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Deformable dielectrics ll 
Voigt' s intramolecular force balance in elastic dielectrics 

G. A. MAUGIN (PARIS) 

THE FIELD equations developed in the first part of this work for a dynamical theory of non­
magnetized deformable dielectrics made of several molecular species are here supplemented wifh 
the relevant thermodynamics. This allows for the construction of constitutive equations for 
thermoelastic solids with finite deformations and the comparison of several previous formula­
tions. As an approximation within the infinitesimal strain theory, the equations that generalize 
Voigt's intramolecular force balance to the case of elastic ferroelectrics, antiferroelectrics or 
ferrielectrics are deduced. All thermo-electro-mechanical couplings and the associated loss 
mechanisms are shown to participate in such equations which must be considered in the study 
of electroacoustic waves and electro-optical effects. 

Wyprowadzone w pierwszej cz~sci tej pracy r6wnania polowe dynamicznej teorii dielektryk6w 
odksztalcalnych skladaj(lcych si~ z r6:Znych CZ(lSteczek uzupeJnia si~ tntaj odpowiedni(l termo­
dynamik<l. Pozwala to na zbudowanie r6wnan konstytutywnych dla cial termospr~zystych 
o odksztalceniach skonczonych oraz na analizcc por6wnawcZ(l kilku wczesniejszych sformu­
lowan. Poshtguj(lc sicc przybliieniem odpowiadaj(lcym teorii odksztalcen infinitezymalnych 
wyprowadzono r6wnania uog6lniaj(lce warunk i r6wnowagi miccdzycZ(lsteczkowych sil Voigta 
na przypadek spr~zystych ferro-elektryk6w, anty-ferroelektryk6w oraz ferri-elektryk6w. Wy­
kazano, ze wszelkie sprz~ienia termo-elektromechaniczne oraz odpowiednie mechanizmy strat 
wyst~puj(l w tych r6wnaniach i nalezy je uwzgl~dniac przy rozwrianiu fal elektroakustycznych 
i zjawisk elektro-optycznych. 

BbiBeJJ;emn>Ie B nepaoH: qacrH 3TOH pa6oTbi noJieBbie ypaaHeHHH JJ;HHaMHlleci<oH: TeopHH JJ;e-­

~opMHpyeMbiX JJ;H3Jiei<Tpm<OB, COCTOH:mJIX H3 pa3HbiX MOJiei<YJI, llOllOJIHHIOTCH 3JJ;eCb COOTBeT­

CTBeHHOH TepMOJJ;HHaMHJ<OH. 3TO, ll03BOJIHeT llOCTpOHTb onpeJJ;eJIHIO~He ypaBHeHHe ,lJ;JIH TepMO­

ynpyrHX TeJI c I<oHeliHbiMH Ae<l>opMammMH, a Tai<»<e npoaecrH cpaBHHTeJibHbiH aHaJIH3 pHJI;a 

paHbWe llOJiylleHHbiX cPOPMYJIHpOBOl<. iloCJiy>KHBaHCb npH6JIH>KeHHeM, OTBetiaiO~ TeOpHH 

HHcPHHHTe3HMaJibHbiX ,llecPopMa~Hif, BbiBeJJ;eHbl ypaBHeHHH o6o6~aiO~He YCJIOBHH paBHOBe-· 

CHH Me>KMoJiei<yJIHPHbiX CHJI <l>oH:xTa Ha CJIYllaH ynpyrHX <Peppo:mei<Tpm<OB, aHTH-<l>eppo:me­

I<TPHI<OB H cl>eppH3Jiei<TPHI<OB. iloi<a3aHO, liTO BCHI<He TepM0-3Jiei<TpOMeXaHHlleCI<He COnpH­

>KeHHH H COOTBeTCTBeHHbie MeXaHH3Mbl llOTepb BblcryllaiOT B 3THX ypaBHeHHHX H CJieJJ;yeT HX 

ytiHTbffiaTb npH paCCMOTPeHHH 3Jiei<Tpoai<yCTHlleCI<HX BOJIH H 3JieKTPO-OllTHlleCI<HX HBJieHHH. 

