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Saint-Venant’s problem for inhomogeneous and anisotropic
elastic solids with microstructure

D. IESAN (IASSY)

THE PRESENT paper is concerned with Saint-Venant’s problem for inhomogeneous and aniso-
tropic cylinders in the linear theory of elasticity with microstructure. The elastic coefficients
are independent of the axial coordinate. The problem is solved using four generalized plane
strain problems.

W pracy zajeto sig Zasadnienigrr] Saint-Venanta dla niejednorodnego walca anizotropowego
z ml!(l‘os_trulgturq. Wspblczynniki sprezystosci nie zaleza od zmiennej osiowej. Zagadnienie
rozwigzuje si¢ za pomocg czterech uogdlnionych probleméw plaskiego stanu odksztalcenia.

B nacrosmmeii pabote paccmarpuBaercs sajjaua Cen-BenaHa sl HeOJHOPOAHBIX M AHU30-

TPOIHBIX LWJIMHAPOB B TEOPHH YNPYTOCTH C MHKDOCTPYKTYpO#. Ynpyrue koaddHIMeHTHI
He 3aBHCAT OT aKCHAJIbHON KOOpAMHATEI. 3afjaua paspeluaeTc NPy NOMOLIH YeTkIpex oGobien-
HBIX TUIOCKHX 3afay.

1. Introduction

IN THIS PAPER we consider Saint-Venant’s problem in Mindlin’s linear theory of elasticity
with microstructure [1]. The theory of media with microstructure was developed in various
papers (see e.g. [1-4]). The relation between these papers was discussed in [S]. In the
linear theory of Cosserat elasticity, Saint-Venant’s problem for homogeneous and isotropic
solids was studied in [6, 7].

In this paper, using the results established in [7, 8], we study Saint-Venant’s problem
for inhomogeneous and anisotropic elastic cylinders with microstructure. We assume that
the elastic coefficients are independent of the axial coordinate and are prescribed func-
tions of the remaining coordinates. In the first part of the paper we define the generalized
plane strain and give an existence theorem. In the second part we solve Saint-Venant’s
problem using four generalized plane strain problems.

2. Statement of the problem

Throughout this paper ¥ denotes the interior of a right cylinder of length / with the
open cross-section £ and the lateral boundary B. We call gV the boundary of ¥ and
denote by L the boundary of the generic cross-section 2. Moreover, a rectangular Cartesian
coordinate system Ox, (k = 1, 2, 3) is used. The rectangular Cartesian coordinate frame
is chosen such that the x;-axis is parallel to the generators of ¥ and the x, Ox,—plane
contains one of the terminal sections. We call 2@ the cross-section located at x; =0
and O the cross-section which lies in the plane x; = /.
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We shall employ the usual summation and differentiation conventions: Greek sub-
scripts are understood to range over the integers (1, 2), whereas Latin subscripts to the
range (1,2, 3); summation over repeated subscripts is implied and subscripts preceded
by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate.

The basic equations of the static theory of elastic solids with microstructure, in absence
of body-forces and body double-forces, are:

the equilibrium equations

(2.1) Tty =0,  pipiton =0,
the constitutive equations
Tij = CijesErst Grsij¥rst Fprij¥pars
2.2 0i5 = Gijrlers+ BrsijVrs+ Dispar #par»
Hijk = Fijkrs€rs+ Drsijx Vrst+ Aijkpar %par »

the geometrical equations
1
(2.3) &ij = E("id*“!-l)’ Yij = Ui~ Pijs Kijk = Pjk.i-

In the above relations we have used the following notations: 7;;—the classical stress
tensor, o;;—the relative stress tensor, p;;—the couple-stress tensor, ¢;—the classical
infinitesimal strain tensor, y;;—the relative deformation tensor, #;;,—the microdeforma-
tion gradient tensor, u;—the displacement vector, @;;—the microdeformation tensor,
Cijrss Grsijs «--» Aijiper—the elastic coefficients. The elastic coefficients satisfy the sym-
metry relations

2.4 Cirs = Crsij = Cjires  Bijes = Brgijy  Aijkpar = Aparijics
Fijkes = Fijises  Gijes = Gijse.

The surface tractions and double-tractions acting at a point x on the oriented surface
§ are given by

2.5 T; = (rutopn, M= puyn,,

where n; are the direction cosines of the exterior normal to § at x.
The cylinder is supposed to be free of lateral loading so that we have the conditions

(26) (t,;-l-d,;)?lu =0, Maijla = 0 on B,

where (n,, n,, 0) are the direction cosines of the exterior normal to lateral surface.

