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Proper tensorial formulation of the internal variable theory
The endochronic time spectrum

K. C. VALANIS (IOWA CITY)

In THE cOURSE of the devolopment of the theory of irreversible thermodynamics of internal
variables, scant attention has been given to the precise tensorial character of the internal vari-
ables. Specifically their transformation properties in rotating spatial and/or material reference
frames have not been investigated to any major extent. In this paper we admit internal variables
which transform as tensors with rotation of the spatial system of coordinates thus obtaining
a spatial formulation of thermodynamics of internal variables; in the event that these are tensors
in the material coordinate system, care is taken to distinguish between the covariant, contra-
variant and mixed components. This distinction gives rise to different constitutive equations
depending on which components are chosen as independent variables. Finally the intrinsic
time spectrum is introduced with some interesting consequences.

W procesie rozwoju teorii termodynamiki proceséw nieodwracalnych, operujacej pojeciem
zmiennych wewnetrznych, niewiele uwagi zwracano na precyzyjne sformulowanie tensorowego
charakteru zmiennych wewngtrznych, W szczegélnoéci, nie zbadano zbyt doktadnie ich wlasnosci
transformacyjnych wzgledem obracajacych si¢, materialnych oraz/lub przestrzennych uktadéw
odniesienia. W niniejszej pracy dopuszcza si¢ istnienie zmiennych wewnetrznych, ktore transfor-
muja si¢ jak tensory przy obrocie przestrzennych ukladow wspoéirzednych, co prowadzi do
przestrzennego sformulowania termodynamiki zmiennych wewngtrznych; w przypadku, gdy
53 one tensorami w materialnych ukladach odniesienia, zwraca si¢ uwage na rozréznienie ich
skladowych kowariantnych, kontrawariantnych i mieszanych. Rozrdznienie to prowadzi do
roznych réwnan konstytutywnych, w zaleznosci od tego, ktore skladowe wybierzemy jako
zmienne niezalezne. Na koniec wprowadza si¢ pojecie wewnetrznego widma czasowego pro-
wadzacego do pewnych interesujacych wnioskow.

B npouecce pasBHTHSA TEOPHH TEPMOIMHAMMKH HeoOpPaTHMBIX NPOLECCOB, ONEPHPYIOLLEH Mo~
HATHEM BHYTPEHHHMX NE€PEMEHHBIX, HEMHOIO BHMMaHHA OOpallleHO Ha TOYHYIO (hOPMYJIMPOBKY
TEH3OPHOT'O XapaKTepa BHYTDEHHWUX MEpPEMEHHBIX. B UacTHOCTH He HCCHeOBaHbI CIHIIKOM
TOYHO MX TpaHC(OPMALMOHHEIE CBOMCTBA MO OTHOLUEHHIO K BPALIAIOLIMMCH, MaTepHATBHBIM
HIH NIPOCTPAHCTBEHHBIM CHCTeMam oTcuera. B Hacrosiueii paGoTe monyckaercs cyllleCTBOBaHHE
BHYTPEHHUX IEPEMEHHBIX, KOTOpble Npeofpa3yloTcAd KaKk TEH30phl NPH BPAILLEHHH NMPOCTPaH-
CTBEHHEIX CHCTEM KOOPAMHAT, YTO MPUBOAMT K MPOCTPAHCTBEHHOH (QOpMYJIHPOBKE TEpMOIM-
HAMHKH BHYTDEHHHX ITePEMEHHBIX ; B CJTyyae, KOT/la OHH ABJIAOTCH TEH30paMH B MaTepHaJIbHbIX
cHCTEMax 0TcYeTa, obpallaeTcsi BHUMaHHE Ha Pa3MUAMOCTb HX KOBapHAHTHBIX , KOHTpaBapHAHT-
HBIX H CMEILIAHHBIX COCTABJAIOINMX. DTa pasNUYMMOCTh NPHBOOUT K PasHBIM ONpeAeIAIOLLIHM
YPaBHEHHAM B 3aBHCHMOCTH OT TOrO, KOTOpbIe COCTABJIAIOMIME H30paHb! KaK HE3aBHCHMBIE
nepemennble, HakoHel BBOAUTCA MOHATHE BHYTPEHHOIO BPEMEHHOIO CTEKTPa, MPHBOJAILErO
K HEKOTOPBIM HHTCPECHBIM CJICACTBHAM.

