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Proper tensorial formulation of the internal variable theory 
The endochronic time spectrum 

K. C. V ALANIS (IOWA CITY) 

IN THE COURSE of the devolopment of the theory of irreversible thermodynamics of internal 
variables, scant attention has been given to the precise tensorial character of the internal vari
ables. Specifically their transformation properties in rotating spatial and/or material reference 
frames have not been investigated to any major extent. In this paper we admit internal variables 
which transform as tensors with rotation of the spatial system of coordinates thus obtaining 
a spatial formulation of thermodynamics of internal variables; in the event that these are tensors 
in the material coordinate system, care is taken to distinguish between the covariant, contra
variant and mixed components. This distinction gives rise to different constitutive equations 
depending on which components are chosen as independent variables. Finally the intrinsic 
time spectrum is introduced with some interesting consequences. 

W procesie rozwoju teorii termodynamiki proces6w nieodwracalnych, operuj~cej poJ~Clem 
zrniennych wewn~trznych, niewiele uwagi zwracano na precyzyjne sformulowanie tensorowego 
charakteru zmiennych wewn~trznych. W szczeg6lnosci, nie zbadano zbyt dokladnie ich wlasnosci 
transformacyjnych wzgl~dem obracaj~cych si~, materialnych oraz/lub przestrzennych uklad6w 
odniesienia. W niniej5zej pracy dopuszcza si~ istnienie zmiennych wewn~trznych, kt6re transfor
muj~ siC( jak tensory przy obrocie przcstrzennych uklad6w wsp6lrz~dnych, eo prowadzi do 
przestrzennego sformulowania termodynamiki zmiennych wewne(trznych; w przypadku, gdy 
~ one tensorami w materialnych ukladach odrtiesienia, zwraca siC( uwag~ na rozr6mienie ich 
skladowych kowariantnych, kontrawariantnych i mieszanych. Rozr6mienie to prowadzi do 
r6:Znych r6wnan konstytutywnych, w zale:Znosci od tego, kt6re skladowe wybierzemy jako 
zmienne niezale:Zne. Na koniec wprowadza si~ poj~cie wewn~trznego widma czasowego pro
wa~cego do pewnych interesuj~cych wniosk6w. 

B rrpol..(ecce pa3BHTIDI TeopHH TepMo)lHHaMHKH Heo6paTHMbiX rrpol..(eccoa, orrepHpyroll..(eii rro
HHTHeM BHyTpeHHHX rrepeMeHHbiX, HeMHOrO BHHMaHIDI o6pall..(eHO Ha TOqJJyro <t>opMyJIHpOBKY 
TeH3opHoro xapaKTepa BHYTpeHHHX nepeMeHHbiX. B 'tlaCTHOCTH He Hccne~oaaHbi CJIHillKOM 
TO'tiHO HX TpaHc<t>opMai..(HOHHbie CBOHCTBa IIO OTHOillCHHlO K apall..(alOI.I..(HMCH, MaTepHaJibHbiM 
HJIH rrpocTpaHCTBeHHhiM CHCTeMaM oTCtieTa. B HaCTOHII..(eii pa6oTe ~orrycKaeTCH cyll..(ecraoaaHHe 
BHyTpeHHHX rrepeMeHHbiX, KOTOpbie rrpeo6pa3yroTCH KaK TeH30pbi IIpH apall..(eHHH rrpocrpaH
CTBeHHbiX CHCTeM KOOp)lHHaT, 'tiTO rrpHBO~HT K rrpocrpaHCTBeHHOH <t>opMyJIHpOBKe TepMO~H
HaMHKH BHyTpeHHHX rrepeMeHHbiX; B CJiyqae, I<Or~a OHH HBIDIIOTCH TCH30paMH B MaTepHaJibHbiX 
CHCTCMaX OTC'tleTa, o6pall..(aeTCH BHHMaHHe Ha pa3JIH'tiHMOCTb HX I<OBapHaHTHbiX, I<OHTpaaapHaHT
HbiX H CMelllaHHbiX COCTaBJIHlOilUIX. 3Ta pa3JIH'tiHMOCTb rrpHBO~T I< pa3HbiM OIIpe~eJIHlOII..(HM 
ypaBHCHHHM B 3aBHCHMOCTH OT TOrO, I<OTOpbie COCTaBmilOII..(He H36paHbl I<al< He3aBHCHMbie 
rrepeMeHHbie. HaKoHel..( BBO~TCH iiOHHTHe BHyTpeHHoro apeMeHHoro crrei<Tpa, rrpHBO~Hll..(ero 
I< Hei<OTOpbiM HHTepeCHbiM CJie~CTBIDIM. 