The load of the cylinder is distributed over its ends in a way which fulfills the equi-
librium conditions of a rigid body. We assume that the loading applied on 2'® is statically
equivalent to a force R(R;) and a moment M(M).

Saint-Venant’s problem consists in determining a solution of Egs. (2.1)-(2.3) which
satisfies the conditions (2.6) and the conditions on Z®,
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In this paper we consider an inhomogeneous medium for which
Cijes = Cijrs(x1, X2),  Bijes = Bijes(xy, X2),
2.7 Gijrs = Gijes(X1, X2),  Fijies = Fijirs(xy, X2),
Dijirs = Dijirs(X1s X2),  Aijipar = Aijupar(X1, X2).

We assume that the domain X is C®-smooth [9). The functions Cij.s, Bijrss Gijess
Fijkess Dijkess Aijuper are supposed to belong to C®. We consider only a “C*-theory” but
it is possible to obtain a classical solution of the problem for more general assumptions
of regularity. We have chosen this way so as to emphasize best our method for the solu-
tion of the underlying problem.

3. The generalized plane strain

Following [8] we define the state of generalized plane strain of the cylinder to be that
state in which the functions u; and ¢;; depend only on x, and x,
(31) U = “l(xl9 xl)r Pij = ?’l'j(xl ’ x!)-

The above restrictions imply that &, ¥ij, %ijx, Tij, 0ij, ik are functions only x; and x,.
The equilibrium equations with the body-forces f; and body double-forces L;; can be
written in the form

(3'2) 7¢£.¢+0¢I,¢ +.fr = 0,
ﬂ.;u,a‘i'au-f-LU =1,

from which it follows that the state of generalized plane strain demands that the com-
ponents of body force vector and body double-force tensor be independent of x;.
The geometrical equations lead to

1 1
Eapg = E(W.p'f'uﬁ.a), €3 = jUser €33 = 0,

3.3)
Yai = Uia—Qais  Y3i = —P3is  Hajk = Pikar %3 = 0.

The constitutive equations become

Tai = Caijp€ia+Gujai Vij+ Farsai®prss

(3.9
01y = Gijep&rp+ BirijVir + Dijgrs%pess
Haij = Faijrp€egt+ DisaijVest Aaijors ®prss
@3.5) 731 = Cijp&ig+ GrjziVri+ Farszi¥pes,

#3ij = Fiijep€rp+ DrsaijVrst Asijprsprs-
Let us assume that on the lateral surface of the cylinder we have the conditions
(3.6) (Tt Oa)te = Py, aijha = Q-
Obviously the functions P; and Q;; must be independent of x;.
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The generalized plane strain problem consists in determing of the functions u;, @;; which
satisfy Egs. (3.2)-(3.4) in 2 and the boundary conditions (3.6) on L. The functions
%31, M3ij can be calculated after the components ; and g;; have been determined.

The conditions of equilibrium for the cylinder can be written in the form

[fido+ [Pids =0,
z L

(3.7
fe_-,,ﬂ(x,fg+L,3)da+ f€3¢5(X¢Pg+Q¢5)dS =0;
z F

f(x2f3+L23"’L32)d‘3+ f(xz Py +Q23—Q32)d3—f(732+0'32)dﬂ =0,
z L z

(3.8)
f(x1f3+L13—L31)d0+ f(xLP3+Q13—Q31)d5—f(fal‘f'o'al)dﬂ' =0,
z L £

where e is the alternating symbol.
The conditions (3.8) are identically satisfied on the basis of the relations (3.2) and

(3.6); thus

f(‘!'3;+032)61'0 = f(rzs+aza+ﬂaz—023)d0 = f[Tu"'Uza +x2(Ta3,a+ Oa3.a+/3)
z z z

+Ly3— L2+ pazs,a— Hazz,a]do = f{[x2(7a3+0¢3)].¢+ x2f3+Las—Ls2
xz

+Ha23,.a— Pa32,a}d0 = f(sza‘f'Qza*Qaz)d"l'J.(xzfa"'Lza””Laz)dU-
L b

In a similar way we can prove that the second condition from Eqs. (3.8) is satisfied.
Using the results established in [9], as in [8], we can prove
THEOREM 3.1. The boundary value problem (3.2)-(3.4), (3.6) has a solution belonging

to C*(2) if and only if the C* functions f;, L;;, Pi, Q; satisfy the conditions (3.7).
In what follows we will use four special problems A® (s = 1, 2, 3, 4) of generalized
plane strain for the domain Z. The problems A® correspond to the systems of loading

