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Deformable dielectrics II
Voigt’s intramolecular force balance in elastic dielectrics

G. A. MAUGIN (PARIS)

THE FIELD equations developed in the first part of this work for a dynamical theory of non-
magnetized deformable dielectrics made of several molecular species are here supplemented with
the relevant thermodynamics. This allows for the construction of constitutive equations for
thermoelastic solids with finite deformations and the comparison of several previous formula-
tions. As an approximation within the infinitesimal strain theory, the equations that generalize
Voigt's intramolecular force balance to the case of elastic ferroelectrics, antiferroelectrics or
ferrielectrics are deduced. All thermo-electro-mechanical couplings and the associated loss
mechanisms are shown to participate in such equations which must be considered in the study
of electroacoustic waves and electro-optical effects.

Wyprowadzone w pierwszej czgdci tej pracy rownania polowe dynamicznej teorii dielektrykow
odksztalcalnych skladajacych sie z réznych czasteczek uzupelnia sie tutaj odpowiednig termo-
dynamikg. Pozwala to na zbudowanie rownan konstytutywnych dla cial termosprezystych
o odksztalceniach skoniczonych oraz na analize porownawcza kilku wczes$niejszych sformu-
towan. Poshlugujac si¢ przyblizeniem odpowiadajacym teorii odksztalcen infinitezymalnych
wyprowadzono rownania uogoélniajace warunki rownowagi miedzyczasteczkowych sil Voigta
na przypadek sprezystych ferro-elektrykow, anty-ferroelektrykoéw oraz ferri-elektrykow. Wy-
kazano, ze wszelkie sprz¢zenia termo-elektromechaniczne oraz odpowiednie mechanizmy strat
wystepuja w tych rownaniach i nalezy je uwzgledniaé przy rozwazaniu fal elektroakustycznych
i zjawisk elektro-optycznych.

BriBeieHHBIE B MepBoil 4acTH 3TOH paboThl MoJieBhie YPaBHEHHA JHHAMHUECKOH TEOpHH Je-
hOpMHPYEMbIX [H3/IEKTPHKOB, COCTOALINX M3 Pa3HBIX MOJIEKYJI, MONOHAIOTCA 3eCh COOTBET-
CTBEHHOM TepMOAMHAMHKOMH . DTO, TO3BOJIAET NOCTPORTE ONpe/ie/IAiolIHe YPaBHeHHe A TepMOo-
YIPYTHX TeJl ¢ KOHEYHBIMH HehopMallMAMH, a TAKXKe MPOBECTH CPaBHHUTE/IBHBIN aHANMM3 PAAA
paHbllle NoayYeHHEIX dopmynupoBok. [TocnyxuBance nprOMKeHHeM, OTBEYAIOIIMM TEOPHHM
HHOHHUTe3UMANEHBIX AecopMalinii, BLIBeleHB! YpaBHeHUA 0000IIaloNIne YCIOBHA PaBHOBE-
CHsA MEXXKMOJIEKYJIAPHBIX CHI <PoiiXTa Ha ciTyyail ynpyrux depposneKTpHKOB, aHTH-(eppoae-
KTpHKOB H (eppuanexTpukos. [lokasaHo, UTO BCAKHME TEPMO-37EKTPOMEXAHHWUYECKHE CONpA-
YKEHHA H COOTBETCTBEHHbIE MEXAaHH3MBbI MOTEPb BBLICTYNAIOT B 3THX YPaBHEHHAX M CJIEYET MX
YUHTLIBATE NIPH PACCMOTPEHHH 3JIEKTPOAKYCTHUECKMX BOJH H 3JIEKTPO-ONTHYECKHX ABJICHHHA.

1. Introduction

THE PRESENT paper is mostly devoted to constructing the constitutive equations for
the dynamical theory of nonmagnetized deformable dielectrics made of several molecular
species set forth in Part One. To this purpose the local statements of the energy equation
and of the Clausius-Duhem inequality are first derived (Section 3) after having recalled
the essential results of Part One (Section 2). Several forms of the Clausius-Duhem inequality
are given which prove appropriate depending on the choice of dependent variables. Then,
using the thermodynamical admissibility of Coleman, we deduce two alternate formulations
of the constitutive equations for a thermoelastic solid subject to finite deformations (Section
4). A special attention is devoted to the infinitesimal strain theory (expansion of the free
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energy about a strain-free state of spatially uniform temperature) in order to exhibit the
different effects accounted for: thermoelasticity, pyroelectricity, piezoelectricity, elec-
trostriction, and the interactions between the different polarization sub-lattices. Kittel’s
theory of rigid antiferroelectric is thus generalized to the case of anisotropic thermoelastic
bodies. Voigt’s theory of piezoelectricity also appears to be a very peculiar case. Taking
account of thermodynamically irreversible processes in agreement with the linear Onsager-
Casimir theory for the sake of example, it is then possible (in Section 5) to show, owing
to the decomposition of the Cauchy stress obtained in Part One, that the dielectric re-
laxation term in general contributes, along with the usual viscosity processes, to the stress
tensor in a ferroelectric, which indicates at once that the damping of elastic waves and
polarons (oscillations in the electric moments) will be coupled. It is finally argued that,
on account of the polarization inertia, of the dielectric loss mechanisms and of the deform-
ation field, the intramolecular force balance derived for each polarization sub-lattice
generalizes the early proposal of Voigt, so as to allow for a thorough analysis of electro-
acoustic waves and electro-optical effects for various states of dielectricity in an elastic
dielectric.