1. Introduction 

THE PRESENT paper is mostly devoted to constructing the constitutive equations for 
the dynamical theory of nonmagnetized deformable dielectrics made of several molecular 
species set forth in Part One. To this .purpose the local statements of the energy equation 
and of the Clausius-Duhem inequality are first derived (Section 3) after having recalled 
the essential results of Part One (Section 2). Several forms of the Clausius-Duhem inequality 
are given which prove appropriate depending on the choice of dependent variables. Then, 
using the thermodynamical admissibility of Coleman, we deduce two alternate formulations 
of the constitutive equations for a thermoelastic solid subject to finite deformations (Section 
4). A special attention is devoted to the infinitesimal strain theory (expansion of the free-
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144 G. A. MAUGIN 

energy about a strain-free state of spatially uniform temperature) in order to exhibit the 
different effects accounted for: thermoelasticity, pyroelectricity, piezoelectricity, elec­
trostriction, and the interactions between the different ·polarization sub-lattices. Kittel's 
theory of rigid antiferroelectric is thus generalized to the case of anisotropic thermoelastic 
bodies. Voigt's theory of piezoelectricity also appears to be a very peculiar case. Taking 
account of thermodynamically irreversible processes in agreement with the linear Onsager­
Casimir theory for the sake of example, it is then possible (in Section 5) to show, owing 
to the decomposition of the Cauchy stress obtained in Part One, that the dielectric re­
laxation term in general contributes, along with the usual viscosity processes, to the stress 
tensor in a ferroelectric, which indicates at once that the damping of elastic waves and 
polarons (oscillations in the electric moments) will be coupled. It is finally argued that, 
on account of the polarization inertia, of the dielectric loss mechanisms and of the deform­
ation field, the intramolecular force balance derived for each polarization sub-lattice 
generalizes the early proposal of Voigt, so as to allow for a thorough analysis of electro­
acoustic waves and electro-optical effects for various states of dielectricity in an elastic 
dielectric. 

2. Summary of previous results 

In a previous paper [I] referred to as Part One herein after<*>, the following field equa­
tions were obtained for a moving nonmagnetized deformable dielectric made of several 
molecular species (in a spatial region !i)t boundary by o!i)r): 

a. Maxwell's equations in !i)t (using Lorentz-Heaviside units) 

I aB 
VxE+-- = 0 V·B = 0, 

c at ' 
(2.1) 

1 aE I • 
VxB-cTt = c[P-(V·P)U], V·E = -V·P. 

b. Continuity equation in 9J, 

(2.2) ~; +V·(eU) = 0 or e+eV·U = 0. 

c. Motion equation 

(2.3) 

(2.4) 

with 

(2.5) 

(2.6) 

. I • 
eU = divt+f+-PxB+(P· V)8 in 9), 

c 

Ti+ T;~m = tiJni on o!i)t, 

I 
8 = E+-UxB, 

c 

t ·· = O'··+n ~c LE 1t' 
IJ 'J I:: .L..J Glt t.r(i t.r}]' 

ex 

c•> Equations of Part One are referred to by I followed by their number, e.g., Eq. {I-2.18). We refer 
to Part I for the main notation. 
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DEFORMABLE DIELECTRICS II. 145 

(2.7) T'!"' = - [c·P·+E·E·+B-B·- _!_(E2+B2)t5··]n· l I J I J I J 2 IJ J ' 

(2.8) p- n ~ .. 
- it:.;...; Ca1ta, 

d. Intramolecular force balance laws; 

(2.9) 

We recall that c~~. is the time-constant concentration in a.- molecular species, the latter giving 
rise to an electric polarization field 1ta per unit mass of a species. d~~. is the so-called molecular 

polarization inertia for the a species. Pis the convected time-derivative of the total volume 
polarization P defined as 

p = P-(P· V)U+P(V. U). 

