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Propagation of nonlinear dispersive and dissipative waves™®

J. BEJIDA (WARSZAWA)

TaNIUTI'S reductive perturbation theory, valid for quasi-linear systems of partial differential
equations of the form U,+ A(U)U:+B(U) = 0, is applied for the analysis of small but finite
nonlinear harmonic wave propagation in dispersive and dissipative solids. In this theory the
stretching transformation allows for separating in the asymptotic expansion solution the
rapidly oscillating harmonic dependence from the slowly varying amplitude and determining
at the lowest approximation the modulation of the amplitude. Two examples of wave pro-
pagation in solids, namely, the elastic transverse waves in a taut string laying on a uniformly
distributed nonlinear elastic support and longitudinal elastic viscoplastic waves in a thin long
rod, are discussed in detail. The former problem is purely dispersive and the latter purely dis-
sipative. It was demonstrated that in a case of the string the amplitude modulation is governed
by the nonlinear Schrodinger equation and in a case of viscoplastic rod by the general-
ized Schrédinger equation. Analysis of the coefficients of these equations may say if the
amplitude is modulationally stable, bounded or the solitary wave solution exists.

Zastosowano metode Taniuti i wspoipracownikéw, stuszna dla quasi-liniowych ukladéw réw-
nan rozniczkowych czastkowych pierwszego rzedu typu U,+A(U)U,+B(U) =0, do analizy
zagadnien rozprzestrzeniania si¢ fal harmonicznych o malej lecz skoriczonej amplitudzie
w osrodkach dyspersyjnych i dysypatywnych. Zastosowanie w tej teorii transformacji rozciag-
nigcia pozwala na rozdzielenie szybko zmieniajacej si¢ czesci harmonicznej od powolnej zmiany
amplitudy i okreslenie z pierwszej aproksymacn modulacji amplitudy. W pracy rozwazono
szczegOtowo dwa przyklady propagacji fal — fale poprzeczne w napigtej strunie podpartej
nieliniowo-sprezyscie i lepkoplastyczne fale podtuzne w cienkim diugim precie. Pierwszy pro-
blem jest czysto dyspersyiny, drugi — czysto dysypatywny. Wykazano, ze réwnaniem roznicz-
kowym amplitudy dla struny i preta sa odpowiednio nieliniowe i uogélnione rownania Schro-
dingera. Analiza wspdlczynnikéw tych réwnan pozwala stwierdzi€, czy rozwiazanie jest sta-
teczne, ograniczone, lub czy istnieja rozwiazania typu “solitary wave”.

Ilpumenen meton TaHBIOTH M COTPYAHHKOB, CUpaBe/IMBBIH [/A KBasHIMHEHHBIX CHCTEM
muddepeHIHANIBHEIX YPaBHEHWHT B YaCTHBIX IPOM3BOAHBIX NepBoro nopsagka tuma U -+
+AUU:+BU) = 0, pna ananusa 3agad pacnpocTpaHeHHA FapMOHMYECKHX BOJIH MaJsoii, HO
KOHEUHOH aMIUIMTY[bl B JHCTIEPCHOHHBIX H JHCCHNATHBHBIX cpefax. Ilpumexenme B 3TOM
TeopuH TpaHchOpMAlMH PACTSIKEHHA MO3BOJIAET PAa3NeNIUTh OLICTPO MEHFIOLIYIOCA rapMo-
HHUYECKYIO YACTh OT MEJICHHOrO H3MEHEHHA AMIUIMTYALI H ONpeJesIHTh M3 MepBOH anmpoKCcH-
MalLMK MOMYJIALMIO aMILTHTYARI. B paGote paccMoTpeHbI nopobHO [Ba NMpHUMepa pacrpocTpa-
HEHHSI BOJH — IIONEPEYHbIe BOJHBI B HATAHYTOM CTpYHE MOATEpPTOH HenuHeHHO-yNpyrum
obpasoMm M BA3KOIUIACTHYECKHE MMPONOJIBHbLIE BOJHLI B TOHKOM, JJNHHHOM cTepkse. IlepBas
3a/1aya YHCTO MCIEPCHOHHAs, BTOpasg — UHCTO auccuratusHasa. [TokasaHo, uto muddepen-
OHANbHBIM YPaBHEHHEM aMIUIMTYAbI /IS CTPYHBI M CTEPXKHA ABMIAIOTCH COOTBETCTBEHHO He-
JHHeliHoe K 06o0menHoe ypaBHenue Illpemunrepa. Axamns ko3 PULUHEHTOB 3THX YPaBHEHHH
MO3BOJIAET KOHCTATHPOBATh ABJIAETCA JIM PellleHHe YCTONYHMBBIM, OrPaHMYEHHBIM HIIH Cylle-
CTBYIOT /IH pelleHus THma ,,solitary wave™.