Introduction 

IN THE INTERNAL variable formalism of irreversible thermodynamics, the free energy 

density 1p of a continuous medium is a function of the deformation gradient :~! (hence

forth denoted by Yia), the temperature () and N internal variables q,.. The latter are such 
that their current values, as w:ell as those of Yir~. and(), are necessary and sufficient for the de-
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174 K. C. VALANIS 

termination of the thermodynamic state of an infinitesimal element of a material <Con
figuration.<*> 

Though generally recognized [2-10] that qr may be scalars, vectors or tensors, very 
scant attention has been given to the consequences of the precise tensorial nature of qr . 
On occasion, explicit constitutive equations, that apply to large deformation, have been 
derived using proper tensor formulation [11] but these occasions have been rare. In Ref. 
[11], qr were regarded as quantities which transform as tensors with rotation of the material 
system of coordinates x«, but remain invariant with rotation of the spatial system. This 
was also done in Ref. [12], where constitutive equations which apply to viscoplastic materials 
were derived, under conditions of large deformation. 

In this paper we examine in detail the consequences of the precise tensorial nature 
of the internal variables. In the first place, we admit internal variables which transform 
as tensors with rotation of the spatial system of coordinates, thus giving rise to a spatial 
formulation of the thermodynamics of internal variables. 

In the event that qr are tensors in the material coordinate system, care has been taken 
to distinguish between their covariant, contravariant and mixed components, a subtle 
point that has not been given due attention hitherto. Such distinction gives rise to different 
constitutive equations depending on which components have been chosen as independent 
variables. 

Pursuing an analysis along this avenue we have shown that constitutive equations 
may be derived which contain no reference to the original material configuration.· Such 
constitutive equations, of course, apply to simple fluids in the sense of CoLEMAN [ 13]. 
Again we are not aware of a previous derivation of constitutive fluid equations, using the 
formalism of internal variables. 

In the latter parts of the paper we generalize the concept of intrinsic time, by introducing 
the concept of a spectrum of intrinsic times. Such a generalization follows naturally by 
assigning to each internal variable a characteristic intrinsic time scale, so that the resulting 
equations apply readily to a material whose equilibrium response is "plastic" (i.e., history 
dependent but rate. independent) but whose transient response is rate dependent. Such 
materials are viscoplastic in the accepted sense (MALVERN [14], PERZYNA [15], PERZYNA and 
WOJNO [9]). 

PERZYNA and WoJNO [9] dealt with such materials by using the internal variable theory 
to describe their transient response, but classical plasticity to describe their equilibrium 
response. 

2. Viscoelastic solids 

2.1. Spatial and material characterization 

Let the free energy density 1p be a function of the deformation gradient Yia the temper
ature () and n internal variables q~j>, independent of Yia. The internal variables are specified 
to be symmetric second order tensors in the spatial frame Yi. In other words, the com
ponents q!)> in a spatial frame Yi, such that 

(2.1) Yi = QiiYb 

<•> For a more precise definition of this statement see Ref. [l]. 
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PROPER TENSORIAL FORMULATION OF TJ-iE INTERNAL VARIABLE THEORY 175 

where Qii is a proper orthonormal matrix, are given by the transformation 

(2.2) 

The following equations are a direct consequence of the internal variabJe theory [5, 6] :: 

(2.3) 

where 

(2.4) 1jJ = tp{y;(/.' ()' q~j>). 