To close the differential system formed by Eqs. (2.1), (2.2), (2.3) and (2.9), constitutive 
equations must be constructed for the symmetric "intrinsic stress" tensor aii and for the 
"local electric" fields LE~~., a = 1, 2, ... , n. The following global energy expression 
which was established on the basis of the expression of the principle of virtual power and 
of an energy identity satisfied by the electromagnetic fields (cf. Eq. 1-4.31), proves to 
be essential in this context: 

(2.10) K(~,)+ uem(~,) = !P(i)(~,) + J f· Udv+ f (T. U-3. n)da, 

where 

(2.11) 

in which 

(2.12) 

(2.13) 

!!Jr B!lr 

uem(!'J,) = f _!_(E2+B2)dv, 
!!Jr 2 

!P<i> (~~) = - J (aiiDii-e ~ c/Ea ·It) dv, 
!!Jr ex 

3 = cCx (B- ~ UxE), 
D1 denotes the so-called Jaumann or eo-rotational derivative. !P<i> (~,) is the power 
developed by the internal forces in real velocity fields. 

3. Thermodynamics 

The first and second principles of thermodynamics are postulated in global form in­
dependently of the principle of virtual power. They assume the natural forms: 

(3.1) ~ [K(~r)+ E(~r)+ uem(~,)] = Q(~r)+ If· Udv+ f T. Uda 
!!Jr a!6, 

10 Arch. Mech. Stos. nr 1!77 
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146 G. A. MA.UGIN 

and 

(3.2) N(!!},) ~ !/ (~,), 

where 

(3.3) E(!!},) = f eedv, 
!!Jr 

(3.4) Q(~,) = J ehdv- J q · nda, 
!!Jr iJ!»r 

{3.5) N(!!},) = J (!'YjdV, 
!!Jr 

(3.6) Y(!!},) = J o- 1ehdv- J o- 1(q-3) · nda, 
!»r oP}r 

in which e, h, q, 'YJ and () are, respectively, the internal energy per unit mass, the heat 
(radiation) source per unit mass, the heat influx vector, the entropy per unit mass, and 
the thermodynamical temperature (0 > 0, inf () = 0). We followed ERINGEN [2} in pos­
tulating the entropy influx as o-l q, where 

(3.7) q = q-3; 

that is o- 1 is assumed to be an integrating factor and the E. M. energy flux participates 
in the entropy influx. Such a formulation can be derived by using MUller's thermodynamics 
(See LIU and MULLER [3]). 

Combining Eqs. (3.1) and (2.10), we obtain the global statement of the theorem of the 
energy: 

(3.8) E(!!},)+9<;>(!!},) = f ehdv- f ci · naa, 
!!Jr iJ!!Jr 

whose local form reads 

(3.9) 

Combining the local form of Eq. (3.2) with Eq. (3.9), so as to eliminate h, we are led to 
the Clausius-Duhem inequality in the form 

(3.10) -e(tp+1]0)+aiiD;i-e _2 c«LE« <Ii~-0- 1 q ·V() ~ 0, 
IX 

where tp = e-170 is the free energy per unit mass. Other forms can be given to this ine­
quality. First, using the definition (2.12h and taking account of Eq. (2.6), Eq. (3.10) is 
transformed to 

(3.11) 
C( 

Next, upon using the demonstrable result (cf. Eq. 1-3.7) 

(3.12) 
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DEfORMABLE DIELECTRICS 11. 147 

where P2 is the convected time-derivative of Pc:r- remark that c« = 0- Eq. (3.10) 
transforms to 

(3.13) -fl(tiJ+-nO)+Et··D·· - )LE ·P -0- 1 q-·VO > 0 
I:: T 'I IJ I) ~ 1% 1% = , 

a 

where 

(3.14) Etii = aij-(!}; c/Ea(i'1l«i> = Et{i 
:X 

will be referred to as the (symmetric) "elastic" stress tensor. 
The following remarks pertain to the different forms (3.10), (3.11) and (3.13). On the 

one hand, Eq. (3.11) makes clear the contribution of the Cauchy stress to the Clausius­
Duhem inequality, while on the other hand it contains nonobjective time rates, so that 
it should not be used in applying the thermodynamical admissibility of COLEMAN [4]. 
The inequalities (3.10) and (3.13) contain objective time rates and are thus admissible. 

However, whereas Eq. (3.10) contains the eo-rotational derivatives lla, Eq. (3.13) involves 

convected-time derivatives Pc:r. It must be noticed in this regard that the use of the first 
type of derivative is particularly well-adapted whenever the rotational effects are prominent 
(e.g., in ferromagnetic relaxation in deformable bodies [5]), whereas the convected time­
derivative takes account of the general deformation of the medium (including shear and 
dilatation). But, as was already pointed out in previous papers of ours (e.g., [6]), it is 
only Eq: (3.10) that contains linearly independent rates, this independence being required 
for using Coleman's argument. Thus we shall stick to Eq. (3.10) when using this argument 
(i.e., in elasticity), but we shall freely use Eq. (313) if we call for a different thermodynamic 
theory such as the Onsager-Casimir theory of irreversible processes. 