Introduction

IN THE INTERNAL variable formalism of irreversible thermodynamics, the free energy
density y of a continuous medium is a function of the deformation grad:ent—a% (hence-

forth denoted by y;,), the temperature 6 and N internal variables q,. The latter are such
that their current values, as well as those of y;, and 6, are necessary and sufficient for the de-
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termination of the thermodynamic state of an infinitesimal element of a material con-
figuration.™®

Though generally recognized [2-10] that ¢, may be scalars, vectors or tensors, very
scant attention has been given to the consequences of the precise tensorial nature of g,.
On occasion, explicit constitutive equations, that apply to large deformation, have been
derived using proper tensor formulation [11] but these occasions have been rare. In Ref.
[11], q, were regarded as quantities which transform as tensors with rotation of the material
system of coordinates x%, but remain invariant with rotation of the spatial system. This
was also done in Ref. [12], where constitutive equations which apply to viscoplastic materials
were derived, under conditions of large deformation.

In this paper we examine in detail the consequences of the precise tensorial nature
of the internal variables. In the first place, we admit internal variables which transform
as tensors with rotation of the spatial system of coordinates, thus giving rise to a spatial
Jformulation of the thermodynamics of internal variables.

In the event that g, are tensors in the material coordinate system, care has been taken
to distinguish between their covariant, contravariant and mixed components, a subtle
point that has not been given due attention hitherto. Such distinction gives rise to different
constitutive equations depending on which components have been chosen as independent
variables.

Pursuing an analysis along this avenue we have shown that constitutive equations
may be derived which contain no reference to the original material configuration.- Such
constitutive equations, of course, apply to simple fluids in the sense of CoLeman [13].
Again we are not aware of a previous derivation of constitutive fluid equations, using the
formalism of internal variables.

In the latter parts of the paper we generalize the concept of intrinsic time, by introducing
the concept of a spectrum of intrinsic times. Such a generalization follows naturally by
assigning to each internal variable a characteristic intrinsic time scale, so that the resulting
equations apply readily to a material whose equilibrium response is “plastic” (i.e., history
dependent but rate independent) but whose transient response is rate dependent. Such
materials are viscoplastic in the accepted sense (MALVERN [14], PERZYNA [15], PERZYNA and
Waoino [9]).

PErZYNA and WoINO [9] dealt with such materials by using the internal variable theory
to describe their transient response, but classical plasticity to describe their equilibrium
response.

2. Viscoelastic solids
2.1, Spatial and material characterization

Let the free energy density y be a function of the deformation gradient y;, the temper-
ature 0 and n internal variables ¢{?, independent of y;,. The internal variables are specified

to be symmetric second order tensors in the spatial frame y;. In other words, the com-
ponents g{7 in a spatial frame y;, such that

2.1 Vi = Qijyi,

“*) For a more precise definition of this statement see Ref. [1].
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where Q;; is a proper orthonormal matrix, are given by the transformation
(2.2) g7 = 0uQngi?.

The following equations are a direct consequence of the internal variable theory [5, 6]:

. 0 O
T[ - a 5}’1‘:
17,
2.3) n=-—=,
a'au = (r)
Bq ,l)' QH Yia = 0 ]
where
(2.4) v = (i, 0, qf7).

The spatial components T;; of the stress tensor may be obtained from Eq. (2.3), by the
transformation

1 oy oy
(2.5) Tij = —— ( +—y,).
: 2 aym a ay}'a :
The stress components 7% in the maler:al system, are related to Tj; by the transformation
(2.6) ™ = 1T,

ox . A .
where x{ = i In the particular case where the material is incompressible then the

relation (2.3), must be replaced by the equation

oy

2T T2 = U __px?

2.7 i ia PXi
where p is an arbitrary hydrostatic pressure.

It has been shown previously [16] that if the material is isotropic then  must depend

on y;, through the left Cauchy-Green tensor B;; where

(2.8) Bij = ViaVia-
Thus the functional dependence of y on the deformation will, in this case, be of the form
(2.9 v = p(Bi, 0, ¢7).

It is also essential that the functional form of y meets the condition of material indifference.
This is accomplished by requiring that ¢ depends only on the joint invariants of d;, Byj,
and ¢{? where §;; is the unit matrix.