2. Summary of previous results

In a previous paper [1] referred to as Part One herein after™®, the following field equa-
tions were obtained for a moving nonmagnetized deformable dielectric made of several
molecular species (in a spatial region 9, boundary by 8%,):

a. Maxwell’s equations in 2, (using Lorentz-Heaviside units)

VXE+—1—£§- =0, V-B=0,
¢ Ot
(2.1)
vxB—L+2E _ 1o _w.pu, V-E=-v-P
c d ¢ ’ h ’
b. Continuity equation in 2,
9
2.2) -§+v-(gU)=0 or $+oV-U=0.
¢. Motion equation
(2.3) oU =divt+1+ %E-'x B+®P+-V)é in 2,
(24) TE+T,'TM = !‘Un,- on 69,,
with
2.5) g = E+%UXB,
(2.6) iy = oyt+e Z Ca"ExiToajys

¢ BEquations of Part One are referred to by I followed by their number, e.g., Eq. (I-2.18). We refer
to Part I for the main notation.
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(27) Ti"' = "‘[8;PJ'+E;E}+B;BI——é—(E2+Bz)au]ﬂj,
@38) P=0 em, Pmgm.

d. Intramolecular force balance laws;
(2.9) E+'E, = d#,, 0= 1,2,...,n, in 2,
We recall that ¢, is the time-constant concentration in a- molecular species, the latter giving
rise to an electric polarization field 7, per unit mass of « species. d, is the so-called molecular

polarization inertia for the o species. P is the convected time-derivative of the total volume
polarization P defined as

P=P—(P V)U+P(V-U).
To close the differential system formed by Egs. (2.1), (2.2), (2.3) and (2.9), constitutive
equations must be constructed for the symmetric “intrinsic stress” tensor o;; and for the
“local electric” fields *E,, a«=1,2,...,n. The following global energy expression
which was established on the basis of the expression of the principle of virtual power and
of an energy identity satisfied by the electromagnetic fields (cf. Eq. I-4.31), proves to
be essential in this context:
2.10) K@)+ U™2) = 2o(@)+ [ 1 Udo+ [(T-U-J-n)da,

9 33,

where

K(@,) = f-;_g(U2+Zc,d,i:§)dv,

G

@.11) @) = [ %(E“-E-B’)dv,
P

Qm(@;) = = f(anDIj“QZCGLEa'ﬁc)dv:
P a

in which
(2.12) Dy = Uyjy, M= D) = ftai— U,y 7,
(2.13) SECJX(B—-%UXE),

D; denotes the so-called Jaumann or co-rotational derivative. P, (2,) is the power
developed by the internal forces in real velocity fields.

3. Thermodynamics

The first and second principles of thermodynamics are postulated in global form in-
dependently of the principle of virtual power. They assume the natural forms:

(3.1) %[K(@,H E(2)+U™(2)] = Q@)+ ff- Udo+ f T:Uda
@

o

10 Arch. Mech. Stos. nr 1/77
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and
(2 N@2)> & (@),
where
(33) E@) = [ cedv,
Py
(.4 Q@) = [ ohdv— [ q-nda,
@ ey
3.5 N@2,) = fendv,
@
(3.6) #@)= [0-thdv— [67(q-3)"nda,
Gy E9

in which e, h, q, 7 and 0 are, respectively, the internal energy per unit mass, the heat
(radiation) source per unit mass, the heat influx vector, the entropy per unit mass, and
the thermodynamical temperature (6 > 0, inf 6 = 0). We followed ERINGEN [2] in pos-
tulating the entropy influx as 67! §, where

(3.7 qd=q-3;

that is 6~! is assumed to be an integrating factor and the E. M. energy flux participates
in the entropy influx. Such a formulation can be derived by using Miiller’s thermodynamics
(See L1u and MULLER [3]).

Combining Egs. (3.1) and (2.10), we obtain the global statement of the theorem of the
energy:

(3.8) E@)+20(2) = [ ohdv— [ §-nda,
9,

a9

whose local form reads
(3.9) 0é = 0yDy—g ) ¢y W=V §+0h.

Combining the local form of Eq. (3.2) with Eq. (3.9), so as to eliminate /1, we are led to
the Clausius-Duhem inequality in the form

(3.10) —o(@+nf)+0yDy—e D) ¢, M,—07§ V0 2 0,

where ¢ = e—nf is the free energy per unit mass. Other forms can be given to this ine-
quality. First, using the definition (2.12), and taking account of Eq. (2.6), Eq. (3.10) is
transformed to

(3.11) ~ 0@ +10)+15U; ;=0 ) ¢ FEy ity —071G V0 2 0.