4. Thermoelastic dielectrics 

4.1. General case 

Let x = X(X, t) be the motion of the deformable dielectric, assumed to be invertible 
and sufficiently differentiable. Then, 

-1 
(4.1) J = eo/(! = det F > 0, FiK = xi,K' FKi = XK,j, 

where e and eo are .the matter densities in the present and reference configurations, respec­
tively, define the Jacobian of the motion, the deformation gradient, and its reciprocal. 

A hyperelastic dielectric is a nonlinear elastic dielectric of which the constitutive equa­
tions are derivable from an energy potential, e.g., "P· In accordance with the working 
hypothesis of equipresence we assume that all dependent variables 1p, YJ, aii, LEa and q 
may a priori all depend on the same set of independent variable (F, 1t«, 0, g)- where 
g = -vo- evaluated at the present time. For instance, 

(4.2) 1p = "J'(F, 1taD 0, g), ex = 1 , 2, ... , n. 

10* 
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148 G. A. MAUGIN 

It is readily shown that for tp to be objective it is sufficient and necessary that it has, for 
instance, the following reduced functional dependence: 

(4.3) tp = ~(E, Ila, 0, G), 

where (T =transpose) 

(4.4) 

Using the following auxiliary results 

(4.5) 

one shows that 

Substituting from the latter in the inequality (3.10) assumed to be satisfied for arbitrary 
independent objective time rates (Dii, ha.i' 0, G), one deduces in the usual fashion the 
following result: 

THEOREM. The constitutive equations of a nonmagnetized hyperelastic dielectric made 
of several molecular species read 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

QM = XM,iqi being subjected to the "continuity" condition 

( 4.11) Q = 0 whenever G = 0, 

if it is assumed to be of class C1 with respect to its argument G. 
The left superscripts R-for (thermodynamically) recoverable-indicate that thus 

labeled quantities are derived from a thermodynamical potential. 
On account of Eqs. (4.7}-(4.8), the thermodynamically recoverable part, Rtii, of 

the Cauchy stress can be written in the form 

(4.12) 

or 

(4.13) 
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DEFORMABLE DIELECTRICS 11. 149 

where 

(4.14) 

is a symmetric tensor, which no longer contains partial derivatives of~ with respect to the 
polarizations - i.e., it does not contain the local fields LEa- and can thus be referred 
to as the "elastic stress" tensor because of its resemblance to the corresponding tensor 

of nonpolarized hyperelastic bodies. However, Et:i still contains the polarizations via the 
functional dependence of ~· In particular, it contains the effects of electrostriction. Eq. 
(4.13) is the decomposition a priori set forth in Eq. (5.1) ofPa,rt One. 

4.2. An alternate formulation 

Instead of the objective reduced form (4.3) one may as well consider the following 
one: 

(4.15) 

where 

(4.16) 

-1 

f!o"P = I= I(C, :ii.x, 0, G), ex = 1, 2, ... , n, 

-1 -1 -1 -1 -1 

C = F (F)r, ft« =eo Fna = Jc; 1 FP«, 

-1 -1 

G::Fg=CG. 

Then, in lieu of Eqs. (4.5), we have 

(4.17) 

The fact that D;i and P« appear in these derivatives infers that the form (3.13) of the 
Clausius-Duhem inequality is more appropriate in the present formulation. In fact, we 
can rewrite the latter in the form 

(4.18) - (i +n0 'Yl0)+JEf .. D .. -J ~LE • P -0- 1 Q • G > 0 
t::' "I IJ IJ ~ 1Z l't = ' 

ex 

where 

(4.19) 

Computing i: from Eq. (4.15) and using Eqs. (4.17), and assuming that the inequality 

(4.18) is to be satisfied for arbitrary independent objective time rates (D;i, P11 , 0, G), 
we obtain the following results instead of Eqs. (4.7) through (4.11): 