1. Introduction

THE sTUDY of waves in nonlinear continua has received tremendous attention recently.
The concept of a wave as a repetitive or periodic phenomena ceases to be of much value
in nonlinear problems as compared to its use in linear problems. This is so since the
Fourier analysis plays here a little role. In nonlinear wave problems the approach based

*) The paper has been submitted to the 14th IUTAM Congress, Delft, 30 August—4 Septem-
ber 1976.
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on the moving singular surfaces across which some variables or their derivatives suffer
discontinuity has proved to be extremely fruitful. Applying compatibility conditions to
the field equations one can obtain an equation determining the possible speeds of wave
propagation, study the growth and decay of the amplitude and analyze the formation of
the shock waves. One serious limitation of this theory is the difficulty in satisfying the
boundary conditions and therefore these studies are restricted mainly to the unbounded
media and in particular, to one-dimensional problems.

The waves propagating in the waveguides and in dispersive and dissipative nonlinear
media are of special theoretical and practical interest in many fields of physics and me-
chanics. Nonlinear dispersive waves have been known for a century in the water-wave
theory. The Korteweg-De Vries equation describing the waves in shallow water has been up
till now of particular interest because of its peculiar solution in the form of periodic,
cnoidal and solitary waves. It was recently shown that apart from the Korteweg-De Vries
equation there are other scalar partial differential equations describing dispersion or
dissipation effects of nonlinear waves such as Burgers equation, Schrédinger equation,
Klein-Gordon equation, Boussinesq equation which exhibit solitary waves solutions and
in some particular cases solitons—qualitatively new waves which preserve their shape
and velocity upon colliding with other solitary waves. Studies in seeking solitary waves
are widely carried out in plasma physics, quantum mechanics and in the gas and fluid
flow theory [1-5]. An extensive review of these works may be found in [6]. A particular
lack of analogical studies in solid mechanics has been observed.

The first work on this subject in solid mechanics seems to belong to NARIBOLI who,
in [7], studied the nonlinear longitudinal dispersive waves in an isotropic homogeneous
elastic cylindrical rod. The governing equation he obtained is the analog of the Korteweg-
De Vries equation in fluid. However he asserted the existence of different types of waves:
the Airy, Boussinesq, cnoidal and solitary waves.

In [8] NARIBOLI and SEDOV extended these ideas to dispersive dissipative waves for
viscoelastic materials of the rate type. They derived the generalized Burgers-Korteweg-De
Vries equation describing the effect of dissipation and dispersion on waves of small but
finite amplitude in rods and plates. SPENCE [9] also studied the propagation of one-di-
mensional waves of small finite amplitude in nonlinear materials with memory and showed
that the evolution of the amplitude is described by the Burgers equation.