Next, upon using the demonstrable result (cf. Eq. 1-3.7)
(.12) 0elli = Pt 0. Dyjtejs
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where i’, is the convected time-derivative of P, — remark that ¢, = 0 —Eq. (3.10)
transforms to

(3.13) —o(+n0)+5t, D~ > VE, - B,—0-1§- V0 2 0,
where
(3.14) By = Gu"'QECJ‘EmNm = 1

will be referred to as the (symmetric) “elastic” stress tensor.

The following remarks pertain to the different forms (3.10), (3.11) and (3.13). On the
one hand, Eq. (3.11) makes clear the contribution of the Cauchy stress to the Clausius-
Duhem inequality, while on the other hand it contains nonobjective time rates, so that
it should not be used in applying the thermodynamical admissibility of COLEMAN [4].
The inequalities (3.10) and (3.13) contain objective time rates and are thus admissible.

However, whereas Eq. (3.10) contains the co-rotational derivatives ﬁ,, Eq. (3.13) involves

convected-time derivatives l;,. It must be noticed in this regard that the use of the first
type of derivative is particularly well-adapted whenever the rotational effects are prominent
(e.g., in ferromagnetic relaxation in deformable bodies [5]), whereas the convected time-
derivative takes account of the general deformation of the medium (including shear and
dilatation). But, as was already pointed out in previous papers of ours (e.g., [6]), it is
only Eq. (3.10) that contains linearly independent rates, this independence being required
for using Coleman’s argument. Thus we shall stick to Eq. (3.10) when using this argument
(i.e., in elasticity), but we shall freely use Eq. (313) if we call for a different thermodynamic
theory such as the Onsager-Casimir theory of irreversible processes.

4. Thermoelastic dielectrics

4.1. General case

Let x = X(X, t) be the motion of the deformable dielectric, assumed to be invertible
and sufficiently differentiable. Then,

—1
4.1) J = go/e = detF > 0, Fix = xix, Fri = Xk.is

where g and g, are the matter densities in the present and reference configurations, respec-
tively, define the Jacobian of the motion, the deformation gradient, and its reciprocal.

A hyperelastic dielectric is a nonlinear elastic dielectric of which the constitutive equa-
tions are derivable from an energy potential, e.g., . In accordance with the working
hypothesis of equipresence we assume that all dependent variables y, %, 0;;, “E, and q
may a priori all depend on the same set of independent variable (F,m,, 0, g) — where
g = V6 —evaluated at the present time. For instance,

(4.2) v=yF 08, a=12,.,n

1o
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It is readily shown that for y to be objective it is sufficient and necessary that it has, for
instance, the following reduced functional dependence:

(4.3) y = 9(E,IL,0,G),

where (T = transpose)

4.4 = %(F’"le), II,=F'n,, G=FTg.
Using the following auxiliary results

4.5) Egy = xxDyxpp, Mg = (Tut Dymad i,

one shows that

[ 0% o 10§ W o W 0 g
(4.6) yp = (aEtL x,.x.tj.b+2 ‘;Tq;n,_,xf'x)Dij+Z—gI%x;_xﬂai+ %8-{- %- -G.

Substituting from the latter in the inequality (3.10) assumed to be satisfied for arbitrary
independent objective time rates (D,-j,f]',,-, é, G), one deduces in the usual fashion the
following result:

TaeoreM. The constitutive equations of a nonmagnetized hyperelastic dielectric made
of several molecular species read

aﬂ aﬁ
@7 Roy = Q(Et_‘.xu.x;+ Z"gl{—;“m) Xj,o = Ry,
o
RL 2 "l_wA_ . =
(4'8) Eal = Ca 6”;[ XiK» a ls29 eg 1,
oy i
(4'9) = _‘ﬁs Y= ‘P(Esnayg)!
(4.10) 4 = xmOu(E,IL,0,G), @-G<0,
@M = Xy,:4; being subjected to the “continuity” condition
@.11) Q=0 whenever G =0,

if it is assumed to be of class C* with respect to its argument G.

The left superscripts R—for (thermodynamically) recoverable —indicate that thus
labeled quantities are derived from a thermodynamical potential.

On account of Egs. (4.7)-(4.8), the thermodynamically recoverable part, ®#;, of
the Cauchy stress can be written in the form

op op )
4.1 Ry = ol E ¥
( 2) tif 9( aExL Xikt+ - aﬂa[. Toai | Xj, L
or

(4.13) Rty = Ely—0 ) caltu™ Eey,
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where

(4.14) E;:‘j = g_f%‘t_LXi'xxj'L = EE.\‘:' U.;'H’ Tfa Eqi7aj),
x

is a symmetric tensor, which no longer contains partial derivatives of ¢ with respect to the
polarizations — i.e., it does not contain the local fields “E, — and can thus be referred
to as the “elastic stress” tensor because of its resemblance to the corresponding tensor
of nonpolarized hyperelastic bodies. However, Et:J still contains the polarizations via the
functional dependence of 9. In particular, it contains the effects of electrostriction. Eq.
(4.13) is the decomposition a priori set forth in Eq. (5.1) of Part One.