Following our previous work we introduce » internal constitutive equations —i.e.,
equations of evolution of the internal variables, in the form™’

Oy
210) aq"’ +buqutl = 0

™ For a scalar treatment of the internal variables see [3, 6 and 17].
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where b{}}; is a material viscocity tensor —in this case isotropic —and gy is one of a
class of objective derivatives of g{?, with the property:

(2.11) gl = a4k, -

In other words, the objective derivative of ¢ and the material derivative of q® with y;,
remaining constant, are identical. In view of Eq. (2.11), it follows that Eq. (2.10)
will satisfy the inequality (2.3); provided that b;;, is a positive semi-definite fourth order
tensor.

It is our purpose, in this section, to show that different choices of objective derivatives
of ¢ give rise to different constitutive equations, even though the form of y remains
the same. We shall further find that this formulation leads to constitutive equations with
specific characteristics that make them inapplicable to a class of materials commonly
referred to as “fluids”. This point will be discussed at length at the end of this section.

w — forms quadratic in ¢

For the purpose of discussion we shall focus our attention on a class of incompressible
materials where y is a quadratic function of the internal variables, i.e.,

@12) ¥ = Yo(B) +AVBgP + - COP g
and b{%}, is of the form:

(2.13) b = b8ybj.

As a result of Egs. (2.5), (2.7) and (2.12),

i}
(2.14) Tij+pdij = 2By a;’:_ +(gi’B+qPBy) AT,
9]

whereas use of equations (2.10), (2.12) and (2.13) yields a set of r internal constitutive
equations in ¢ of the form

(2.15) COgO 4pNg 4 ADB =0 (r not summed).

These are linear first order differential equations in the ¢’s, which can be integrated analyt-
ically. Substitution of 9 in Eq. (2.14) will then yizld the appropriate constitutive equation
which relates the stress to the deformation history of the material at hand. This we shall
proceed to do with various choices of the objective derivatives ¢ of q.

2.2. Cases of objective derivatives

(2.16), éi(;) = QE? + Gk, ; + GijVk, i+
We observe the following identity;
(2.16), “g;l = x‘,!xfé};’,

where g are the covariant components of ¢%, ie.,

(2.17) 9% = YiVisd? -
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Equations (2.15)-(2.17) combine to yield the first order differential equation
(2.18) CqR+b"q7}+A"C,,Cyps = 0,
where C,4 is the right Cauchy-Green tensor given by the relation
(2.19) Cap = ViaVip-

Equation (2.18) is solved in conjunction with the initial condition that at = — oo the
material is in an undisturbed equilibrium in which the stress field is at most hydrostatic.
In this event

Gli=ew =0, Ble_ = Cjja_op = 8.

The solution of equation (2.18) then is:
]

™
(2.20) Q@ = _L;G,_ f e=9nt=0 C2(7) d,
where
C(")
a, = F;)“

The resulting constitutive equation is the following:

@21) T+p= 23 fG(f—r) {e(2)"1B(1)e(x)~'B(t) + B(t) e(x)~'B(t) c(v) " }dr,
where

@2) G0 = 3 A e,

and c~! is the inverse of the relative Finger tensor ¢ which is defined by the relation
(2.23) _ oy(t) ay;(t)

Cij = ——— ;
R G NN )

The representation of the constitutive Eq. (2.21) in the material system is given in the form

of Eq. (2.14):

(2.24) T+pC = 2— - f (C(1)C* (1) +C(1)C (1)} G(t—7)dT

where the components of 7 are 7%/, the components of C are C* and CC = 8.
Other choices of the objective derivative of q” are possible

(2.25) 47 = 4 — aRvju+ a7 0ei.
This derivative has the material representation

(2.26) a7 = 4x1 s
Here g7 are the right mixed components of q”:

(2.27) 4<% = q{Pyiaxf.

12 Arch. Mech. Stos. nr 1/77
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Use of Egs. (2.10), (2.12), (2.25), and (2.26) yields a set of r internal constitutive equations
in the form:

(2.28) CrgIP 400G+ ANC,, = 0.
The solution of Eq. (2.28) is given by Eq. (2.29):

]
AW

(2.29) gP = ‘EW | G=n)C.p(ydr.