Just recently TEYMUR and SUHUBI [10] have applied TANIUTI and WEI'S [11] method,
i.e., a method similar to the one we shall develop in this paper, to the analysis of dispersive
and dissipative waves in solids. In particular they considered one-dimensional waves in
a nonlinear Kelvin-Voigt solid and in a finite linear viscoelastic half-space. They found
that longitudinal waves in a half-space are characterized by the Burgers equation while
the shear waves by the generalized Burgers equation. Further, Braun using a similar
two-timing perturbation technique investigated nonlinear effects on harmonic waves prop-
agating in a finitely-deformed elastic material, [12].

In the papers mentioned above interesting analytical solutions were obtained by
reducing the corresponding problems to the one of scalar equations described earlier.
However, up to now there is still no general rule of reducing the dynamic continuum
mechanics problems to these scalar equations. In this respect the use of the Schrédinger
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equation seems to be promising as, under some conditions, it admits the solitary wave
solution. The scalar differential equations in the past were relied on a number of physical
arguments. Recently, an attempt was undertaken by TANIUTI and his co-workers [13, 14,
15] to elaborate the general method of reducing the broad class of boundary-value prob-
lems governed by the system of nonlinear partial differential equations to a single
second-order nonlinear differential equation. Using the coordinate stretching approach
they constructed a theory for the propagation of a plane wave of small wave
number and low frequency as well as for finite amplitude and high frequency waves.
When the amplitude changes gradually and insignificantly in the vibration period, the
stretching transformation allows the system to be separated on the part which changes
rapidly and connected with oscillations and the part of the amplitude which changes
slowly. In asymptotic expansion the lowest approximation determines the modulation of
the amplitude. It was suggested [16] that this method may be successfully adopted for
investigating the dispersion and dissipation of nonlinear elastic and non-elastic waves
and that the results allready obtained be used in other fields.

The notion of dispersion and dissipation of harmonic waves is determined uniquely
for linear systems but not precisely for nonlinear ones. In a linear system the field quantities
associated with linear waves may be resolved into Fourier components. For example, in
the case of one-dimensional plane waves the governing equations have an elementary
solution of the form aexpi(kx—iwt), where x denotes a one-dimensional space coordinate,
t the time, a the amplitude, k the wave number and w the angular frequency. The wave-
length A is defined to be A = 2n/k. A consistency condition which requires that the
solution should be not trivial leads to the relationship between w and k of the form
@ = w(k) which is known as a dispersion relation. The general solution is then given

ol

in terms of Fourier integrals of the form [ A(k)expli(kx —wt)]dk, where the spectrum
]

function A(k) is determined by appropriate initial or boundary conditions. We define
the phase velocity ¢, and the group velocity A4 of the wave by the following known rela-
tions: ¢, = w/k and A = dw/dk. From the dispersion relation it results that the phase
velocity and the group velocity are generally not equal to each other. In other words the
phase velocity ¢, depends on the wave number and we say that the wave is dispersive
or that the wave has dispersion in a wider sense. In dispersive systems the dispersion
relation generally gives a complex w for a real k. Therefore, not only does the phase
velocity depend on the wave length, but also the effective amplitude of the wave will be
attenuated with time if Im(w) < 0. We call such attenuation dissipation. On the other
hand if Im(w) > 0, the effective amplitude of the wave will grow without bound in the
course of time. We call this instability. If, in particular, @ = w(k) is a real function of
a real k, where dc,/0k # 0, then neither dissipation not instability occurs. We call this
pure dispersion or dispersion in the narrower sense.

On the other hand, in a nonlinear wave system, the frequency of the wave is not only
the function of the wave number but also of other parameters the amplitude, for example,
which are all assumed to be small in the linear approximation. As opposed to linear
systems, it seems that a precise definition of dispersion has not yet been established for
nonlinear systems. In many cases, however, we can obtain corresponding equations of
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a linear dispersive system by linearizing the governing equations which are originally
nonlinear. In these cases we can consider the dispersion of nonlinear waves. Following
JerFREY and KAKUTANI [4] we shall say that the system is dispersive if its linearized form
exhibits dispersion in the sense of linear waves.

