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Asymptotic shock wave propagation in electromagnetic field 

W. A. LEVIN (MOSCOW) 

T:HE PROPAGATION of magnetohydrodynamic shock waves in a tr;msverse electric 
and magnetic field is considered for . small magnetic Reynolds numbers. The condi­
tions for the decay of the shock wave and its degeneration into the acoustic wave 
are established. It has been found that such a degeneration takes place in a finite 
distance and after a finite time-lapse. 

CONSIDER the propagation of shock waves in a tube of constant cross section in the 
presence of external electric and magnetic fields. We assume that the conductivity of gas 
behind the shock wave is other than zero and the magnetic Reynolds numbers Rem are 
small. Under these restrictions the induced electric and magnetic fields may be neglected 
and regarded as prescribed [1 , 2]. The flow scheme is shown in Fig. 1. Let us determine 
the conditions under which the shock wave is weakened during propagation along a tube 
and degenerates into ·atfacoustic wave. We shall also establish the asymptotic laws for such 
degeneration. The decaying process of shock waves is sufficiently well studied in [3-7]. 
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FIG. 1. 

The shock wave, when it is weakened, may degenerate into an acoustic wave only asym· 
ptotically. Besides, the trajectory of the shock wave has no asymptote in the plane r, t 
(r stands for distance and t time). However, the presence of the transverse magnetic field 
of the constant intensity at Rem~ 1 leads to the exponential decay of the shock wave [8]. 
In the presence of only the external magnetic field, the asymptotic propagation of the 
shock wave was considered in the papers [9, 10] for the numbers Rem "' I. The asymptotic 
propagation of the detonation wave in usual conditions and in the presence of the electro· 
magnetic field was investigated in [11-15]. 

The system of equations describing the motion of the conductive gas behind the wave 
may be written in the form 

~+ oev = O n(~+v~)+ op = _ aH(E+ vH __ .), 
ot or ' t: ot or or c c 

op op OV ( vH)
2 

Tt+va,+YPa,: = (y-l)a E+-c-

(1) 
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Here, (!, v and p denote the density, velocity and pressure, respectively; E and Hare the 
strengths of the electric and magnetic fields, c is the velocity of light, and (] = (](p, e) -
the conductivity of the medium- is a known function of pressure and density. 

Let us introduce the new dimensionless variable by means of the formulae 

v = a0 V, (! = (!oR, p = (!o a5 P, (] = (] * q;, H = H * .Tf, 

E = E*t!, t = 10 T, r = a0 t 0 x, 
(!oC 2 

to =-H2' 
(]* * 

where u0 and eo are the sound velocity and the density in the undisturbed medium, 
respectively; and the quantities with stars denote certain characteristic values of the cor­
responding parameters. 

The system of Eqs. {I) in terms of new variables has the form 

oR+ oRV = 0 R( ov +Vov)+ oP = -q;(m&+V.Tf).Tf, 
O'l' OX ' O'l' ox OX 

(2) 
oP oP ov 
O'l' +V ox +yP ox = (y...:.. l)q;(rut! + V.Jff)2, 

On the shock wave the usual conservation laws should be satisfied which, may be written 
as 

(3) 
2y-(y-I)q 

P = Po (y+l)q , 
y+l 

(! = (!o y-l +2q 

2 

Here, q = ~~ and D is the shock wave velocity. In terms of new variables the wave 

I 
. . • 1 

ve octty ts x, = Vq . 
Using the system of Eqs. (2), the derivative of the gas velocity behind the jwnp with 

respect to the space coordinate may be expressed in terms of the values of the parameters 
determined on the wave and the wave velocity. This expression will be used further in 
the analysis of shock wave motion. 

(4) 
ov I _ -(V -x,)[RV + q;.Tf(mt! + V.Tf)]+P- (y-l)q;(m& + V.Tf)2 
ox IS- R(V-x,)2-yP · 

As a measure of the deviation of the shock wave from the acoustic wave we introduce 
the parameter e = l-q. We call the wave weak if e ~ 1. From the relations derived 
on the front of the wave it results, that with the second order of accuracy e2 (inclusively), 
the parameters of gas evaluated on the wave satisfy the relations of the simple Riemann 
and their values are 

{5) 
2e 

V= y+l + ... , 
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By the annex of the Riemann flow to the surface of the wave in a known manner [4] 
and taking into account only terms of principal order, the following equation describing 
the variation of the shock wave intensity is obtained from [4]: 

(6) -
4
-e+ ~_!_ +rpJif(w8+ ~Jif)-<r-1)rp(w282 + ~wttJif) = 0 

y+l y+l T · y+1 y+l 

or, in equivalent form, 

(6') 
. e e y+ 1 
E+ 2T + -yrpJif[Jif -2(y-l)wt8']+ -

4
-rpwti[Jif- (y-1)w8j = 0. 