4.2. An alternate formulation

Instead of the objective reduced form (4.3) one may as well consider the following
one:

1 e &
(4_15) 90].()=E=Z(C’ H‘,G,GJ, o= l,2,...,n,
where
1 =1 - -1
(4.16) C=FF, I,= OFJz,—Jc,‘FP,,
-1 -1
G = Fg=CG.

Then, in lieu of Eqgs. (4.5), we have

s e s »
(417) CXL = "_2X.K,EDUXL.J'$ HGK = JC;‘X;.;P, F

The fact that D;; and P, appear in these derivatives infers that the form (3.13) of the
Clausius-Duhem inequality is more appropriate in the present formulation. In fact, we
can rewrite the latter in the form

(4.18) — (Z+00m0)+J 51, Dy S‘LE P,—6'@-G =0
where
(4.19) Q = JF'j = JCQ.

Computing 2 from Eq. (4.15) and using Eqgs. (4.17), and assuming that the inequality

(4.18) is to be satisfied for arbitrary independent objective time rates (D;;, 1;,, é, é),
we obtain the following results instead of Eqgs. (4.7) through (4.11):
THEOREM. An alternate form of the constitutive equations of a nonmagnetized ther-
moelastic dielectric made of several molecular species is
(4.20) Fri= — i oz —— X, X = t,-;,
6Cu

(4'21) RL-Eai = _“‘Ca XK is o= 1!29 ey M

akK
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_, 0F =1
(4'22} n= _Qﬂluﬁa E=‘E(c, H«HB}:

A A - P
(4'23) &i = "'_IXX.EQK(C: nﬂ: 9’ G)’ Q: G g 0}
with
(4.249) @Q =0, whenever G =0.

Then the corresponding Cauchy stress follows from Egs. (2.6) and (3.14) by eliminating
Tij.

(4.25) Ry = Bhyte D, eMEumy

or, on account of Egs. (4.20)-(4.21),

(4.26) Rfu = — Qi(za_—f-XL'j+JZCJ1;]§—P‘J)XK"'
o 3er. « aK

Both formulations (4.12)-(4.13) and (4.25)-(4.26) can be compared. Of course, on
account of Eqs. (4.8) and (4.21), both equations (4.12) and (4.26) yield the moment-of-
momentum balance law in the form

@27) = D By Pupy;

which is the equation originally derived from the virtual power principle — cf. Eq. (4.14),
of Part One. The full correspondence between Eqs. (4.12) and (4.26) can be demonstrated
by making a change of both potential function and independent variables, bearing in
mind that the original functional dependence of y is that given by Eq. (4.2). We shall
not give this proof here. However, in all cases, it must be remarked that ®t;; is not other
than

Rty = 93:—‘3‘;.::

from which follows either Eq. (4.12) or Eq. (4.26), depending on whether one considers
the reduced form (4.3) or (4.15) for the free energy density. Remark that each set of de-
pendent variables present in Eq. (4.3) or (4.15) is consistent in the sense that each one

uses either F or Flto define the objective arguments, and not both at the same time. It is
for that reason that Egs. (4.12) and (4.26) take such forms as to allow one to recover
directly Eq. (4.27) in both cases. The situation is much more involved if one considers
a mixed set of independent variables (i.e., one variable constructed with F and the other

-
with F) asis the case if, specializing to the case of one polarization continuum and discard-
ing polarization inertia,

(4.28) v =9(E,0,0,G).

Then one gets an equation of the type of Eq. (4.14) for ®#;; and an equation of the type
of Eq. (4.21) for “E. However, according to Eq. (1-5.6), one then no longer needs to
consider the Cauchy stress, the only stress tensor which remains in the formulation being
the symmetric tensor ®f;. We consider this case from another standpoint in the next
paragraph.
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4.3, One polarization field and no polarization inertia

In this case the series of equations (2.9) is replaced by the single equation
(4.29) E+"E =0,
where LE is the only local electric field appearing in the theory. As already remarked in

Part One, the latter field can indeed be eliminated from the theory™ by Eq. (4.29). Per-
forming this, one replaces Eqs. (2.6), (3.13), (3.14) and (4.25) by

(4.30) ty = 0;j—8uPp
@31 —o(p+nb)+51,Dy+& - P—0-1§- V8 = 0,
(4.32) Ety = oy +84P;),
(4.33) Rtj = Et;j— &, P;.

Then, according to Eq. (4.31), constitutive equations must in particular be constructed
for f1;; and &. For hyperelastic solids one would consider a potential (..., %) to start
with. However, one may now perform a Legendre transformation on ¥, so as to introduce
a new free energy density F by

(4.34) F(..,6)=vy(..,n)—&" m=.

