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On certain analytical solutions for viscoelastic half-space

J. KUBIK (GLIWICE)

THE CHARACTERISTICS of boundary value problems in visco-elastic half-space are investigated.
In particular the relations between individual boundary problems have been found and used
in evaluation of new solutions. According to presented solutions an analytical treatment for
ponderable half-space and for certain kinematic boundary conditions is included.

Omoéwiono wlasnoéci zadan brzegowych w polprzestrzeni lepkosprezystej. W szczegdlnosci
udalo sie znalei¢ relacje jakie lacza poszczegdlne zadania brzegowe i wykorzystaé je do kon-
strukcji nowych rozwiazafi. Na tej drodze podano analityczne rozwiazania dla wazkiej p6l-
przestrzeni oraz dla pewnych kinematycznych warunkéw brzegowych.

Ofcy»<aeHbl CBOMCTBA KPaeBhIX 3afjay B BASKOYNPYTOM MOJYyNpocTpaHcTBe. B uyacTHOCTH
yAanock HAHTH 3aBHCHMOCTH O0BEeNWHAIONME OTAENbHbIE KpacBhle 3a/laUM M HCIIOIL30BATE
MX JUIA TIOCTPOEHMA HOBBIX pelueHmii. Ha aTom myTH HaloTcs aHaMHMTHYECKHMe PEINECHHA I
BECOMOrO MONYIPOCTPAHCTBA H [UIA HEKOTOPBIX KHHEMATHYECKHX I'DAHMYHBIX YCJIOBHI.

1. Introduction

THE SOLUTIONS of boundary value problems for viscoelastic half-space already belong to
classical problems. Many results connected with this subjeé¢t are included in monographs
on rheology, for example see [1, 2, 3, 5, 6]. It seems however that here not all problems
have been widely explored, suffice it to mention the action of punch on viscoelastic half-
space. This paper is concerned with a problem which has received less attention. In this
study the properties of the solution of boundary value problems in viscoelastic half-space
will be thoroughly discussed. It appears that the classic solution of the Boussinesq problem
may be fruitfully used in constructing the closed-form solution for different boundary
value problems of the half-space. Similar conclusions also hold for the Cerutti solution.
In each of these cases new analytical solutions for several practically important problems
may be obtained. We shall particularly dwell on only one solution connected with the
stress analysis of deforming rock in the immediate neighbourhood of the structure. Such
a solution is presented in [4].

2. The Boussinesq problem

We shall present first the solution of the Boussinesq problem in a half-space which
is parametrized by the system of coordinates (x,, x,, x;) and bounded by the plane
x3 = 0. This solution will be used later for constructing different solutions of boundary
value problems in a viscoelastic half-space. The solution of the Boussinesq problem when
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the concentration force P is directed along the axis x3, is given by the formulae (comp.
[8], [N

RRERS 1 )
U (xj, r) = ( 'urg Z+# r(x3+r) PS(t)a
X2X3 1 X,
(2'1) Ul(xh t} = _( ‘ura 1_’_# r(x3+r))P3(t)’
1 [xsxs  A+2u 1
Us(x;, 1) = > (—;‘";3‘— i T Py(1),

where 4, u are Lamé constants, r? = x}+x3+x3 and ¢ is the time.

In the viscoelastic problem in agreement with a viscoelastic analogue the constants u
and 1 should be replaced by the correspondingly chosen functions of time u(f) and A(z).
Thus we have

* 0(0),

Ul(xh lt)__—( i xle ( + )_ f'( +r)

xzxs

6(1),

— A+

(2.2) Ua(xi, t) = —( k& r—(x§+_§)

6’;(}(;, 1) ='%I.(‘u_1 X3X3 (A'h'-t) 1*(14_2‘“) )* 8(1),
ATt =8, (+i)'e(+f) = 8, Py = 18(1)8(x1)8(x2) 8(x),

where 8(¢) is Dirac’s distribution and the symbol * denotes convolution.
For the load P prescribed on the simply connected closed domain the displacements
in a half-space are given by the formulae

Uy, t) = f 415 (;‘—1 ("1:7;‘1)"3_(“@)—: (r{; +"*))) Ps(xy, t)dl',

(2.3) Uz(x,,r)—f (-‘(—x’;@—f‘i — (A )" 15?3:’)) Py(xg, t)dl',

Us(xi, 1) = f?l; (;rl ﬂ—(um-l*(uz,u) --) « P3(xs, 1)dT,
r

dl' =dxidxy, L=1,2, r*=(x3—x))%+(x,—x5)*+x3.

The solutions (2.2) and (2.3) will be useful further on in evaluating new closed-form
solutions for boundary value problems in viscoelastic half-space.

3. Properties of the boundary value problems of viscoelastic half-space

The viscoelastic displacement equations, the properties of which are the aim of our
investigation, assume the following form:

@.1) pdU, +(A+p) »dU; 40X, =0, i,j=1,2,3.
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Here X; is a mass force, U; denotes the displacement vector and 4 and ux are material
functions. In thermoelastic problems (uncoupled) the mass force pX; should be replaced
by the expressions oX;—y + 0 ;, @ = T—T, where y = a5 (34+ 2u), aris a coefficient of
thermal expansion, T is the known temperature of the medium and T, denotes the tem-
perature in a natural state.