THEOREM. An alternate form of the constitutive equations of a nonmagnetized ther­
moelastic dielectric made of several molecular species is 

(4.20) 
- 2 al' -

Ft,·J· = - ---XK ·XL.= Ef .. J -1 ,I •J Jl' 

acKL 

(4.21) RL -1 ol' 1 2 Eai=-Ca ---XK,h ex=' , ... ,n, 
oflaK 
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(4.22) 

(4.23) 

with 

(4.24) 

G.A. MAUGIN 

- 1 ol7 -1 
TJ = -eo 00, 1: = 17(C, fla , 0), 

qi = J-l Xx,iQK(C, fia, 0, G), Q • G ~ 0, 

Q = 0, whenever G = 0. 

Then the corresponding Cauchy stress follows from Eqs. (2.6) and (3.14) by eliminating 

(4.25) 
(I 

or, on account of Eqs. (4.20)-(4.21), 

R e ( of ;>, _1 of ) lt• = -- 2--XL ·+1 c ___ p . XK ·. } eo -I .} k...J (I oil «} ,J 

OCKL ex «K 

(4.26) 

Both formulations (4.12)-(4.13) and (4.25)-(4.26) can be compared. Of course, on 
account of Eqs. (4.8) and (4.21), both equations (4.12) and (4.26) yield the moment-of­
momentum balance law in the form 

(4.27) 

which is the equation originally derived from the virtual power principle- cf. Eq. (4.14}2 

of Part One. The full correspondence between Eqs. ( 4.12) and ( 4.26) can be demonstrated 
by making a change of both potential function and independent variables, bearing in 
mind that the original functional dependence of 1p is that given by Eq. (4.2). We shall 
not give this proof here. However, in all cases, it must be remarked that Rtii is not other 
than 

R O'J' 
fr =e--X· K 

J OXi,K J, 

from which follows either Eq. (4.12) or Eq. (4.26), depending on whether one considers 
the reduced form (4.3) or (4.15) for the free energy density. Remark that each set of de­
pendent variables present in Eq. (4.3) or (4.15) is consistent in the sense that each one 

-I 

uses either F or F to define the objective arguments, and not both at the same time. It is 
for that reason that Eqs. (4.12) and (4.26) take such forms as to allow one to recover 
directly Eq. (4.27) in both cases. The situation is much more involved if one considers 
a mixed set of independent variables (i.e., one variable constructed with F and the other 

-I 

with F) as is the case if, specializing to the case of one polarization continuum and discard-
ing polarization inertia, 

(4.28) 1p = ~ (E, fi, 0, G). 

Then one gets an equation of the type of Eq. (4.14) for 8 tii and an equation of the type 
of Eq. (4.21) for LE. However, according to Eq. (1-5.6), one then no longer needs to 
consider the Cauchy stress, the only stress tensor which remains in the formulation being 
the symmetric tensor 8tii· We consider this case from another standpoint in the next 
paragraph. 
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4.3. One polarization field and no polarization inertia 

In this case the series of equations (2.9) is replaced by the single equation 

(4.29) &+LE= 0, 

where LE is the only local electric field appearing in the theory. As already remarked in 
Part One, the latter field can indeed be eliminated from the theory<*> by Eq. (4.29). Per­
forming this, one replaces Eqs. (2.6), (3.13), (3.14) and (4.25) by 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

Etij = (Jij+fl(ipj)' 

Rtij = Etij-CiPj. 

Then, according to Eq. (4.31), constitutive equations must in particular be constructed 
for EtiJ and C. For hyperelastic solids one would consider a potential 1p( •.. , 7t) to start 
with. However, one may now perform a Legendre transformation on 1p, so as to introduce 
a new free energy density F by 

(4.34) F( ... ,G) = 1p( ... ,7t)-S·7t. 