Noting that y and w are a scalar and a vectorial density, respectively, one then shows
that Eq. (4.31) takes the form

(4.35) —o(F+nf)+Et;Dy—P+ 601§V = 0

from which, in particular, will follow constitutive equations for £f;; and P. We do not
compute these expressions. Rather, one may investigate the validity of the transformation
performed starting with Eq. (4.29). Clearly, if “E is a phenomenological field which
describes purely thermodynamically reversible phenomena, then the transformation
performed is legitimate. For this assertion to hold true it is also necessary that the entire
field LE be derivable from a potential. For this to be true it is necessary and sufficient

that the orthogonal projection of “E on P be non-zero. Otherwise, one can always assume
&
that one part of “E, noted ZE, is such that
L -
(4.36) Lg.P =0,
so that this part — which produces no power — would not be derivable from thermo-
dynamical arguments. In conclusion, the transformations (4.30)-(4.35) are valid when:
(i) only one polarization field is considered; (ii) the polarization inertia is negligible; (iii)
both of the last two contributions of the following general decomposition vanish:
ik
4.37) LE = RLE+PLE+E.

Here, ®LE is derivable from a potential, PE is a dissipative contribution constructed with

) See, however, the comment hereafter.
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the help of a thermodynamical theory of irreversible processes, and "ﬁ, which satisfies
Eq. (4.36), must be constructed in an ad hoc manner. As will be shown below, none of
the conditions just enunciated are satisfied if one wants to account for the different optical
effects in dielectrics.

4.4, Thermoelastic bodies with infinitesimal deformations

All constitutive equations derived in the foregoing sections can be linearized for small
deformations and weak polarization field superimposed on a finite state of deformation
(for the study of photomechanical effects) and polarization (for the study of electro-optical
effects). In particular, the presence of several molecular species, hence of several polariza-
tion fields, enables us to reproduce the different states of dielectricity, e.g., ferroelectricity™
for which there exists a state of polarization in absence of applied electric field below the
critical phase-transition temperature (in which case the choice of the polarization as an
independent variable is clearly justified), and antiferroelectricity (for which two antiparallel
polarization fields of equal magnitude in absence of externally applied field are necessary;
cf. [7]), as well as the most general case of ferrielectricity. This linearization will be perform-
ed in a subsequent paper devoted to wave propagation in such media. For the time
being, we consider only a linearization for the case of infinitesimal deformations and small
temperature variations about an initial strain-free state with spatially uniform tempera-
ture 6°**, In these conditions, noting u the displacement field and setting § = 6—0°, we
write (cf. [9] Chap. 6):

Xk = (Oy+u, )0k, Exr =~ €i0ixbjL, - € = g,y
0~ oo(l—ew), J=1
and, from either one of the formulations given in Sects. 4.1 and 4.2, we obtain
oy RLE _ -12'}_’_ _ oy

Bty = 00—, —Ca y N=T =

dey; : o, a0

R‘U = E‘Ij_gchanllRLEuj-

a

(4.38)

(4.39)

Equations (4.38) are valid as 6 goes to zero, & being an infinitesimally small of the first
order such that |Vu| < 8. As regards heat flux, it is of course assumed that |g| < dy,
where 6, is infinitesimally small. On account of the continuity condition (4.11) or (4.24),
a Taylor series expansion about V8 = 0 yields the classical Fourier law

(4.40) G = —K;;(6°)0 5+ 0(y)

as d, goes to zero. Of course, K;; = Kj;, and Kj;a;a; = 0 for any a. In writing the func-
tional dependence of Kj;, we have discarded the coupling of heat conduction with the
thermodynamically recoverable phenomena.

*) However, one then has probably to consider the spatial nonuniformities, hence the gradients of
polarization, to account for the ordering effect in a continuous manner (compare the ferromagnetic and
ferrimagnetic cases in Refs. [6], [8]).

% Ap essential difference with the case of the linearization about bias fields is that only the strain
tensor, i.e., the symmetric part of the displacement gradient, is involved here.
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It remains to give the expression for the free energy. For the theory of infinitesimal
deformations, the following expansion in e; and 6 seems reasonable

x ~ C
4.41 = — = yYo—1ol—
( ) v % Yo—To T

-

= ~ ~ \1
52~ 03B, (0= Y catt®(0) 7

+

200

]
?»uu(eo)eijeu+20¢ fﬂ (ﬂo)eij“ak+90 Z b Czcﬁygﬂf)(eo)eijﬂukﬂﬂl‘
b @ @8
1 (28) (9O i
+ 0o —2-6‘“:‘."30;1 ( )ﬂ,;ﬁﬁj‘{‘h.o.t m Ty ®7¥ﬁ.
af