{f®, LP, PP, 0’} where
f? = [(Caiss+ Gs3ai+ Gaizs + Bssai) €p3 Xo + (Daizmn+ Famnai) €nmpl.a»
St = [(Cutgs+ Gai+ Gaigs + B3gat) €53 X+ (Datzmn+ Famnai) €nmsl.as
{2 = (Catas+Gi3ai+ Gaizs + Basai)
L = [(Fujsa+ D3saij) €sps Xo+ Asijsmn€nmsl.a+ (Gijaz + Basij) €yps Xo+ Dijamnamp,
L{P = [(Fuijos + D3gaij) €op3 X+ Axijsmn€nms).a + (Bsaij+ Gijas) €aps Xg+ Dijamnnms »
36 L{P = (Fujas+Dssaip) a+Gijsa+Bsay, on Z,
o PP = —[(Caizz+Gasai+ Gaizs + B3sai) spa Xo+ (Daizmn+ Fmnai) €amp) Ma»

PP) = _{(Caipa+Gap¢i+ Gaie3+B3q¢i)eoﬁ3 x§+(Dciamn“}‘FSmmi)enma]nm
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(3.9)  P® = —(Cuss+Gszai+ Gaizz + Bszai)as

i ijm = —[(Faijas + D33aij) €553 X0+ Auijamn Compl N
O = —[(Fuijos+ Dagaij) €3 X+ Aaijars€seslas
0f? = — (Faijas+D33aij)fay 00 L.

We denote by {of”, i, &, 1P, x5}, 78, i, u$t} (s = 1, 2, 3, 4) the elastic states
corresponding to the plane strain problems 4. Thus we have

(3.10) 1Dt 0Det O =0, pSetoP+LP =0 on Z,
and
3.11) (9 +oDn, = PO,  pn, =0 on L.

It is easy to show that the necessary and sufficient conditions (3.7) for the existence
of the solution are satisfied for each boundary value problem A®. In what follows

we assume that the functions v{”, ¢{ (s = 1, 2, 3, 4) are known.

4. Extension, bending and torsion

Let the loading applied on X be statically equivalent to a force R(0,0, R;) and
a moment M(M,). Thus, for x; = 0 we have the following conditions:

(4.1) [ (tsat030)do = 0,
Fy
4.2) ;.J (t33+033)do = —Rs,
4.3) lf[x,(r33+cr;,3)+p3,3—p33,]da = e.53 M,
(4.4) )f e3aa[%e(T35+ 035) + psusldo = — M.

The problem consists in solving Eqgs. (2.1)-(2.3) with the conditions (2.6), (4.1)-(4.4).
We try to solve this problem assuming that

4
1
Uy = €qp3 ( -— -2 bﬂXg +b‘3X§)X3 +Zb,y§3),

s=1

4
@.5) Uy = (eampXaby+be) xa+ D, b2,

s=1

4
Fuy = e;;kbkx3+2b,q:§f’,

3=1

where ", ¢ are the solutions of the problems A‘’, and b, are unknown constants.
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From Egs. (2.3) and (4.5) we get

Eqp = Zb 8, ’ 2E¢3 = 8,5353X5+2 ) b 833,
s=1

x—l

4
(46) £33 = esupxaby+bs, Zb,y,f, V3a = Capsbsxg+ D by

s=1

Va3 = Ezcﬁxcba+b4+2bs?§?, Hajk = st";?t- %3jk = exjrby.

s=1 s=1

Taking into account Egs. (4.6), from Egs. (2.2) we obtain

7ij = (Cija3 + Ga3ij)(aap X2 g+ b4) +(Cijaz + Gaaij) €ap3 b3 X+ Famnij€nme by + 25{55) )