-

Equation (2.14) in conjunction with Eqs. (2.27) and (2.29) leads to the constitutive equation
a‘f’o 2 =i ~
(2.30) T+p8 = B- B J G(t—1){B*(r)c (1) + ¢! (7) B(?) } d7,

which has the following representation in the material system
r

(2.31) %+pé=2%’-‘g— f{(:‘(r)C(r)C(r)+C!f)C(r)é(r)}G(r—t)dr.

-2

Note the difference between Egs. (2.21) and (2.30) on one hand and (2.24) and (2.31)
on the other. It is worth emphasizing that this difference is brought about by the use of a
different objective derivative. The free energy is the same in both cases.

Of course other choices of the objective derivative are possible. A third choice is the
following:

(2.32) 4P = 417 — quVin+ Gy, j

which has the material representation

(2.33) a5 = X1y
where g{f>* are the left mixed components of q’ given by the relation
(2.39) a5 = 4 X} yis-

Equation (2.12) in conjunction with Egs. (2.10), (2.32), (2.33) yields the set of r internal
constitutive relations: ‘

(2.35) COGP+ bGP+ AC,y = 0,

These together with Eq. (2.14) lead to the constitutive equation:

(2.36) T+p6 = 233"1“_ = [ G(t—1) {B(t)c™()B(1) }dr

-0

which, in the material system of coordinates becomes:

(2.37) F=2- 6“"’ -2 f G(t—1)C(r)dr—pC.
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Certain physical implications of the above class of constitutive equations are worth
discussing. Inspection of Eq. (2.14) shows that irrespective of how g7 depends on the
deformation history, the stress components depend on the current deformation relative
to the reference state, in the sense that at all finite times following the initiation of deforma-
tion T depends on B(t). The material is, therefore, explicitly cognizant of its reference
state; as such it is not a fluid.

The character of the above constitutive equations remains unchanged also in the case
where the stress in the equilibrium state is a hydrostatic pressure. For instance it may be
verified after integration by parts that the preceeding constitutive equations are of the
general form

(238) T+pé = (B)+ f(‘P;(B)é*‘(r)¢z(B)+¢:(BJé“‘(r)¢1(B))G(fHr)dt.

where B = B(r). Under conditions of relaxation

(2.39) limT+pé = f(B).
=00
Even if f(B) = 0, T depends explicitly on B for t < co. This implies that the material
is cognizant of a specific reference configuration.
Constitutive equations which pertain to materials which are cognizant of a specific
reference configuration, yet have an extremely short memory of their rate of deformation,
are obtained by setting f = 0, and G(t) = G, 6(7) in Eq. (2.38). The result is

(2.40) T+pd = 2Go[¢,do, + d.dd,],

where ¢, and ¢, are isotropic functions of B.

3. Viscoelastic liquids

Evidently the above constitutive equations are inappropriate for materials in which
the statistical molecular configuration in the equilibrium state is unaffected by previous
deformation histories. Dilute polymer solutions are a case in point though the level of
concentration and temperature at which are remarks are appropriate can be determined
only by experiment.

To describe such materials we wish to derive constitutive equations in which T does
not depend on B(z) for all finite times following the initiation of deformation. Perusal
of Egs. (2.10) and (2.38) shows that the presence of B in the expression for the free energy
gives rise to an explicit dependence of T(t) on B(t). The indicated procedure, therefore,
is to make y independent of B. However, elimination of B from Eq. (2.38), would give
rise to a zero stress, as Eq. (2.7) readily indicates.

The paradox is only apparent. It is the result of regarding the spatial components
of q as the independent variables. The difficulty is removed if the covariant, or contra-
variant components of q” are the independent variables instead, and due attention is
given to the covariant (or contravariant) character of the aforesaid variables.

12*
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To illustrate the point, we consider a free energy density which is quadratic function
of q. To wit, let

1
3.1) ¥ = Yo+ AV + 5 COqiPqp,

where o, A and C are constants.
Fruther, let g{3 be the independent variables. In terms of these quantities equation
(3.1) takes the form:

1
3.2) Y = Po+A"GRCP+ — Cq,pq,; C*CP,
2 B

Note the appearance of the inverse Right Cauchy Green tensor in the quadratic term
on the right hand side of Eq. (3.2). This is contrast with Eq. (2.12) where C~! does not
appear in the quadratic term.

Because  now depends explicitly on C*, it is convenient to write Eq. (2.7) in the form:

F
(3.3) w4+ pC* = —20%C" % g‘;a .