The factors gy and ¢, are introduced for convenience. The tensor coefficients introduced
satisfy obvious symmetry relations that we do not reproduce here, but the number of”
their independent components is still very large. This number can be drastically reduced
if we remark the following. The temperature haspractically the same effect on each polariza-
tion field or sub-lattice polarization (to conform more closely to the physical terminology)
m,. Thus, a® does not depend on «. Calling 7 the total polarization per unit mass, the
fifth term in Eq. (4.41) yields —fa(6° - w. Also, the interactions between the material
lattice (substrata of elastic deformations) and each sub-lattice polarization 7, assumes
the same form. Hence, f{} does not depend on a. The interactions within each polarization
sub-lattice are formally the same; thus y{§i® does not depend on a, and similarly for-
af}®, The interactions within each couple of differing polarization sub-lattices are assumed
to have the same form. This is so much the better because the individual sub-lattice polar-
izations are macroscopically unobservable quantities (only the total polarization is ob--
servable), so that the material coefficients labeled &« or § could not be measurable. On
account of these remarks, Eq. (4.41) can be rewritten as

> = C ~ ~ 1
(442) y= T Yo—100— EGZ—QE“}W’&“%' 7+ T&)iuué’uf’u

1 Rl o
+ fijk T '—2“90 vishei; (Z C3 Tax ﬂa:) + 00 Y0 -‘-’u(z Ca Cp My, ﬂm)’

o a#f
1 R [ ( \
+ 5 Qo dij Ca TaiTlaj + 0o b,-j | Cy Cﬁﬂdﬂﬂj +h.o.t
a a#f

on account of Eq. (2.8);*). The remaining tensor coefficients satisfy obvious symmetry
relations.

) For instance, for isotropy and limiting the description to two polarization sub-lattices (¢ = 1, 2),
the last two terms in Eq. (4.42) yield a volume energy

a
E = BHPD+6P, Pr+hodt

which can be compared with the expression considered by KrrTeL [10]in his phenomenological approach.
to rigid antiferroelectrics.
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On account of Eq. (4.42), Eq. (4.39) yields the following constitutive equations:

(4.43) 7= no+9£0'5 +05 e, +a
~ 1
4.44) By = —Ovi+ Ajuen+fipPi+ 5 Yiik (2 Pakpal) + (ZPan) 5
a axf

(4.45) RLE: = éﬂl—qu[qui+}’f»f:):kPak+)’gﬁﬂ(f’k—Pak}]—ai,‘Pa}—bu(Pj— P.)),
(446) Rty = —0(vy+ Pia)+ hjuea+ (fiuPe+SpairaP)

1 "
+ Z (-2— Vi1 PakPai +?‘p§)jk€qu¢xPai) + 50 (2 Path)
« a#f

1 \
+?’§?x9pq Z Pi(Py— Py +ay, (2_‘ PuiPak) +bji ZPui(Pk_ P,
on account of the fact that

Qo Zcﬁnﬁ =P-P,.
Ba

In the above equations (4.42)-(4.46), the different material coefficients introduced
are easily identified as: C = heat capacity; »; = thermoelasticity tensor; a; = pyroelec-
tricity vector; A, = elasticity moduli; fj; = piezoelectricity tensor; ¥{f; and y{j) =
electrostrictive tensors; a;; = “dielectric” tensor; b;; = inter-polarization sub-lattice
interactions. The coefficients ¥{f} and b;; only are proper to the theory accounting for
several molecular species. The constitutive equations which follow are, of course, linear
in the strains, but they are quadratic in the polarizations. Furthermore, if we are close
to a transition, point, approaching it from below (e.g. in ferroelectrics) then, because
of the critical behavior of the polarizations at that point, one should consider some higher
order terms in w,®m; in the expansions (4.41) and (4.42), rising critically the order of
Egs. (4.43)-(4.46) in 7, by the same token. As indicated when introducing the tensor
“t;— cf. comments after Eq. (4.14) — the equation (4.44) accounts for the \“elastic”
effects: thermoelasticity, piezoelectricity and electrostriction, whereas the Cauchy stress
(4.46), which is not symmetric, accounts for all interactions (for instance, the pyroelectric
effect and the interactions between differing polarization sub-lattices participate in *#;;).

Simple approximations can be deduced from Egs. (4.44)-(4.46). First, one may consider
constitutive equations which are jointly linear in e;; and P,; (thus neglecting terms in
e®m,, ®,®mg, and higher order terms). Then, in particular, electrostrictive effects are
discarded. We have thus

(4.47) Rty =Bty = '-51':,""'1111:91‘1'1'}'0&&;
(448) RLE:E = B.'al _qulepq_'aIJch_'bU(Pj_PﬂJ)'

The fact that Rt .j is here reducad to the symmetric tensor #;; means that the local balance
law of angular momentum — cf. Eq. 1-(4.14), — is no longer satisfied in this approxima-
tion, unless we neglect the ponderomotive couple.
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The standard theory of piezoelectricity [11]-[12] is recovered as follows. First, ther-
moelastic and pyroelectric effects are neglected, i.e., v;; = 0, @; = 0. Next, only one
polarization is considered. Finally, the only remaining equation (2.9), written in electro-
statics and in which the inertia is supposed to be negligibly small, yields

(4.49) E+RE = 0.