5=1

@4.7)  0ij=(Gij33+ B3sij)(€3ap Xabg+ bs) + (Bsaij+ Gija3)€ap3baxg+ Dij3mn€nme br + Zb s

s=1

Uik = (Fijkas + Dasijie) (€305 Xabp + bs) + (Fijkas + Daaiji) €xps b3 Xp
4

-+ -A ijk3mn emnrbr + 2 bs #f}" .

s=1

The equilibrium (2.1) and the boundary cenditions (2.6) are satisfied on the basis
of the relations (3.10), (3.11), (3.9). The conditions (4.1) are identically satisfied on the
basis of the equilibrium equations and the boundary conditions (2.6). Thus for the first
condition of (4.1) we have

f(fax +03,)do = f('fls'f‘ais*'“n—ﬂ'u)dﬂ = f[fns'f'o':a‘f'xl("a:&,a"'ﬂ'aa.:)
b I £
+ Ma13,0— Pa3r,o]do = f{[xl('faa‘i“Ua:q)].a"‘#ms.a—#asl.a}dﬂ
Z

= f[xl (r¢3+0a3)na+,usls"u_#a31 ”u.]ds =
L

In a similar way we can prove that the second condition of Eqs. (4.1) is satisfied.
The relations (4.7) can be written in the form

4.8) Ty = Zb 1P, oy = Z‘b I Zb mig),

s=1
where
(ﬂ} = (Cij33+Gsaip) esps X, + F3,,..¢,8mg+1-’u )
1§’ = (Cijas + G3a1) €ap3 Xg+ Famnijnms + T4},
1P = Cijz3+Gasy+ 7,
7 = (Gijss+ Bssij) €sp3 X+ Dijamnnms + 05,

(4.9)
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4.9) 77> = (Bsaij+ Gijuz) €aps Xp+ Dijsmn €nms + 05},
F 7 = Gijaz+ Byay+off,
mfj) = (Futaa+Dsam)e’gaxv+Am3m€mp+#5fl,
m) = (Fijas + Diiji) €aps Xp+ Aijkamn €nms + 4L
m{f) = Fijkss+ Dagije+puif).

From Eqs. (4.2)-(4.4), (4.9) we obtain the following system for the unknown constants

4
ZDasbs = eﬂﬂaMﬂ’
s=1

(4.10) )

4
ZDasbs = —R;, Zbds‘bs = —-M,,
s=1

=1

where we have used the notations

@11) Dy = [ [xalt$3+7) + My — m§1do,
x
Ds, = [ (13 +73)do,
z

Dy, = [esuplxalt§p+ 7D +m§lds, s =1,2,3,4.
z

Let us prove that the system (4.10) determines the constants b, (s = 1,2, 3,4). We
assume that the internal energy density

| 1 1
(412) U@ = ) Cijkr€1jExr+ 2 Bijyr VijVir + 5 Ajkrmn ik %rmn

+ DUtrm Yij%krm + Fljkrm KijkErm + Gljkr Vii€krs

is a positive definite quadratic form. In Eq. (4.12) we used the notation u = {u;, @;}. Let
us consider two elastic states {u], @i;, ..., pin} and {4, @i}, ..., pi}. If we denote

(4.13) UG, u") = wijeij+ oiyis+ i
it follows that
(4.14) U, u") = U, u), Ulu,u) = UQ@).
It is easy to obtain the reciprocity relation
4.15) 2 f U, u')dv = f (Tiwi' + Mi;gi))do = f (T ui+ Mijpij)do.
4 av av
Obviously,

(4.16) 2[Uwdo = [ (Tou+Mygy)do.
V av
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The relations (4.5) can be written in the form

4 4
. wm S0, wu= Shetp
s=1 s=1
where
1
D = Lo, P = epprrs ol
(4.18) uéa) = €apaXpX3 +f}é3), u.tﬂa) - w?), ug” = U&"],-

) _ (@) k) _ 03] ) _ (4
us? = x;4+08, P = euxs+ o, ¢ff = v,

It is easy to see that

4
.19 Uw) = D Unb,b,
rs=1
where
(4.20) Us =U@®,u®), u”={",¢R}, r,s=1,2,3,4.
The total elastic energy is
4
4.21) E= [Uwdo = Y E,bb,
v rs=1
where
(4.22) Ey= [ U, do.
V
We note that
(4.23) (R +7P)e =0, mE+a) =0 on 2,
and
(4.24) P +a)n, =0, miin, =0 on L.