The spatial components Tii of the stress tensor may be obtained from Eq. (2.3) 1 by the
transformation 

Tii = -
2

1 
_f_ ( ~~ Yi« + ~~ Y;«) · eo uy,(/. uyj(f. 

(2.5) 

The stress components ra.P in the material system, are related to Tii by the transformation 

(2.6) 

axa. 
where xf = ~ . In the particular case where the material is incompressib1e then the· 

uy; 

relation (2.3)1 must be replaced by the equation 

(2.7) rr = _!_"f_ - pxi 
iJy;rz 

where pis an arbitrary hydrostatic pressure. 
It has been shown previously [16] that if the material is isotropic then 'P must depend 

on Yi« through the left Cauchy-Green tensor Bii where 

(2.8) 

Thus the functional dependence of tp on the deformation will, in this case, be of the form 

(2.9) 

It is also essential that the functional form of tp meets the condition of material indifference. 
This is accomplished by requiring that 'P depends only on the joint invariants of ~ib Bii, 

and qi.J> where ~ii is the unit matrix. 
Following our previous work we introduce n internal constitutive equations- i.e.,. 

equations of evolution of the internal variables, in the form<*> 

'2.10) 

<•> For a scalar treatment of the internal variables see [3, 6 and 17]. 
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176 K. C. V ALANIS 

where b~j~1 is a material viscocity tensor- in this case isotropic- and qk1 is one of a 
class of objective derivatives of qr?, with the property: 

(2.11) "(r)/ - • (r)J 
qkl Y· - qkl y. • 

Ja Ja 

In other words, the objective derivative of q<r> and the material derivative of q<r> with Yia 

remaining constant, are identical. In view of Eq. (2.11), it follows that Eq. (2.10) 
will satisfy the inequality (2.3h provided that biikl is a positive semi-definite fourth order 
tensor. 

It is our purpose, in this section, to show that different choices of objective derivatives 
of q<r> give rise to different constitutive equations, even though the form of "P remains 
the same. We shall further find that this formulation leads to constitutive equations with 
specific characteristics that make them inapplicable to a class of materials commonly 
referred to as "fluids". This point will be discussed at length at the end of this section. 

1p -forms quadratic in q<r> 
For the purpose of discussion we shall focus our attention on a class of incompressible 

materials where "P is a quadratic function of the internal variables, i.e., 

(2.12) 

and b~j~1 is of the form: 

(2.13) 

_As a result of Eqs. (2.5), (2.7) and (2.12), 

(2.14) ,.,.. + s. - 2B a"Po + ( <r>B- + <r>B )A<r> 
..t ii puii - ik aBki qi, 11 qi, il , 

whereas use of equations (2.10), (2.12) and (2.13) yields a set of r internal constitutive 
equations in q<r> of the form 

(2.15) 

These are linear first order differential equations in the q's, which can be integrated analyt
ically. Substitution of q<r> in Eq. (2.14) will then yi·dd the appropriate constitutive equation 
which relates the stress to the deformation history of the material at hand. This we shall 
proceed to do with various choices of the objective derivatives q<r> of q<r> . 

2.2. Cases of objective derivatives 

(2.16)1 

We observe the following identity: 

(2.16h 

where q~~ are the covariant components of q~>, i.e., 

(2.17) 
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PROPER TENSORIAL FORMULATION OF Tllf lNTERNA.L VARIABLE THEORY 177 

Equations (2.15)-(2.17) combine to yield the first order differential equation 

(2.18) c<'>q~~+b<'>q~J+A<'>cl%/lcllfJ = o, 
where Cafl is the right Cauchy-Green tensor given by the relation 

(2.19) 

Equation (2.18) is solved in conjunction with the initial condition that at t = - oo the 
material is in an undisturbed equiljbrium in which the stress field is at most hydrostatic. 
In this event 

q,.Jt=-oo = 0, BJt=-oo = Cit=-oo = 5. 

