^{2} R^{\prime 2}+S^{\prime 2} R^{2}-2 \gamma \alpha R R^{\prime}}{\gamma}
$$

viz. this is

$$
=S^{2}\left(\frac{T^{\prime 2}}{\alpha}+\beta+\frac{R^{\prime 2}}{\gamma}\right)+S^{\prime_{2}}\left(\frac{T^{2}}{\alpha}+\beta+\frac{R^{2}}{\gamma}\right)+2 \alpha \beta \gamma+2\left(\gamma^{\prime} T T^{\prime \prime}-\alpha R R^{\prime}\right),
$$

which is

$$
=S^{2}\left(\frac{-\beta S^{\prime \prime 2}}{\gamma^{\alpha}}\right)+S^{\prime^{\prime}}\left(\frac{-\beta S^{2}}{\gamma^{\alpha}}\right)+2 \alpha \beta \gamma+2\left(\gamma^{\prime} T T^{\prime}-\alpha R R^{\prime}\right),
$$

and since the first and second terms are together $=-2 \frac{\beta}{\gamma \alpha} S^{2} S^{\prime 2}$, that is, $=-2 \alpha \beta \gamma$, the whole is as it should be $=0$.

In precisely the same manner we have

$$
\frac{\left(S T^{\prime}-S^{\prime \prime} T\right)^{2}}{\alpha}+\frac{\left(T^{\prime} R^{\prime}+T^{\prime} R\right)^{2}}{\beta}+\frac{\left(R S^{\prime}+R^{\prime} S\right)^{2}}{\gamma}=0
$$

which is the condition for the second Cartesian: and the theorem in question is thus proved.