Let us consider the various particular cases. In a case of the usual shock wave rp = 0, 

the solution of Eq. (6') is • = e0 V T: , what is in agreement with the known results 

[3-7]. In the presence of only the constant magnetic field H = 1, 8 = 0 and the constant 

conductivity <p = I, the solution becomes • = :T e -i. This exponential form of de­

caying of the shock wave also coincides with the results obtained earlier in the paper [8]. 
However, if the external electric and magnetic fields of the constant intensity E = H 

= 1 are applied, the behaviour of the shock waves depending on the parameter w at the 
constant conductivity rp = 1 may be different. The general solution of Eq. (6') in this 
case may be written in the form: 

(7) V-
To 

e = Eo --:; e 

1-2(Y-l)(l) 
2 

(T-To) 

+ 1 1 l-2(y-1)(1) f 1-l(y-1)(1) 

+ -"- w[(y-1)w-1]--=- e- 2 T J!''E e 2 ( d~, 
4 VT 

To 

where Eo is the value of parameter e in the moment T = To. From this solution it results 
1 

that for the values of the parameter w from the interval 0 < w ~ 
2
(y-

1
) the shock 

wave is weakened and on the finite distance it degenerates into an acoustic wave. For 

the values of the parameter w from the interval 2(y ~ 
1
) < w < , ~ 1 the shock 

wave degenerate's into an acoustic wave, if the initial shock wave intensity satisfies the 
inequality 

00 

(8) 
+ 1 f 1-2(y-l)ll) ~ 

Eo fTo + ~w[(y-1)w-1] yf e 2 d~ < 0. 
To 

For the inverse inequality, i.e. for the values w < 0 or w > -
1
-

1 
, the degeneration of ,_ 

the shock wave into an acoustic wave does not occur. Therefore the electric field, depend­
ing on its intensity, may accelerate the transition of the wave or strengthen it. Here, the 
situation is absolutely analogous to that observed in the propagation of the detonation 
wave in the electromagnetic field [13]. D~pending on the value of the parameter w, the 
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precompressed detonation wave transfers into Chepman-Juge region or remains pre­
compressed. 

In a general case the conductivity of · the medium depends on its thermodynamic 
properties and is the function of pressure and density cp = cp(P, R). It may happen that 

the conductivity of the medium before the shock Wave equals zero, i.e. rp ( ~ , I ) = 0. In 

this case the asymptotic character of the behaviour of the shock wave will depend on the 
shape of the function qJ(P, R). If the function qJ is analytic in the vicinity of the point 

( ~ , I) then, in this case, neglecting the small terms of the high order of smallness, the 

following relation for the shock wave intensity is obtained from Eq. (6'): 

(9) i+ ;r + ~ (m+n)roG[Jf'-(y-l)rotl] = 0, 

where m = ( :; t n = ( :~).. 
For H = E = 1, this solution becomes 

(10) 
A - m;n co[l-(y-l)co]T 

e = -=-e 
Jlr 

. 1 
Since m+ n > 0 then, for the values of the parameter w from the range 0 < w < --

1 
, 

y-
the shock way decays exponentially and degenerates into an acoustic . wave. For the re-

maining parameters ro, i.e. for w < 0 or w > y~ 1., damping of the wave does not occur. 

In several cases the dependence of the conductivity of the medium on its thermo­
dynamic properties may be approximated by the power function, i.e. in the . neighbour- · 
hood of the initial parameters of the state we have cp = cp*erx, a > 0. The variation of 
the shock wave intensity will then be described by the equation 

(11) 

Here the parameter a may assume the values from the range 0 < a < 2. If a ~ 2, the 
damping of the weak shock wave, in the first approximation, will occur in the same 
manner as in usual gasdynamics. The solution of Eq. (11) may be written in the form 

1 

(12) 
3 1-rx. 

f (y+ 1) (I- a) ;rx} _1_, 
e =\A- 2(3-a) cp*ro[l-(y-1)ro]r yr 

fff=Jf'=l. 

From this expression it follows that for 0 < w < --1- -, the wave is always weakened. 
y-1 

However, the laws of damping depend essentially on the magnitude of the parameter a. 
For 0 < a < 1, the wave degenerates into an acoustic wave at a finite moment of time, 
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and for a > I only asymptotically. If w < 0 or w > __ _!_I , the intensity of the wave 
y-

does not change. 
Thus the shock wave ~n all cases is weakned and degenerates into an acoustic wave 

if the parameter w satisfies the inequality 0 < w < _I_I-. However, the laws of such ,_ 
weakening depend essentially on the conductivity properties of the medium. In certain 
cases the wave can degenerate into an acoustic wave in a finite period of time. For other 
values of the parameter w the weakening of the wave does not occur. Upon analyzing 
the stationary solution~ of Eqs. (I), as performed in [14, I6], one may demonstrate that 
in this case the finite ·stationary solutions do not extist in the whole interval of variation 
of the space coordinate ranging from 0 to oo. 
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