On account of Eq. (4.48) and of the different assumptions made, Eqs. (4.47) and (4.49)
yield
Bt = dijuer+fijwPx,

(4.50)
EE; =fmiepq+al'jpj.'

These are VoiGT’s [13] constitutive equations of piezoelectricity expressed with the in-
dependent variables e;; and P;.

5. Voigt’s intramolecular force balance in elastic dielectrics

The linearization with respect to infinitesimal deformations performed in Sect. 4.4
being assumed, we can consider, to illustrate the influence of loss mechanisms, that thermo-
dynamically recoverable contributions (already labeled R) and irreversible contributions
(from hereon labeled D) are additive in the different constitutive equations. That is, given
the linearity with respect to the dependent constitutive variables of the decompositions
(2.6), (3.14), (4.13) and (4.25), and taking account of a general decomposition of the type
(4.37) for each “E,, we can write

Pty+ Ry,

Etii—00 Z‘ CaTr™ Egy

-3

Pty = V"ij—‘QoZQﬂaiM’Eu ,

R tU

(5.1)

L
Lg, = RLE 4+ PLE +1E,,
where, according to the formulation (4.18),

oy = _97}'6.+Btijpij'_ ZRLEg‘f’,,

whereas ¥#;;, the viscous stress tensor (the analogue of Et; for dissipative processes), *“E,
and q satisfy the remaining dissipation inequality

(5.2) @ ="t;D;—~ D PE,+B,—0"'q-V0 2 0,

L
and the LE_’s satisfy the orthogonality conditions:

i - .
(5.3) LE P, =0, a=1,2,..,n
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On account of the assumed linearization for the constitutive equations representing
the reversible processes, we can use the Onsager-Casimir theory to express the variables

1
Vtj, PLE, and §q, and similarly assume a linear expression for each “E,. Furthermore, we
assume that each contribution in Eq. (5.2) is disconnected from the other ones. Hence,
introducing the phenomenological tensorial coefficients 74, ¢, Ki; and G such that

5.4 Ny Dij D = 0, ZCE}J)};M};.BJ 20,
a‘ﬁ

Kiggi 20, GPP;P,;=0,

we can write

R -
(5.5) Yty = nyuDu, PiEa= — }_, PPy,
B

4 *
7 = —K;0,;, LEy = —GP P;.

The last of Eqs. (5.4) requires that G{p be a skew-symmetric tensor, so that we can introduce
its dual axial vector G{® and rewrite the last of Egs. (5.5) as

L .
(5.6) LE, = G® xP,.

There are no axial vectors in the present theory of unmagnetized dielectrics except the
magnetic induction B. Furthermore, to obtain a linear equation in time-varying fields
in Eq. (5.6), only the static part B, of B, if it exists, can be considered. Introducing the
absolute scalar coefficients I, Eq. (5.6) can be rewritten as

i -
(5.7 LE, = I,B, xP,.

Finally, Egs. (5.5);-, and (5.1); provide the dissipative part of the Cauchy stress in the
form
(5:8) Ptij = Niju D+ 2 Py -‘-‘}:mﬁ Bk -
o,p

If a linearization is performed for studying the propagation of small perturbations, then
D;j = 0Oe;;/0t = ¢é;;, whereas the second contribution in Eq. (5.8) will be zero except
if there is some initial static polarization ; such a polarization will exist in a classical dielectric
if there is a nonzero electric bias field. However, it will also exist in ferroelectrics and
ferrielectrics even if the static electric field is zero. Thus we have a result similar to that
obtained in deformable ferromagnets [5]: the loss mechanisms associated with the dielectric
effects in general contribute to the Cauchy stress. This shows, without studying any specific
wave propagation problem, that these loss mechanisms will participate, along with the
usual viscosity processes, in the damping of elastic waves if there is some initial polariza-
tion.

There is no difficulty to write down the complete expression (5.1); of the Cauchy
stress on account of Eq. (5.8) and the results of the previous sections. More interesting
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for the present purpose is the complete expression of Eq. (2.9). On account of Egs. (5.1)s,
(5.5); and (5.7), Eq. (2.9) yields

(5.9) Bi+PEE — N P Py + T, (Bo xB,), = d ;.
B

For the case of infinitesimal deformations, denoting by E, an initial static electric field
and by e a perturbation, so that Eq. (2.5) gives

(5.10) &= Eﬁ-e-k%ﬁxBa,
noting also that, P! being the initial static polarizations,

3 6 m 0). 0) ou | _ oP,
(5'11) P¢ (Pé v) +P( V “—a‘-t—' —-é-t——,

P,
daﬂu = =5 at 2 (aa = da!@oca):

and taking account of Eq. (4.45), Eq. (5.9) gives for «a = 1,2, ...,n

2
(5.12)  Eo+e, = a, a}:‘-‘—+ 5‘ c‘*ﬂlﬂo&Jr [(P = —% ?:)xBo] +a,P,

+b,j(Pj— Pej) = 0a;+ epql fpai + 755 P k+ Vet (Pe— Pa)].
If we compare this equation to the following equation proposed by VoigT [14] in his

pioneering work devoted to rigid stationary isotropic dielectrics™:

_ &P, oP, a :
(5.13) Pot+B— + b= +1. B, = k,E,

we may claim that Eqs. (5.12) are the generalization of Voigt’s (5.13) intramolecular force
balance equations to the case of elastic anisotropic dielectrics made of several polarization
sub-lattices, by accounting for the static and dynamical electromagnetic fields, the effects
of pyroelectricity, piezoelectricity and electrostriction, and the coupling between the
different polarization sub-lattices and the associated loss mechanisms. Furthermore,
Egs. (5.12) are valid for all states of dielectricity (e.g., ferroelectricity, and antiferroelectri-
city). For isotropy in a rigid stationary body, Eq. (5.12), however, does not reduce exactly
to Eq. (5.13), since we obtain

%P, P, P,

(5‘14) E = a! a 2 +c(u) 6‘ I a Ba+aP¢+b(P Pl)+c(¢#}_(P Pl)

the last two terms arising from the interactions between the different polarization sub+
lattices (we have assumed that ¢ is independent of the choice of the couple a # f). Eq.
(5.13) is recovered only if b = 0 and ¢“? = 0 for « # @, i.e., if these interactions are
discarded.

*) The coefficients in Egs. (5.12) and (5.13) do not have the same values.
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Some remarks should be made concerning equations of the type (5.12) or (5.13). First,
it must be remarked that in taking the time-derivatives of the polarizations in Egs. (5.12),
(5.13) and (5.14), we need to consider only the time-varying perturbation part of the P,’s,
ie.
(5.15) o =P~ PLY.
Next, the equations (5.12) and (5.13) are true balance laws in which constitutive equations
have been carried for “E,, and are not constitutive equations of the rate-type (up to second
time derivatives) as it has been advanced by certain authors (e.g., in [15]). In particular,
the second time-derivative belongs to a real “inertia” term, as it was demonstrated in Part
One, and suspected in the early work of TourIN [16]. In fact, Eq. (5.12) or, simpler, the
equations (5.13) and (5.14) — which are not coupled with the deformation field — is, apart
from the term involving I, or Iy, closely related to the resonance equation built after
a simple mechanical model and used to study, in an elementary fashion, the damping and
relaxation phenomena in rigid dielectrics (cf., for instance, [7] Eq. 16.4; also [17]-[18]).
Hence Eq. (5.12), when supplemented with Cauchy’s equation and Maxwell’s equations,
serves to study the same phenomena coupled with elastic deformations. Finally, terms
of the type of those that contain the constant I, or I, are known to provide an ad hoc
description of the Faraday effect in dielectrics (cf. [14], [16]). It has been argued [19]
that the introduction of such terms was not “rational” because they include the magnetic
induction whereas all other constitutive equations are supposed not to depend on B, so
that the so-called “principle” of equipresence would be violated. We recall that “equipres-
ence” is only a precautionary measure™. Anyhow, one can always suppose that all depen-
dent constitutive arguments depend on B to start with. Then, using the Clausius-Duhem

inequality in which there appears no time rate B, all constitutive equations will be shown

to be independent of B, except ’-E‘, which, after Eq. (5.3), does not contribute to this ine-
quality, so that nothing can be decided concerning this field for which the approximation
(5.7) seems satisfactory in the linear theory. We thus conclude that there is no need to
consider weakly magnetizable viscoelastic dielectrics to substantiate the Faraday effect.
Finally, the above equations can be related to other simpler equations found in the litera-
ture. For instance, for a rigid anisotropic dielectric, considering only one polarization
field, in absence of static magnetic induction, and if the polarization inertia is negligible
(which is most often the case), Eq. (5.12) reduces to

(5.16) E = a;ij+c;ji;:i-.

This equation, which is a generalization of the Maxwell-Neumann equation of classical
photoelasticity (if a;; and ¢;; depend on the strains), and which describes a birefringent
gyrotropic crystal with dichroism™*, is given by RAMACHANDRAN and RAMASHESHAN [21].
The presence of the dissipative contribution ¢;;0P;/dt indicates that such a crystal in
general is not transparent, i.e., it produces an absorption of electromagnetic waves.

™) As was already noted by several authors, it is in fact impossible to call a “principle” something
that is regularly violated (e.g., the free energy does not depend on the temperature gradient at the output).
(%) See the treatise of BorN [20] for these notions.
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In conclusion of these remarks, we want to emphasize the evident wealth and the rich
possibilities offered by Eq. (5.12) and the allied Cauchy’s equations for studying coupled
electromechanical and electro-optical effects in elastic dielectrics, ferroelectrics and anti-
ferroelectrics. This must be the concern of further researches. In particular, the treatments
of Tokuoka and KoBayasHI [22]-[23] could be extended to the case of elastic ferroelectrics.
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