The solution of equation (2.18) then is: 

(2.20) 

where 

The resulting constitutive equation is the following: 

(2.21) 

where 

(2.22) 

t 

T+p = 2B otp- Ja(t-r){c(r)- 1B(t)c(r)- 1B(t)+B(t)c(r)- 1B(t)c(r)- 1}dr, oB 
-00 

and c- 1 is the inverse of the relative Finger tensor c which is defined by the relation 

oyi(t) oyj(t) 
C·· = ---__,,-----:-_ 

I) OYk( T) OYk( T) 
(2.23) 

The representation of the constitutive Eq. (2.21) in the material system is given in the form 
of Eq. (2.14): 

(2.24) 

t 

i+pC = 2 otp- f{c(t)C 2 (r)+C2 (r)C(t)}G(t-r)dr ac 
-00 

where the components of i are raP, the components of Care cafJ and CC = &. 
Other choices of the objective derivative of q<'> are possible 

(2.25) 

This derivative has the material representation 

(2.26) 

Here qC[>fl are the right mixed components of q<'>: 

(2.27) 

12 Arch. Mech. Stos. nr 1/77 
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178 K. c. V A.LANIS 

Use of Eqs. (2.10), (2.12), (2.25), and (2.26) yields a set of r internal constitutive equations 
in the form: 

(2.28) 

The solution of Eq. (2.28) is given by Eq. (2.29): 

(2.29) 

Equation (2.14) in conjunction with Eqs. (2.27) and (2.29) leads to the constitutive equation 

(2.30) 
--r.N 

which has the foJlowing representation in the material system 

t 

- - 8tpo f - -(2.31) r +pC= 2-a~c- {C(t)C(r)C(t)+C,(t)C(r)C(t)}G(t-r)dr. 
-00 

Note the difference between Eqs. (2.21) and (2.30) on one hand and (2.24) and (2.31) 
on the other. It is worth emphasizing that this difference is brought about by the use of a 
different objective derivative. The free energy is the same in both cases. 

Of course other choices of the objective derivative are possible. A third choice is the 
following: 

(2.32) 

which has the material representation 

(2.33) q• (r)Gr = X~Y'• qA~r) 
{J ' I j{t I} ' 

where q~>« are the left mixed components of q<r> given by the relation 

(2.34) 

Equation (2.12) in conjunction with Eqs. (2. 10), (2.32), (2.33) yields the set of r internal 
constitutive relations: 

(2.35) 

These together with Eq. (2.14) lead to the constitutive equation: 

J 

(2.36) 8tpo r· T+p5 = 2Balf -2 . G(t-r){B(t)c- 1 (r)B(t)}dr 

which, in the material system of coordinates becomes: 

t 

(2.37) i = 2-~~-2 f G(t-r)C(r)dr-pC. 
-Cl) 
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Certain physical implications of the above class of constitutive equations are worth 
discussing. Inspection of Eq. (2.14) shows that irrespective of how q~j> depends on the 
deformation history, the stress components depend on the current deformation relative 
to the reference state, in the sense that at all finite times following the initiation of deforma
tion T depends on B(t). The material is, therefore, explicitly cognizant of its reference 
state; as such it is not a fluid. 

The character of the above constitutive equations remains unchanged also in the case 
where the stress in the equilibrium state is a hydrostatic pressure. For instance it may be 
verified after integration by parts that the preceeding constitutive equations are of the 
general form 

(2.38) T+p& = f(B)+ J (t/11 (B)c- 1 (r)t/12(B)+t/12(B)c- 1 (r)f/11 (B))G(t-r)dr, 
-00 

where B = B(t). Under conditions of relaxation 

(2.39) IimT+p5 = f(B). 
1->-00 

Even if f(B) = 0, T depends explicitly on B for t < oo. This implies that the material 
is cognizant of a specific reference configuration. 