The characteristics of Egs. (3.1) will be examined by analyzing the Fourier and Laplace-
Carson transforms of the governing equations. The Fourier transforms are determined
by the relations

3 +w

3.2 Ffx, O = @) 2 [ [ [ fxi, e dx, dxydxs,
-0
B

(3.3) F flou, D] = @) 2 [ [ [ flew, )€™ dey doty dry
—w 0

Further, the following formulae for transforms of functions and their derivatives will be
particularly useful,

FlUis(x, )] = iy Uila, 1),
FlUuxi, )] = —gay 6’&(0&, £);
(B4  FlU. i, 0] = —aja; Ui, t)—ias Uiar, 0%, 1) =T, 5(a, 0%, 1),
FLUi35(xi, 1)] = —aso; Uylay, 1) —ioty Ui(ar, 0%, 1),
FUs33(xi, 1)) = —az03 Uilog;, £)—iaes Uy(ag, 0%, )= U, (o, 0%, 1)
LK L=12 Li%kT=1273,

The Laplace-Carson transform is determined by the relations

(3.5) LU O] =p [ fl...,0e"ar,
0
x+ico
3.6) LD = o= [ fn)edp, 2oFU1=F

After performing the transforms (3.2), (3.5) and using the relations (3.4), we obtain the
following matrix equations:

3.7 AU = —-X-3T, T=#]0,
where
—pa;o;— (a4 A)al; — (A @) oy az; —(A+ ) oty ot U,
A= —(Atpazey; —pajou;— @+ A)a3; _(I"'.a)az“a , U=|U,|,
—(A+mazoy; —(A+p)azay; _ﬁ“j“j—(j:'}';‘)“g 3

X, = X, (), p) =0, (ar, 0*, p)ics — Uy 3 (s, 0%, p)— ity i3 (., 0%, p)
_'1(}3(&1.: 0+’ P)ial s
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(38) X, = X;(a), p)~aUs(0z, 0*, pivy— U 3 (or, 0%, p)—faie Us(tz, 0%, p)
—i[}s(a;_,O’*, plia,,
X, = Xy(2j, p)~ 05, 0%, )iy — aUs 5 (e, 0, p) ~fall3 5z, 0%, )
— (A4 )ioes Us(az, 0%, p)— Alicty Uy (o, 0%, p)+ic Uy (e, 0%, p)
+ (}3_3(0:,,, 0+, p)]— Ait, f}l (ar, 0%, p)— Aia, (}z(aL, 0+, p).

Then, collecting in Eq. (3.7) the corresponding terms and using constitutive equations
(transformed) the following equation is obtained:

(3.9) Aﬁ = Y, Y = Y]_ +Y2+Y3+Y4+Y5,
where
-ifl ﬁl}l(ﬂfu 0*, p) —ﬁl(aL,0+,p)
Y, = |X,| Y, = U (e, 0%, p) fag, Y3 = ‘ﬁz(ﬂL,0+,P) ’
X Qpi+ 1) Us(az, 0%, p) —ps(ag, 0%, p)
—ifa:, i)r;;(a;_, 0+;P). lr.alé(a.fh{:")
(3.10) Y, = —Ifo:zU3(ot,_,0+,p) s Ys= fﬂzg(“jsp) Y,  Ex = &, +E25.
SE AEkk(aL! 0+! P) EGSQ_Q(aL; 0+s P)

Note that the equality of vectors Y, and Y, i.e.
[0! 0! —ﬁ3(a[‘0+,p)]r = [Ol 09 = ZEkk(aL, 0+s P)]T,

implies the identity of the displacement states caused by the normal force p; and com-
pression & acting on the same boundary of the half-space. This property was used in
Paper [4] to evaluate the displacement states in the neighbourhood of the contact of the
structure with the deforming rock. Due to the linearity of Eq. [3.9] one has

(3.11) (AU = Y) = (Ap(a:)U = ¢(23)Y)

i.e. the solution qo(aa)f} corresponds to the vector ¢(a;)Y.

The characteristics of Eq. (3.1) presented above will be used in deriving the so-
lution for two boundary value problems of the half-space. The main points are: the
Boussinesq solution, the relations (3.10) and the properties of transforms of the displa-
cement equations (3.11).

3.1. Action of the mass force

If the mass force vector in a half-space is presented as X; = [0, 0, pX5(x,, 1) @(x3)]”

and the displacement vector [f; corresponds to the normal force pi(x,x,,0%,1) =
0X3(xy, x5, t) (compare Egs. (2.2) and (2.3)), then the displacement state in the pondera-
ble half-space is determined by the relation

(3.12) U= [ Oy, x20 93— x3, )0 (r3)dys.
0
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3.2. Action of the displacement U; (x,, x5, 0%, 1)

In this case the components of the displacement vector in the medium cannot be
obtained immediately; one can only get a certain system of differential relations from

which the vector U; is evaluated. If the state of the displacements f}, corresponds to the
vector pa(xy, x,,0%, 1) and the following equalities hold,

(3.13) — (A42p) % dUs(x, x,0*%, 1) = —p3(x,x,0%, 1)

then, the displacement state in a half-space caused by the field U;(x,, x,, 0%, t) is deter-
mined by the equations

@14 U= 2 [ Wiru=xi,x3, 0% (4200 Us(, 0%, 01T+

dx3 &
f Uiep— x5, 0%, 1) » (A+24) » Us(xs, 0%, £)dr",
r

A similar procedure may be applied to the temperature field. However, in this case the
Cerutti solution should also be used.
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