The aim of this paper is to reduce the system of equations-governing the dynamics
of nonlinear dispersive and dissipative systems to a single nonlinear equation for the
wave amplitude and obtain the special solutions in an explicit form for the lowest order
of perturbation. In Sect. 2 a brief description of Taniuti’s reductive method is given. For
the purpose of illustrating the method, problems of propagation of transverse waves in
elastically supported stretched string and viscoplastic waves in a thin rod are discus-
sed in detail in Sects. 3 and 4 respectively. The object of our study is to investigate
how the plane wave is modulated by nonlinear effects.

2. Taniuti’s reductive method

In the one-dimensional Taniuti’s reductive perturbation approach the basic system of
equations has the form
(2.1) %+A(x, t, U)—%+B(x,t, U) =0,
where U is a column vector with n components u,, u,, ..., #,; the nxn matrix A and the
column vector B are the functions of »;’s being sufficiently smooth. The system of Egs. (2.1)
contains a very wide class of boundary-value problems of nonlinear wave propagation in
continuous media.

Let U™ be a constant solution satisfying
(2.2) B(U®) =0

and define the matrices A, and 4B, by

B;
Ao, = A(U®), (VB =(—' .
1] ( ) ( O)I'j auj D ics
Then Eq. (2.1) linearized about U'® takes the form
au du
2.3) o HAo s +VBo-U = 0,

which admits a high frequency plane wave solution ~ exp+ {i(kx—iwt)} which is charac-
terized by the dispersion relation

2.4 det W,, = det[Fiol+ikAy,+VB,] =0,

I is the unit matrix, assumed to have for any real k at least one real root w which changes
smoothly as k changes, but

(2.4) det W, = det[—ilwl+ilkAo+VB,] #0 for [+ 1.

For a wave with small but finite amplitude of the order &, U is then expanded in the
neighbourhood of U in terms of small parameter ¢ and harmonics ~ exp[il(kx—iwt)] as

U= Z;s‘l}“’, U® = z U@ (z, Hexpliltkx—wt)], for a>=1,

I=—c
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(2.5) or
o + o0
U=U94 Ze‘ 2 U (z, Eexplil(kx—iwt)],
a=1 ==

U™ = U®*, (the asterisk denotes the complex conjugation) where 7 and & are the slow
variables introduced through stretching

T = £%t,

2.6
Ge) £ = e(x—At), A=%—‘E.

In this way the rapidly oscillating harmonic dependence is separated from the amplitude
modulation, slowly varying as indicated by the scaled coordinates, Egs. (2.6).
Substituting this expansion, together with the expanded terms

A = Ag+EVAy - UM 4¢2 :VAO -U‘”+%VVAO :Utnum}+
Q.7 B = By+¢B, - UM 462 {\?B0 LU 4 %VVBO:U“’U(”}

& {V].’p,;l - U +VVB,: UOUP + -é— VWBD:U“’U‘”U“’} + .

where the following notation was assumed

V[ 0A
VA, U® = Z (—) uf®,
? T aui U=Ug :

VVA(: UVUD = Z (az—A) ufug,
<t \ Ou; 0 |u=u,

o
into the original system of equations and equating to zero the coefficients of the various
powers of & for the same harmonics gives in first order the linear dispersion relation. In
second order 1 is determined to be the group velocity (1 = dw/dk). And in the third
order it is found that the nonlinear modulation is represented by a nonlinear Schrédinger
equation for the first-order amplitude ¢ (where U{" = @'R and W,R = 0)

Sgt) 02
@9) w2+ T g =0,

where
«=L"R,
B =L{—A+Ay)Z(—AI+A )R,

(29 3= L[fk {Z(VAG - RYRP + (VAo * RP)R — (VA,RP)R* + (VVA, : RR¥)R

- %— (VVA,:RR)R* +VVB,: (RRY’ + R*R$P) + -]j- VVVB,: RR*R] ;
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Here the row vector L is determined from the relation LW, = 0 and Z is the following
matrix

aDy abD
(2.10) 2= ("‘a)w.f/ (‘a;? )

in which Dy(p)’s are the co-factors of D(p) = det[—ipI+ikA,+VB,] and the vectors
R{» and RY? are

RP = — W5! ifk(VAo ‘R¥)R—c.c.+ —?2— (VVB,:R¥)R +c.c.},
(2.11) i
5
where “c.c.” denotes the complex conjugation.