If the material is “internally isotropic” then, for consistency, the rate of change of the
covariant components §¢? should be proportional to the covariant components of the

internal stress tensor —- o The internal constitutive equations should, therefore, be of

aq(f)

the form:
(3.4 bOGH + =0

' ﬁ‘ Q?,)
or

dy
(.4, 50458 + Cau Cop 505 = 0
Note that Eq. (3.4), satisfies the CIausms—Duhem inequality
dy .,

(3°4)3 aq(') q;ﬁ) =

since substitution of Eq. (3.4); in (3.4); yields the result:

dy Oy
it =
) q}‘r) aq(r) 20

Inequality (3.4), is true, since b, > 0, and the term on the left hand side of the inequality,
when represented in the spatial coordinate system, becomes:

(3.9), CeuCpy

Oy Oy
34 >
G4)s aq(r) 5qm
which is of course a perfect square and therefore, non-negative.
Equation (3.4),-in conjunction with the quadratic form (3.2) yields the internal consti-
tutive equation:

(3.5) AOC 5+ COR +b"4R = 0.
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Equation (3.5) may be integrated in the light of the condition that the material reference

configuration is undisturbed at t = —oo and that @], _, = 0 for all r, with the result
that

A AD .
(3.6) q% = — o C*¥+ ) f e~ =NC 4(1)d,

-0
Q)
where a, = 0 Or, in the spatial frame of reference,
r
, A® AP .

(3?) q‘ ) = C(r} 65J-.+ '—C"qr‘)" fe_a"(:_')(,’u(f)df.

— 00

On the other hand Eq. (3.3) gives rise to the following expression for the Cauchy
stress:

(3.8) Ty = —pdy—ATqP - COPq;.
Substitution of Eq. (3.7) in Eq. (3.8), yields readily the constitutive equation:

W Alii'}i2 .
(9 Ty=—pdy+ > == fe‘“"“"’c(r),—,dt

A(F)’-

Or, more compactly:

(3.10) T=pb+ fG(t—‘r)c(‘r)dr— f fG(Zr—-'rlwtz)c(r,)c(‘r,)dr dz,,

—0 —00
where

AT? :
(3.11) 6= ) Zare ™.

Two points are worth mentioning with regard to the above equation: (i) the current
left Cauchy Green tensor B(¢) is absent; (ii) A double integral of the history of the relative
Finger tensor is present even though the free energy density is quadratic in gf?. Further-
more, the same function appears under both integrals thus making it impossible to eliminate
the double integral by a suitable choice of parameters. Evidently, the constitutive equation
(3.10) pertains to a material which has no memory of its reference configuration. The present
stress, however, is a function of the deformation history relative to the current configurat-
ion. The material is therefore a fluid [13].

In a similar fashion the contravariant components of q> may be considered as in-
dependent variables. In this case Eq. (3.1) now becomes:

(3.12) Y=yt AmCﬂBqU) C('}q‘r)ﬁncncﬂa
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In this case the stress is given by the equation

oy

aff _ - a3

(3.13) T 2 3C.s pC*,

whereas the internal constitutive equations now are:
oy e

(3.19 4% +b04¢E = 0.

Note again the balance of indices in equation (3.14). Following a procedure analogous
to the foregoing we now find a constitutive equation of another type:
r I r

(15 Ty=—pdy— [ G~ @dr+ [ [ 6Qt—7,—v) &@ ()i (r)dr, des,

—o0 —0 —oo

where
(3.16) G(t) = 2 Z 'é_'z ()

in the previous notation. The constitutive Eq. is now in terms of the inverse relative
Finger strain tensor. Note again the absence from this equation of the left Cauchy-Green
tensor B(z), which leads to the conclusion that the constitutive Eq. (3.15) pertains again
to a fluid.