Taking into account Egs. (4.23) and (4.24) we get

(4.25) [ @s2+a8)do = o.

z

Let us apply the relations (4.15), (4.16) to the elastic states {u{”, ¢{p,
(s =1,2,3,4). Using the relations (4.18), (4.25), we obtain

(4.26) 2E,; = legpy Dgs, 2E3s = —IDy, 2By = 1IDs,, s=1,2,3,4.
From Eqgs. (4.26) and (4.21) it follows
(4.27) det(D,,) # 0,

(s)
S mm

D. IEsaN

b

so that the system (4.10) uniquely determines the constants b,. The problem is therefore

solved.
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5. Flexure

Let us assume that the loading applied on 2@ is statically equivalent to a force
R(R,, R,, 0) and a moment M(0, 0, 0). Thus, for x; = 0 we have the following
conditions

(5.1) J (T3a+030)do = — Ry,

(5.2) ;f (t33+033)do = 0,

(5.3) J’{xa(r3,+a,,)+ faxs — H33aldo = 0,
(5.4) Lf €30 [Xa(Tap+ T3p) + p3agldo = 0.

The problem consists in solving Egs. (2.1)-(2.3) with the conditions (2.6), (5.1)-(5.4).

We call the solution (4.5) the primary solution and denote by #[b,] the vector {u;, @y}
with the components (4.5), indicating its dependence on the constants b,. Let v = {v;, y,}
be a vector with the components v; = v;(x,, X3), ¥rs = ¥s(x;, X;). In what follows we
assume that the functions v;, y,, and the constants b,, ¢, (r = 1,2, 3, 4) are unknown
and we seek the solution u = {u;, ¢,,} of the flexure problem in the form

X3

(5.5) u = a[b)+ [ aleldxs+v,
0
ie.,
4
1 2 1 2 ! 2 S‘ (5)
Uy = Capa —Enga +b3xﬂx3—gch3+5c3x5x3 + 2, (bs+csx3)v’ + 2,
s=1
4

1 s
(5.6) u3 = (e3npXabptby)xs+ 2 (P3,§X¢C_3+C‘)X§+Z(bg+a\'3 )oY +v;,
s=1
1 4
Pij = i’m(bkxa'i"z- C‘kxg) + Z(bs'l'-‘fafs)?’f;]‘f'?’u-
s=1

From Egs. (2.2), (2.3) and (5.6) we obtain

Ti; = (Cijas+ Ga:ﬂj) [(esrxaxab,s +b4)+ (€345 X Cp+ C4) xs]+ (CijuB
4
+ Gagij) €aps(bs +x3¢3) X5+ 2 (bs+x3¢5) T + Famnij nme (b + X3 ¢,) + 11+ K,

=1
(5.7) 01 = (Gi;33+ Bazij) [(€3ap Xu b+ bs) + (€305 Xo €5+ €4) X3]
+ (Bawij+ Gijuas) €as3(bs+ X3¢3) Xg+ Dijamn €nmr (b, + X3 ¢,) + 701+ Hy,
Bije = (Fijuas + Dazij) [(€3ap Xabp+bs) + (€305 Xa Cp+ €4) X531+ (Fijtas
. 4
+ Dsgiir) €aps(bs +x3.¢3) Xg+ Aijuamn €nmr (b, +X3¢,) + Z (bs+ x3¢5) pijd + myjx+ Rijg,
§5=1

5 Arch. Mech. Stos. ar 3/77
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where
(5.8) tij = Cijrperpt Grsijes+ FprsijVsras
= Gijrﬁ €rg = Brsi} Mrst+ -Dijﬁrs Varss
Mijx = Fijepers+ DesijkMes+ AijiprsVprs
1 1
(5.9) Cup = E(ﬂa.ﬁ‘*'ﬂﬂ.a.); €a3 = €32 = 5 V3.
Nei = Yia=Vais  W3i = —VPais VYajk = Yjkar
and
4
K;; = [es(Cijis + Gaui)) V87 + Fagrijp? 1,
s=1
4
(5.10) Hy = ) [6(Gijs +Bsui) ¥ + Dijsa ],
s=1
L
Rijx = E [es(Fijirs + D) U5 + Aijpaarplr ]
s=1