In some cases Eq. (2.8) admits further reduction to the Korteweg-De Vries equation
Up+ Ul + YUy r + Otiyx, = 0. In the solution (2.5)-(2.7) the approximations to be computed
are: UP, o =1,2; 1= +1, +2,0. A crucial assumption of this theory is that for w,
is a real root of detW,, = 0, lw, are not also roots of this equation. That is, a mono-
frequency oscillation state is assumed to exist and self-resonance is excluded. However,
in most physical problems this conditions is not valid for / = 0. In application this partic-
ular difficulty may be avoided by means of subsidiary or boundary conditions.

As an application of the reductive perturbation method presented we shall examine
in the next two sections the problem of elastic waves in a taut string lying on an elastic
nonlinear foundation and elastic viscoplastic waves in a thin rod. These are the simplest
examples of dispersive and dissipative wave motion, respectively. Moreover, in a linear
case they have explicit form solutions.

RY = _W;'{sk(mo-n)m VVBo:RR}-

3. Taut string on nonlinear elastic foundation

Consider an infinite elastic string supported laterally by a distributed spring of spring
constant K; jointly with nonlinear support K,y3. The string is assumed to be under
constant tension F. The lateral displacement of the string is denoted by y and the distance
along the string by x, Fig. 1. The inclination angle of the string is assumed to be small
enough so that its cosine may be approximated by one and its sine by its tangent .

Y
dx I
F . F
-— h,/ EE 3 = - X
.D
yx EE 3 23 K i 6™ Hax K
TI7IT77T 7777777777 777777777 77777/ 7477

FiG. i.
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The string is always in equilibrium in the x direction and only the dynamics in the y direc-
tion is considered. The string is characterized by the cross section area 4 and the material
density o. The lateral acceleration y,, times the mass Aodx of a section of a string balances
the lateral force exerted on the section. This lateral force consists of the forces — K,y
and —K,y® exerted by the supports and lateral component of the stretching force Fy..
acting on a differential segment of the string having a length dx. Combining all the forces
we obtain the differential equation

(E3)) A —Fyas+ K+ Kp)? = 0,
where the “ A" denotes dimensional quantities.
Introducing dimensionless quantities

» % ta K, b K b*
y=%"" x='3! I='_b'_$ Kl= l,, E] K2= i »
F F

~

F . 5.
where 2 = - and b is a characteristic length, Eq. (3.1) assumes now the form
Ae
%y %y
ar  ox? +Ky+K,p* = 0.
This equation may be replaced by a system of first-order partial differential equations by
introducing new variables u and ©» through the relations

(3.1)

oy Yy _
= —a_; or u— —a = 0,
3.2) .
y ay
Pim—ae  OF =g 0
Differentiating Eq. (3.2,) with respect to time we obtain
ou Ov
33 ot e
32 at  Ox 0,
which, together with Egs. (3.1) and (3.2,), form the system of the governing equations
0v  Ou 5
" ax TK Kyt =0,
ou v
3.4 o ) =
Sl ot 0x %
dy
W - = 0.