4. Endochronic fluids

In a previous series of papers, we discussed the concept of intrinsic time as it applies
to solids. For such materials we stipulated that a distance between “deformation events”
can be defined in a seven-dimensional space R, the coordinates of which consist of the
six independent components of the Right Cauchy Green tensor and time. In particular,
if the distance between two adjacent deformation events is di, then

4.1 dr? = PRAC,dC, + g?dt?,
where P**** may depend on C. Alternatively,

4.2 4
{ - ) E = Cuﬂcyd +g

the right hand side of Eq. (4.2) can be expressed in the spatial coordinate system in the
form

d 2
(4.3) (—-dg- = Pyudyda+g*
where
4.3) Pijq = 4 PPy g Viy V1o
conversely

@5 Peprs = Pyt xial.
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When dealing with fluids, which by definition have no preferred reference configuration,
the “intrinsic tensor” P;j, cannot depend on the present deformation relative to the
reference state, i.e., on B;;(t). In order to apply the theory to fluids and to keep the analysis
tractable we shall assume, in this paper, that P is at most an isotropic tensor function of
d;;. In this event Eq. (4.3) can be written more concisely in the form:

2
(4.6) (%f‘) = f(dy, dy, din) +&°,
where
dy =tr(d™). M =110, 1II.
In the case of incompressible liquids d; = 0, and
(4.7) f = fldy, dw).

As a consequence of Eq. (4.1), a deformation history is mapped into the space R as
a path. The length of an element of this path, is d¢, where d(? is given by Eq. (4.1). Evidently
the space R is not Euclidean, but Riemannian with a metric G, where;:

(P 0
(4.8) G = o g2/
Consider now a typical internal variable q'”, the values of which may be computed

along a path in R, i.e., ¢ = q'?({). The intrinsic rate of change of q'” along the path
dq(rl

is T
As an extension of the theory of internal variables we stipulate that
% 5. 4
(49) _(.‘EE;:'_ b( ). -—d—- =

Equations such as (4.9) constitute endochronic fluids since their constitutive equations
are expressed in terms of an internal time scale which is a property of the fluid at hand.

The contravariant viscocity tensors 5" are all positive semi-definite; further, the set of

elements (r, s) corresponding to a particular component of the tensor b, constitutes
a positive semi-definite matrix.

It is conceivable that to each internal variable q' there corresponds an intrinsic time
scale {,. In this sense it may said that a material possesses an intrinsic time spectrum
Cryr—1,2,...,n.

In terms of such a spectrum there does exist a set *) of internal constitution equations
of the type:

aw e d&m

(4.10) aq‘ﬁ +b _d.C:- (s summed),
where

(4.11) d:? = dC P*- dC+gidr?,

) This is a particular set for a proper choice of b. See Eq. (4.13).
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or recalling Eq. (4.6):
(4.12)

de,\?
( di ) = fi(dy, dy, din)+82.

The internal variable theory with an intrinsic time spectrum is now complete.

We proceed to solve Eq. (4.10) when the free energy is given by quadratic form (3.1)
and the Cartesian components of b are given in Eq. (4.13)
(4.13) SIR: = bg)au 511 ’
where b§? are constants. If the covariant components of ¢ are used as independent
variables one obtains by the procedure of Sect. 3, the constitutive Eq. (4.14):

&
(’)’
= — —ur{r:r-
(4.14) T = —ps+ E — f e dc*

r=1 -0

Lr

Z AT? F " O
—_ 'ﬂr(zcr—c —’ i
cn f f ¢ at’ 6&"’ Uty

-0 =00

This equation is similar to the Bird-Carreau Eq. (2.18) except for the presence of the
double integral, which incidentally cannot be eliminated, because the constants and relaxa-
tion times therein are precisely those of the first integral.

Ip a similar fashion, if the contravariant components of 4 are considered to be the
independent variables, in this case one obtains Eq. (4.15):

A('}’ i aC[
) = — = o —ar(@e—gy) o4 ’
@415 Ty poy; 2 i e 3 ac,

e

n :'
T AP 36,,‘ 3(:”
el Fat —KrIZCy—-C- -’ r ’”
+ N f f e a5~ @ Gy

r=1 -0 -

Of course it may happen that at set k of internal variables, g{”, g% ... g{”, share one
and the same intrinsic time scale ¢,. In this event Egs. (4.14) and (4.15) can be readily
generalized as shown below. In particular Eq. (4.14) will become:

(4.16) -

T——p8+2 fc(c 55 dti— Z f fG(Zir 68 5 gLy

In a similar fashion Eq. (4.17) will become:

@17) T=-ps- 2 f Git=) 5 dc,+2 f frc,(zz. G-t

dc™? 5c"
K
a g; Cn
These equations are of a generality in excess of those by BirRp, CARREAU [18] White,
Bogue and others.

dCr g!!
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