## 565.

## NOTE ON THE CARTESIAN.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XII. (1873), pp. 16—19.]

THE following are doubtless known theorems, but the form of statement, and the demonstration of one of them, may be interesting.

A point P on a Cartesian has three "opposite" points on the curve, viz. if the axial foci are A, B, C, then the opposite points are  $P_a$ ,  $P_b$ ,  $P_c$  where

| $P_{a}$ | is | intersection | of | line | PA | with circle | PBC, |
|---------|----|--------------|----|------|----|-------------|------|
| $P_b$   |    | "            |    | "    | PB | "           | PCA, |
| $P_{c}$ |    | "            |    | "    | PC | 23          | PAB. |

And, moreover, supposing in the three circles respectively, the diameters at right angles to *PA*, *PB*, *PC* are  $\alpha \alpha'$ ,  $\beta \beta'$ ,  $\gamma \gamma'$  respectively, then the points  $\alpha$ ,  $\alpha'$ ,  $\beta$ ,  $\beta'$ ,  $\gamma$ ,  $\gamma'$  lie by threes in two lines passing through *P*, viz. one of these, say  $P\alpha\beta\gamma$ , is the tangent, and the other  $P\alpha'\beta'\gamma'$  the normal, at *P*; and then the tangents and normals at the opposite points are  $P_{\alpha}\alpha$  and  $P_{\alpha}\alpha'$ ,  $P_{b}\beta$  and  $P_{b}\beta'$ ,  $P_{c}\gamma$ , and  $P_{c}\gamma'$  respectively.

There exists a second Cartesian with the same axial foci A, B, C, and passing through the points P,  $P_a$ ,  $P_b$ ,  $P_c$  (which are obviously opposite points in regard thereto); the tangent at P is  $P\alpha'\beta'\gamma'$  and the normal is  $P\alpha\beta\gamma$ ; and the tangent and the normal at the other points are  $P_a\alpha'$  and  $P_a\alpha$ ,  $P_b\beta'$  and  $P_b\beta$ ,  $P_c\gamma'$  and  $P_c\gamma$  respectively: viz. the two curves cut at right angles at each of the four points.

Starting with the foci A, B, C and the point P, the points  $P_a$ ,  $P_b$ ,  $P_c$  are constructed as above, without the employment of the Cartesian; there are through P with the foci A, B, C two and only two Cartesians; and if it is shown that these pass through one of the opposite points, say  $P_b$ , they must, it is clear, pass through

the other two points  $P_a$ ,  $P_c$ . I propose to find the two Cartesians in question. To fix the ideas, let the points C, B, A be situate in order as shown in the figure, their

distances from a fixed point O being a, b, c, so that writing  $\alpha$ ,  $\beta$ ,  $\gamma = b - c$ , c - a, a - b respectively, we have  $\alpha + \beta + \gamma = 0$ , and  $\alpha$ ,  $\gamma$  will represent the positive distances CB and BA respectively, and  $-\beta$  the positive distance AC. Suppose, moreover, that the distances PA, PB, PC regarded as positive are R, S, T respectively; and that the distances  $P_bA$ ,  $P_bB$ ,  $P_bC$  regarded as positive are R', S', T' respectively.

Suppose that for a current point Q the distances QA, QB, QC regarded as indifferently positive, or negative, are r, s, t respectively; then the equation of a bicircular quartic having the points A, B, C for axial foci is

$$lr + ms + nt = 0$$

where l, m, n are constants; and this will be a Cartesian if only

$$\frac{l^2}{\alpha} + \frac{m^2}{\beta} + \frac{n^2}{\gamma} = 0$$

We have the same curve whatever be the signs of l, m, n, and hence making the curve pass through P, we may, without loss of generality, write

$$lR + mS + nT = 0,$$

R, S, T denoting the positive distances PA, PB, PC as above. We have thus for the ratios l:m:n, two equations, one simple, the other quadric; and there are thus two systems of values, that is, two Cartesians with the foct A, B, C, and passing through P.