This system of equations may be easily transformed to the compact matrix form, Eq. (2.1),
and U,A and B now become

) 0-10 -K,y—-K,»?
(3.5 U=|u|, A=| -1 00|, B= 0
y 0 00 v

Equatien (3.2), is the subsidiary condition which will be used for evaluating the zero
approx:mations of the solution U{.
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Let us expand the solution U in the series (2.5) around the constant state U® = 0.
Then the matrix (2.4") W, = [—iwll+iklAy,+VB,] in the explicit form becomes

—ilw —ilk 1
(3.6) W,=| —ilk —ilo 0
-1 0 —ilw

The dispersion equation, i.e., det W, = 0, is
(3.7) w?—k*=1 = 0.
To derive the differential equation for the amplitude ¢, the coefficients a, £, y and the
vectors R§ and RY? should be evaluated from Egs. (2.9)-(2.11).
In our case we have
w
(3.8) R=| -k|, L=[o, -k,i]
i
However, since the determinant W, equals zero, the vector R§?> can not be determined
directly by this method. Instead, thc approximations U§? should be found independently
from the subsidiary equation (3.2,) and the governing equations (3.4). After some cal-
culations we obtain
o) =y =uP =0, ie U’ =0,
v =y =uP =0, ie UP=0
what finally leads to R§» = 0.
Since VA, = VVA, = VVB, = 0, we can compute straightforwaidly that

3.9)

(3.10) R{? = 0.
Substituting Egs. (3.8)-(3.10) to the formulae (2.9), we obtain
(3.11) a=2w? f=-iK o, y=3ivk,.

Hence the differential equation for the amplitude modulation is the nonlinear Schrodinger
equation

dot? 2..(1)
(3.12) f_.(g(; iy 66(;2 +qlg®Pet =0

where

=K ., __3K

203’ N 20

Although it is not our aim to discus. the solution of Eq. (3.12) for the corresponding

initial and boundary conditions, some interesting features of the solution of Eq. (2.8)
should be remarked here. Consider the following type of the solution

(3.13) gV, T) = A(Eexp(ive),
where A(£) is a real function of & and » is a real constant, satisfying the equation

6tp(” 6193( )

il KRN Y (12 (l)
i ——*p- P12 qle V)¢
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provided that A(&) fulfils the following condition

1 {da\? q v

) ) = By, Wil <itoa

where E, is an arbitrary constant. This is equivalent to the classical equation of motion
for a unit mass with total energy E, under the potential ¥(4). By virtue of this analogy
the solution A(§) depends on mutual relations between p, q,» and E,.

P,q 1"9?:9 Eo»",Paq A(g)
2 A() represents wave trains expressible

4pg by the Jacobian functions (comp. [6])

v? v \3 v \s
. ce gy o2l 3P4
(3.14) = Zpg 3] p %
pg>0 wp>0 »g>0 there is no bounded real solution

pg>0 wp<0 <0 0<E; <

pg<0 wp>0 vg<0 two types of wave trains expressed by
Jacobian eliptic functions

E, >0 1) large amplitude waves
v
— < <0 1l litud
e E, 2) small amplitude waves

E,=0 solitary waves
1 1
(3.15) Al ( . E.)Esech [(- 1)5-'5].
@ g =

pg <0 wp<0 Ey, >0 A(%) represents wave trains expressible
by the Jacobian eliptic functions.

When ¢ = 0 the nonlinear effect disappears and the amplitude equation reduces to the
form
. O gV
(3.16) o P =0
which may be integrated through the quadratures, and its general solution is
(3.17) PV, 1) = e (C, M +Cye~™).

The solution is then sinusoidal in the phase & and the phase is linear in time. ¢ = 0 cor-
responds to K, = 0 in Eq. (3.12) and we have the classical problem of transverse wave
propagation in a taut string elastically supported.