Noting that "P and 7t are a scalar and a vectorial density, respectively, one then shows 
that Eq. (4.31) takes the form 

(4.35) 

from which, in particular, will follow constitutive equations for Et1i and P. We do not 
compute these expressions. Rather, one may investigate the validity of the transformation 
performed starting with Eq. (4.29). Clearly, if LE is a phenomenological field which 
describes purely thermodynamically reversible phenomena, then the transformation 
performed is legitimate. For this assertion to hold true it is also necessary that the entire 
field LE be derivable from a potential. For this to be true it is necessary and sufficient 

that the orthogonal projection of LE on P be non-zero. Otherwise, one can always assume 
l. 

that one part of LE, noted LE, is such that 

(4.36) 
l. • 

LE·P=O, 

so that this part - whi~h produces no power- would not be derivable from thermo­
dynamical arguments. In conclusion, the transformations (4.30)-(4.35) are valid when: 
(i) only one polarization field is considered; (ii) the polarization inertia is negligible; (iii) 
both of the last two contributions of the following general decomposition vanish: 

(4.37) 

Here, RLE is derivable from a potential, DLE is a dissipative contribution constructed with 

c•> See, however, the comment hereafter. 
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.1. 

the help of a thermodynamical theory of irreversible processes, and LE, which satisfies 
Eq. (4.36), must be constructed in an ad hoc manner. As will be shown below, none of 
the conditions just enunciated are satisfied if one wants to account for the different optical 
effects in dielectrics. 

4.4. Tbermoelastic bodies with infinitesimal deformations 

All constitutive equations derived in the foregoing sections can be linearized for small 
deformations and weak polarization field superimposed on a finite state of deformation 
(for the study of photomechanical effects) and polarization (for the study of electro-optical 
effects). In particular, the presence of several molecular species, hence of several polariza­
tion fields, enables us to reproduce the different states of dielectricity, e.g.,ferroelectricity<*> 
for which there exists a state of polarization in absence of applied electric field below the 
critical phase-transition temperature (in which case the choice of the polarization as an 
independent variable is clearly justified), and antiferroelectricity (for which two antiparallel 
polarization fields of equal magnitude in absence of externally applied field are necessary; 
cf. [7]), as well as the most general case of ferrielectricity. This linearization will be perform­
ed in a subsequent paper devoted to wave propagation in such media. For the time 
being, we consider only a linearization for the case of infinitesimal deformations and small 
temperature variations about an initial strain-free state with spatially uniform tempera-

ture 0°<**>. In these conditions, noting u the displacement field and setting 0 = 0-0°, we 
write (cf. [9] Chap. 6): 

xi,K :::::::::: (~ii+ui,J)~iK' EKL:::::::::: e;i~iK~iL' . eii = u<i,J>' 

(!:::::::::: (!o(1-ekk), J:::::::::: 1 
(4.38) 

and, from either one of the formulations given in Sects. 4.1 and 4.2, we obtain 

Etij = (!o 01p ' RLECI = - c;l 01p ' rJ = - a"! ' 
oeij Vrtcz ao 

(4.39) 

Equations (4.38) are valid as ~ goes to zero, ~ being an infinitesimally small of the first 
order such that IVul < ~. As regards heat flux, it is of course assumed that lgl < <5h, 

· where ~h is infinitesimally small. On account of the continuity condition (4.11) or (4.24), 
a Taylor series expansion about VO = 0 yields the classical Fourier law 

(4.40) qi = -Kii(0°)0,J+o(~h) 

as <}h goes to zero. Of course, Kii = J\ii, and KiiaiaJ ~ 0 for any a. In writing the func­
tional dependence of ~1 , we have discarded the coupling of heat conduction with the 
thermodynamically recoverable phenomena. 

<*> However, one then has probably to consider the spatial nonuniformities, hence the gradients of 
polarization, to account for the ordering effect in a continuous manner (compare the ferromagnetic and 
ferrimagnetic cases in Refs. [6), [8]). 

< .. > An essential difference with the case of the linearization about bias fields is that only the strain 
tensor, i.e., the symmetric part of the displacement gradient, is involved here. 
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It remains to give the expression for the free energy. For the theory of infinitesimal 

deformations, the following expansion in eiJ and (l seems reasonable 

(4.41) 