I proceed to show that for one of these we have -lR' + mS' + nT' = 0, and for the other lR' + mS' - nT' = 0, or, what is the same thing, that the values of l : m : n are

$$l : m : n = -(ST' + S'T) : TR' + T'R : RS' - R'S,$$

and

$$l: m: n = (ST' - S'T): - (TR' + T'R): RS' + R'S;$$

viz. that the equations of the two Cartesians are

| r,   | s ,         | t  | =0,  and                              | r,          | <i>s</i> ,  | $t \mid = 0,$ |  |
|------|-------------|----|---------------------------------------|-------------|-------------|---------------|--|
| R,   | S,          | T  | 1 10 269                              | R,          | S,          | T             |  |
| -R', | <i>S</i> ′, | T' | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <i>R</i> ′, | <i>S</i> ′, | -T'           |  |



respectively; this being so each of the Cartesians will, it is clear, pass through the point  $P_b$ , and therefore also through  $P_a$  and  $P_c$ .

The geometrical relations of the figure give

$$\begin{split} \alpha R^{2} + \beta S^{2} + \gamma T^{2} &= -\alpha \beta \gamma, \\ \alpha R'^{2} + \beta S'^{2} + \gamma T'^{2} &= -\alpha \beta \gamma, \\ RT' + R'T &= -\beta (S + S'), \\ \gamma \alpha &= SS', \\ \gamma TT' &= \alpha RR', \end{split}$$

to which might be joined

$$\begin{aligned} R'^{2}S + \gamma^{2} \left( S + S' \right) + R^{2}S' &= SS' \left( S + S' \right), \\ T'^{2}S + \alpha^{2} \left( S + S' \right) + T^{2}S' &= SS' \left( S + S' \right), \\ SR'T' &= S'RT, \\ SP'R' &= S'PR, \end{aligned}$$

but these are not required for the present purpose.

As regards the first Cartesian, we have to verify that

$$\frac{(ST'+S'T)^2}{\alpha} + \frac{(TR'+T'R)^2}{\beta} + \frac{(RS'-R'S)^2}{\gamma} = 0.$$

The left-hand side is

$$\frac{S^{2}T'^{2}+S'^{2}T^{2}+2\gamma \alpha TT'}{\alpha}+\frac{\beta^{2}\left(S^{2}+S'^{2}+2\gamma \alpha\right)}{\beta}+\frac{S^{2}R'^{2}+S'^{2}R^{2}-2\gamma \alpha RR'}{\gamma},$$

viz. this is

$$=S^{2}\left(\frac{T^{\prime_{2}}}{\alpha}+\beta+\frac{R^{\prime_{2}}}{\gamma}\right)+S^{\prime_{2}}\left(\frac{T^{2}}{\alpha}+\beta+\frac{R^{2}}{\gamma}\right)+2\alpha\beta\gamma+2\left(\gamma TT^{\prime}-\alpha RR^{\prime}\right),$$

which is

$$=S^{2}\left(\frac{-\beta S^{\prime 2}}{\gamma \alpha}\right)+S^{\prime 2}\left(\frac{-\beta S^{2}}{\gamma \alpha}\right)+2\alpha\beta\gamma+2\left(\gamma TT^{\prime}-\alpha RR^{\prime}\right),$$

and since the first and second terms are together  $= -2 \frac{\beta}{\gamma \alpha} S^2 S'^2$ , that is,  $= -2\alpha \beta \gamma$ , the whole is as it should be = 0.

In precisely the same manner we have

$$\frac{(ST' - S'T)^2}{\alpha} + \frac{(TR' + T'R)^2}{\beta} + \frac{(RS' + R'S)^2}{\gamma} = 0,$$

which is the condition for the second Cartesian: and the theorem in question is thus proved.



www.rcin.org.pl