4. Elastic viscoplastic waves in thin rod

The problem of the propagation of infinitesimal elastic viscoplastic waves in a long
thin rod is described by the equation of motion
96 ov
(41) - = —Q ~—;,
ox ot
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the continuity equation

2) de v

of = ok

and the Malvern constitutive equation [17]

@43 8 ot T +I“@( 2,
ot E ot dy

where &, v and & are the dimensional stress, velocity and strain respectively, E is the
Young modulus, I" the viscosity coefficient and @ is the nonlinear relaxation function
depending on the excess of the stress beyond a static plastic limit. Introducing dimension-
less quantities similarly as in Sect. 3,

~ - A
fcy v
—_, i

b Co Co Co

where b is a characteristic length and ¢} =§ is the squared bar velocity, the system
of Egs. (4.1)-(4.3) may be written in the following matrix form:

(4.4) o +AZ 4B -

B IR H IR NS e

']
. 1 5 i g—a
To specify the relaxation function @ we assume its power form @ = (-—- a——-‘l) as sug-
(1]

gested by CowPER and SYMONDs for mild steel and aluminium [18].
Consider the constant state U about which the expansion (2.5) is considered as

(4.6) U@ = [0 ], such that B[U®] = 0.
Oo

However, to preserve the existence of the small amplitude viscoplastic loading and un-
loading wave we introduce a new quantity o, which is the value of the stress just beyond
0o. The assumption of such a prestressed state oo under the quasi-static strain rate
deo/0t = const was discussed in detail in [19]. Introducing for the simplicity the notations

oz o_0 &
Lin ot ot ot
we obtain the constitutive equation
9 1 da o ( @ )
4.3’ e ST —), o|—)=—¢
( 3) ot E ot +m(0‘g), Og Og

which is rather a viscoelastic than elastic viscoplastic constitutive relation.
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Linearization of Eq. (4.4), in which Eq. (4.3') is included (called further Eq. (4.4'))
around the state U® = 0 gives

=0 for i,j=1,2and 6> 1.

A m A and VBO=(3131) "
U=Uy

au,-
Hence the linearized form of Eq. (4.4’) leads to a linear dispersionless system with the
frequency equation
4.7 W, = w?—k* = 0.

For 6 = 1, Eq. (4.4') is linear and the only non-zero element of VB, is gﬁz = g—.
2 o

Its dispersion equation
[—fw ik

4.8
@8 ik —iw+2y

] = —o?’+iop+k? =0, 2p=—

is not real. The transformation

4.9) U=e*U(x, 1)
leads to the system of Eqgs. (4.5) but in which the term B is
(4.10) BT = [—yv, —ypo]", T = transpose.

The equation obtained does have the real dispersion relation

—iwo—y ik
4.11 . S = .
4.11) [ ik -:'w+1p] w?+k?—yp* =0,
or, in dimensional form,
4.12) w? = cjk?—y2.

This relation has several anomalies. One of these is a low wave number cut off at k = k.
= c¢p'y below which the solution is not oscillatory in time and no wave propagates.
Another is that the group velocity is equal to c3k/w, a quantity larger than c,. Hence,
unless y < ¢k the propagation is strongly dissipative and the utility of the concept of
group velocity is lost. If y < cok, the dissipation is weak and the term B in Eq. (4.5)
with Eq. (4.9) may be neglected. It is in contrast with the method of characteristics ac-
cording to which the wave always propagates with the velocity ¢, regardless how large
the term B may be.

Let us notice that the system of Egs. (4.5) with the vector B determined by Eq. (4.10)
may easily be put in one second-order partial differential equation

2& 261

%T - '—gx—z +21p& =0.

which is the same as Eq. (3.1') with K; = 2y and K, = 0. Therefore, the amplitude
equation and its general solution are given by Egs. (3.16) and (3.17), respectively. We can

thus conclude that the nonlinearity expressed in terms of the Cowper-Symonds con-
stitutive relation was lost in our reductive perturbation method.