Constitutive equations which pertain to materials which are cognizant of a specific 
reference configuration, yet have an extremely short memory of their rate of deformation, 
are obtained by setting f = 0, and G(t) = G0 ~(t) in Eq. (2.38). The result is 

(2.40) 

where t/1 1 and f/1 2 are isotropic functions of B. 

3. Viscoelastic liquids 

Evidently the above constitutive equations are inappropriate for materials in which 
the statistical molecular configuration in the equilibrium state is unaffected by previous 
deformation histories. Dilute polymer solutions are a case in point though the level of 
concentration and temperature at which are remarks are appropriate can be determined 
only by experiment. 

To describe such materials we wish to derive constitutive equations in which T does 
not depend on B(t) for all finite times following the initiation of deformation. Perusal 
of Eqs. (2.1 0) and (2.38) shows that the presence of B in the expression for the free energy 
gives rise to an explicit dependence of T(t) on B(t). The indicated procedure, therefore, 
is to make 1p independent of B. However, elimination of B from Eq. (2.38), would give 
rise to a zero stress, as Eq. (2. 7) readily indicates. 

The paradox is only apparent. It is the result of regarding the spatial components 
of q<r> as the independent variables. The difficulty is removed if the covariant, or contra
variant components of q<r> are the independent variables instead, and due attention is 
given to the covariant (or contravariant) character of the aforesaid variables. 

12* 
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180 K. C. V ALANIS 

To illustrate the point, we consider a free energy density which is quadratic function 
of q<n. To wit, let 

(3.1) 

where VJo, A<r> and c<rr are constants. 
Fruther, let q~J be the independent variables. In terms of these quantities equation 

(3.1) takes the form: 

(3.2) 

Note the appearance of the inverse Right Cauchy Green tensor in the quadratic term 
on the right hand side of Eq. (3.2). This is contrast with Eq. (2.12) where c- 1 does not 
appear in the quadratic term. 

Because 1p now depends explicitly on cafJ, it is convenient to write Eq. (2.7) in the form: 

(3.3) -r;«fJ+pCrzfJ = -2CafJca6~ oCfJo. 

If the material is "internally isotropic" then, for consistency, the rate of change of the 
covariant components q~J should be proportional to the covariant components of the 

internal stress tensor a::> . The internal constitutive equations should, therefore, be of 

the form: 

or 

b<r> • (r) C C OVJ - 0 qa{J+ rzp {Jv~- • 
vq,.." 

(3.4h 

Note that Eq. (3.4)2 satisfies the Clausius-Duhem inequality 

(3.4h OVJ '(r) ~ 0 
oq<r> qrz{J -..;;:: a{J 

since substitution of Eq. (3.4)2 in (3.4)J yields the result: 

OVJ OVJ 
(3.4)4 CallCfJv~~~O. 

vqJ, vqap 

Inequality (3.4)4 is true, since b, > 0, and the term on the left hand side of the inequality, 
when represented in the spatial coordinate system, becomes: 

OVJ OVJ 
(3.4)s oq~ri oqW ~ o 

which is of course a perfect square and therefore, non-negative. 
Equation (3.4)2 -in conjunction with the quadratic form (3.2) yields the internal consti

tutive equation: 

(3.5) 
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PROPER TENSORIAL FORMULATION OF THE INTERNAL VARIABLE THEORY 181 

Equation (3.5) may be integrated in the light of the condition that the material reference 
configuration is undisturbed· at t = - oo and that q<'>j,= -oo = 0 for all r, with the result 
that 

t 

(3.6) 
A<'> A<'> r 

qll<,.fJ> = -- CafJ+ _ e-IJ,(t-T)C
11
p(r)dr, 

- c<r> c<r> -
-00 

c<r> 
where a, = b<r>-. Or, in the spatial frame of reference, 

t 

(3.7) 
A<"> A<"> f . 