Wsing the notations (4.9) we can write

4
-~
'E'U = 2‘ (b.+X3C,)fﬁ’+rfj+Ku,
=1
4

(5.11) oy = Z(bri-xaf.)“ﬁ?"'“u"'fﬁb

s=1

4
Hijk = Z (by+x3 )M +mip+ Ry
s=1
On the basis of the relations (4.23) the equilibrium equations reduce to
(512) rul.a'*"ﬂui.a'!"‘vt = 0: mrxu.u."'ﬂu‘l'GU = Os

where

4
F; = Kai.a+Haj.a+2ca(r§? +n§s‘)),
s=1

(5.13)
4
Gij = Ryjo+Hy+ Ec,mgﬁ.

s=1
In view of the relations (4.24) the conditions on the lateral surface become
(5.14) (tai+ 7)) ne = Py, Mgijny, = q;; on L,
where

(5.15) Pi= —(Ku+Hyng, gy = —Ryn,.
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Thus, the functions 9;, y,, are the components of the displacement vector and micro-
deformation tensor in the generalized plane strain problem (5.8), (5.9), (5.12), (5.14). The
necessary and sufficient conditions to solve this problem are

(5.16) fFida+ J‘p‘ds =0, feaw(x,F5+G¢)do'+ fehp(x,pﬁ+ gup)ds = 0.
z i z &

The first two conditions (5.16) are satisfied in view of the relations (5.13), (5.15),
(4.25). From the remaining conditions we get

4
(5.17) D Due,=0, r=3,4,
s=1

where D,, are given by Egs. (4.11).
Taking into account the equilibrium equations and the boundary conditions (2.6) we
can write

(5.18) J (t31+03y)do = f(713+013+031—013)d“ = f[713+°':3+xt.(7¢3.u+0n3‘u
z I b
+733,3+033,3) + fhins,i— iz, ildo = f[x1(7a3+ﬂa3)”a+ (Ma13 = Ha31) M) ds
L

+ f[x1(733+Uas).a*‘#na.a"#aa:.alda = f[xl(Taa+033).3‘*'#313.3‘#‘331.31‘103
r r

In a similar way we have
(5.19) j("sz”*‘“az)da = f[x1(133+0‘33),3+#323,3—p33;_3]d0.
z >

Using Egs. (5.11), (5.18), (5.19), (4.11) the conditions (5.1) reduce to

4
(5.20) D Dust, = —R,.

s=1
The system (5.17), (5.20) uniquely determines the constants ¢,. Thus the conditions
(5.16) are satisfied and in what follows we assume that the functions v;, y,, are known.
Let us consider now the conditions (5.2)-(5.4). From Egs. (5.11) and (5.2)-(5.4) we
obtain the following system for the unknown constants by:
4
(5.21) D' D.b,=d, r=1,2,3,4,
s=1
where

dy = — f[(tas + %33+ K33+ H33) Xa+ M3gs —M330+ Raas— R3za] do,

(522)  ds

— J.(tag, +7$33+K33 -+ H33)d0’,
z

dy= — f€3¢g[xq(tap+ﬂap+K35+H35)+m3=5+R3¢5]dﬂ'-
£

The system (5.21) uniquely determines the constants b;. Thus the flexure problem
is solved.

5%
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6. Conclusions

In this paper we established the procedure for determining the solution of Saint-
Venant’s problem for elastic solids with microstructure.

As in classical elasticity the problem is reduced to solving plane problems. The com-
ponents of the displacement vector have the same form as in the classical theory. The
effect of microstructure is present by means of the auxiliary plane strain problems 4.

The solutions of auxiliary plane strain problems are independent of the loading of
the beam. They can be determined when the elastic coefficients and the domain of cross-
section are prescribed. The solutions of these problems in the classical theory, for homo-
geneous and isotropic solids, are

A
o’ = - -4?;_-‘_;) (xi-x3), o= — 2(—5;‘) X %y, v =0,
= - ik, W=t (d-x), =0
' 24+p "7 4(A+p) ' ’
A
9(3] =— za;ﬁxa, T']IIJB) = 0’ T}g‘) — 0, 954) = (P{xl! Iz),

where 2, u are the Lamé moduli and ¢ is the solution of the boundary value problem
Pax=0 onZ, @.n, =eu3n.xs onlL.

The case of micropolar elastic solids was studied in [7].
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