4.13)

9 Arch. Mech. Stos. mr 3/77
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PERZYNA [20] in 1963 suggested two interesting expressions for @(F), the power series
and the exponential series. The former, i.e.,

4.14) O(F) = ) aF, F=9=%,
1

o

which includes the model ®@(F) = F® considered previously is more suitable for our
analysis. We take into account only the first three terms of the series (4.14) since the
remaining terms are excluded in the 3-rd order approximation procedure. We shall con-
sider the governing system of Eqgs. (4.4)-(4.5) with the constitutive relation

(4.15) ®(G) = 295+a,0°+a, 5%,

r ; ; o i
where a;, = - Was assumed to be the same as in a previous case and the substitution
0

o = o— 0, was.performed. The dispersion relation determined from the linearized govern-
ing system around U, is given by Eq. (4.11). The matrix W; now assumes the form

i iy —yp—lio lik
G16) Ul ik y—liw |’

The coefficients a, §, ¥ in the amplitude equation (2.8) may be evaluated in a straight-
forward way from the formulae (2.9) since now det W, = —v?, is different from zero.
Because of the symmetry of the matrix W; the components of the column vector R and
row vector L are the same and take the form

4.17) L= [y—io, ik} R= ['P;w].

The matrix Z is
4.18 Z f [1 0]
34 T 2w |0 1)

The vectors R§>, R* and R$? appearing in the expression for y are

0 +iw k2 [ 2ik
2 _ B2k e |¥ @) _ 9257
4.19) R§ p [1], = [ .1, RS 6y v+ ]

Substituting Eqs. (4.17)-(4.19) into Eq. (2.9), we finally get

(4.20) o= —2w2—2iyw,
2PN Ui |
@.21) B=—% Gk +a?)+i—F =,
4 214
(4.22) Y= - *%— [(6—v)a3+3as]+i ak’o )

Hence for the first-order amplitude modulation of an elastic viscoplastic wave in a rod
we obtained the generalized Schrédinger equation.
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5. Concluding remarks

We have shown that Taniuti’s reductive perturbation theory, valid for the quasi-linear
system of partial differential equations of the form U,+A(U)U,+B(U) = 0 may be
successfully used for analyzing nonlinear harmonic wave propagation in dispersive and
dissipative solids. Two examples of wave propagation, namely, the elastic transyerse
waves in a taut string lying on a uniformly distributed nonlinear elastic support and
longitudinal elastic viscoplastic waves in a thin semi-infinite rod are discussed in detail.

The former problem is a purely dispersive one and the latter is purely dissipative. Real
dispersion relations were obtained in both cases and the range of possible wave frequencies
were estimated. It was demonstrated that in the case of a string the amplitude modulation
is governed by ‘the nonlinear Schrédinger equation and for viscoplastic waves in a rod
by the generalized Schrédinger equation. An analysis of the coefficients of these equations
(without solving them) makes it possible to say if the amplitude is modulationally stable,
bounded or if the solitary wave solution exists.

The advantage of this method is its generality and mathematical elegance (in spite
of some algebraic complexity in combined problems) and consequently, its applicability
to a large class of interesting boundary-value problems of solid mechanics, including
thermal effects [21]. The consideration of higher order approximations is straightforward.
This theory may be extended to two dimensions.

In the two-dimensional generalization one considers a wave propagating along the
unbounded x-direction and bounded in the transverse z-direction with the boundary
condition given. The basic system of equations becomes U, + A*(U) U, +A*(U) U, +B(U) =
= (. As it was the case before, the frequency is obtained from the linearized system and
the amplitude modulation is governed by the generalized nonlinear Schrédinger equation.

In concluding this section, it is worth mentioning that the Krylov-Bogolubov-Mitro-
polsky method is also useful in obtaining the nonlinear Schrédinger equation for the
amplitude modulation of monochromatic plane waves [22]. The only assumption used
in this method is the annihilation of secular terms, and the method can suggest quite
naturally a heuristic coordinate transformation on which Taniuti’s perturbation method
is based.

The results of this work may be useful in the analysis of stresses in a structure or
machine part performed by new ultrasonic techniques referred to now as the acousto-
elastic method.
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