q~~> = - -- !5--+ -- e-a,(t-T)C··(r)d-c 
IJ c(r) IJ c(r) IJ • 

-00 

On the other hand Eq. (3.3) gives rise to the folJowing expression for the Cauchy 
stress: 

(3.8) 

Substitution of Eq. (3.7) in Eq. (3.8), yields readily the constitutive equation: 

t 

(3.9) 2; A<r>
2 f T,·J· = -pt5··+ --- e-~~~-<t-T>c(r)·-dr 

IJ c(r) IJ 

-00 

Or, more compactly: 

t t t 

(3.10) T = p& + J G(t- r)c(r)dr- J J G(2t- r1- r2)c(r1)c(rt)drt dr2, 
-oo -oo -oo 

where 

(3.11) 

Two points are worth mentioning with regard to the above equation: (i) the current 
left Cauchy Green tensor B(t) is absent; (ii) A double integral of the history of the relative 
Finger tensor is present even though the free energy density is quadratic in qfj>. Further
more, the same function appears under both integrals thus making it impossible to eliminate 
the double integral by a suitable choice of parameters. Evidently, the constitutive equation 
( 3.1 0) pertains to a material which has no memory of its reference configuration. The present 
stress, however, is a function of the deformation history relative to the current configurat
ion. The material is therefore a fluid [13]. 

In a similar fashion the contravariant components of q<r> may be considered as in
dependent variables. In this case Eq. (3.1) now becomes: 

(3.12) - +A<r>c all+ 1 c<r> 11/J re' C C "P - "Po a{Jq(r) T q<r>q<,.> a.y P!J • 
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In this case the stress is given by the equation 

(3.13) raP= 2~-pCafJ 
aca{J ' 

whereas the internal constitutive equations now are: 

(3.14) otp b(r) ;,rzp - 0 
0 (r) + '1(r) - • 

qa{J 

K. C. V ALANIS 

Note again the balance of indices in equation (3.14). Following a procedure analogous 
to the foregoing we now find a constitutive equation of another type: 

t t t 

(3.15) Tii = -pCJii- J G(t-r)ci/(r)dr+ J J G(2t-r1 -r2 ) cu/(r1)c;;/(r2 )dr1 dr2 , 

-OCJ -OCJ -OCJ 

where 

(3.16) 2 A2 
G(t) = 2 -' (e-a,t) c, 

r 

in the previous notation. The constitutive Eq. is now in terms of the inverse relative 
Finger strain tensor. Note again the absence from this equation of the left Cauchy-Green 
tensor B(t), which leads to the conclusion that the constitutive Eq. (3.15) pertains again 
to a fluid. 

4. Endochronic fluids 

In a previous series of papers, we discussed the concept of intrinsic time as it applies 
to solids. For such materials we stipulated that a distance between "deformation events" 
can be defined in a seven-dimensional space R, the coordinates of which consist of the 
six independent components of the Right Cauchy Green tensor and time. In particular, 
if the distance between two adjacent deformation events is d,, then 

(4.1) 
def 

d'"2 = paf1Y6dC dC +g2dt 2 
"' %{3 y~ ' 

where pafJy~ may depend on C. Alternatively, 

(4.2) ( d')2 = pr~.fJ,~c t +g2 
dt a{J yd 

the right hand side of Eq. ( 4.2) can be expressed in the spatial coordinate system in the 
form 

(4.3) 

where 

(4.3) 

conversely 

(4.5) 
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When dealing with fluids, which by definition have no preferred reference configuration, 
the "intrinsic tensor" Piikl cannot depend on the present deformation relative to the 
reference state, i.e., on Bii(t). In order to apply the theory to fluids and to keep the analysis 
tractable we shall assume, in this paper, that P is at most an isotropic tensor function of 
dii . In this event Eq. ( 4.3) can be written more concisely in the form: 

(4.6) 

where 

dM = tr(dML M = I, If, Ill. 

In the case of incompressible liquids d1 = 0, and 

(4.7) f = f(du, dm). 

As a consequence of Eq. (4.1), a deformation history is mapped into the space R as 
a path. The length of an element of this path, is dC, where dC 2 is given by _Eq. (4.1 ). Evidently 
the space R is not Euclidean, but Riemannian with a metric G, where;: 

(4.8) G = (~ ~). 
\ g 

Consider now a typical internal variable q<r>, the values of which may be computed 
along a path in R, i.e., q<r> = q<'>(C). The intrinsic rate of change of q<r> along the path 
. dq(r) 
IS dC" 

As an extension of the theory of internal variables we stipulate that 

(4.9) _}_!£__ + b(rs) • dq<:::__ = 0 
cq<'> dC . 

Equations such as ( 4.9) constitute endochronic fluids since their constitutive equations 
are expressed in terms of an internal time scale which is a property of the fluid at hand. 

The contra variant viscocity tensors fps> are all positive semi-definite; further, the set of 

elements (r, s) corresponding to a particular component of the tensor E<rs>, constitutes 
a positive semi-definite matrix. 

It is conceivable that to each internal variable q<'> there corresponds an intrinsic time 
scale C,. In this sense it may· said that a material possesses an intrinsic time spectrum 
C, , r- I , 2, ... , n. 

In terms of such a spectrum there does exist a set <*> of internal constitution equations 
of the type: 

(4.10) 
a d-(s) 

_tp_ b(rs) • _q_ 
oq<'> + dCs (s summed), 

where 

(4.11) 

<•> This is a particular set for a proper choice of b. See Eq. (4.13). 
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or recalling Eq. (4.6): 

(4.12) 

The internal variable theory with an intrinsic time spectrum is now complete. 
We proceed to solve Eq. (4.10) when the free energy is given by quadratic form (3.1) 

and the Cartesian components of bare given in Eq. (4.13) 

(4.13) 

where b~> are constants. If the covariant components of q<r> are used as independent 
variables one obtains by the procedure of Sect. 3, the constitutive Eq. ( 4.14): 

(4.14) 

n Cr Cr _ ~ ~~ J J -1Xr(2C,-c' -C"> oc ~ dT'' dT'" .L.J C<'> e r r iJC' oC" ~,, ~,, . 
r= 1 -DO -DO 

This equation is similar to the Bird-Carreau Eq. (2.18) except for the presence of the 
double integral, which incidentally cannot be eliminated, because the constants and relaxa
tion times therein are precisely those of the first integral. 

Iv a similar fashion, if the contravariant components of ij<'> are considered to be the 
independent variables, in this case one obtains Eq. (4.15): 

(4.15) 

n Cr Cr 

~, A<'>l f f -1Xr(2Cr-C' -C">- OCii/ ('"') OCi/ (T'')dT''dT'" + ..L.J C<'> e , , dC; ~,, ac;' ~,, ~,, ~,, . 
r=l -DO -DO 

Of course it may happen that at set k of internal variables, q<[>, q<;> ... ql'>, share one 
and the same intrinsic time scale C,. In this event Eqs. (4.14) and (4.15) can be readily 
generalized as shown below. In particular Eq. (4.14) will become: 

(4.16) Cr Cr Cr 

T = -p&+ ~ f G,(C- C;) :;; dC;-~ f f G,(2C,- c;- c;') :~ :~,dCdC;'. 
n -oo n -oo -oo 

In a similar fashion Eq. ( 4.17) will become: 

~ ~ ~ 

(4.17) T = -p&-~ f G,(C-C;) :;; dC;+ ~ f f G,(2C,-C;-,;') 
n -DO n -oo -oo 

ac- 1 QC-
1 

1 " 

x a'; -ac;' d,,d,,. 

These equations are of a generality in excess of those by BIRD, CARREAU [18] White, 
Bogue and others. 

http://rcin.org.pl
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