+eo ,2 ~ catc11 afj11>(0°)natinpj+h.o.t in nOt® n11 • 

a.,p 

The factors eo and cat are introduced for convenience. The tensor coefficients introduced 
satisfy obvious symmetry relations that we do not reproduce here, but the number oi 
their independent components is still very large. This number can be drastically reduced 
if we remark the following. The temperature ha~practically the same effect on each polariza­
tion field or sub-lattice polarization (to conform more closely to the physical terminology) 
7tat. Thus, a<at> does not depend on ex. Calling n the total polarization per unit mass, the 
fifth term in Eq. (4.41) yields -Oa(0°) ·n. Also, the interactions between the material 
lattice (substrata of elastic deformations) and each sub-lattice polarization ~ assumes 
the same form. Hence,/&~ does not depend on ex. The interactions within each polarization 
sub-lattice are formally the same; thus y}j:;> does not depend on ex, and similarly for­
a~r>. The interactions within each couple of differing polarization sub-lattices are assumed 
to have the same form. This is so much the better because the individual sub-lattice polar­
izations are macroscopically unobservable quantities (only the total polarization is ob-­
servable), s.o that the material coefficients labeled ex or {J could not be measurable. On _ 
account of these remarks, Eq. (4.41) can be rewritten as 

(4.42) 

on account of Eq. (2.8)1 <*>. The remaining tensor coefficients satisfy obvious symmetry 
relations. 

<*> For instance, for isotropy and limiting the description to two polarization sub-lattices (oc = 1, 2), 
the last two terms in Eq. (4.42) yield a volume energy 

2 = ~ (P~+P~)+bPt ·P2+h.o.t 

which can be compared with the expression considered by KITIEL [10] in his phenomenological approach_ 
to rigid antiferroelectrics. 

http://rcin.org.pl



154 G. A. MA.UGIN 

On account of Eq. (4.42), Eq. (4.39) yields the following constitutive equations: 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

c·-
rJ = 'f}o+ -B+eo 1viieii+a ·7t, 

eo 

•til = -tiv,1+ A,1.,e.,+ J.1,P,+ + y!Jl,(.2,' P,,P,,) + y!jB (2 P,,Pp,), 
a a~B 

RLEai = Oai- epq[[pqi + Y~~ikPak + Y~~~l(Pk- Pak)] -aij PaJ-bij(Pj- Paj), 

Rtii = -O(vij+P;a1)+A;Jklekz+(f;1kPk+fpqJepqP;) 

+ 2 ( + y\jl,P,,P,, + y~,e "p ,,P,;) + y\j.l (l' P ,,Pp,) 
a a#P 

+ y~,e ,, 2 P ,1( P,- P") + a1, ( 2 P,1P,.) + h1,2 P,1(P,- P,,), 
a · a a 

on account of the fact that 

eo}; Cp1tp =P-P«. 
fJ#.a. 

In the above equations ( 4.42)-( 4.46), the different material coefficients introduced 
are easily identified as: C = heat capacity; vii = thermoelasticity tensor; ai = pyroelec­
tricity vector; A;Jkl = elasticity moduli; fiJk = piezoelectricity tensor; y~jl1 and y~j:} = 
electrostrictive tensors; aii = "dielectric" tensor; bii = inter-polarization sub-lattice 
interactions. The coefficients y~j:l and bii only are proper to the theory accounting for 
several molecular species. The constitutive equations which follow are, of course, linear 
in the strains, but they are quadratic in the polarizations. Furthermore, if we are close 
to a transition, point, approaching it from below (e.g. in ferroelectrics) then, because 
of the critical behavior of the polarizations at that point, one should consider some higher 
order terms in 1t«®1tp in the expansions (4.41) and (4.42), rising critically the order of 
Eqs. (4.43)-(4.46) in 1t« by the same token. As indicated when introducing the tensor 
_Et,1 - cf. comments after Eq. (4.14)- the equation (4.44) accounts for the (elastic" 
effects: thermoelasticity, piezoelectricity and electrostriction, whereas the Cauchy stress 
( 4.46), which is not symmetric, accounts for all interactions (for instance, the pyroeleciric 
effect and the interactions between differing polarization sub-lattices participate in Etii) . 

Simple approximations can be deduced from Eqs. ( 4.44)-( 4.46). First, one may consider 
constitutive equations which are jointly linear in eiJ and P«; (thus neglecting terms in 
e®1tu 7t:z®7tp, and higher order terms). Then, in particular, electrostrictive effects are 
discarded. We have thus 

(4.47) 

(4.48) 

Rt;1 = Etli = -Ov;1 + A;Jklek, + hJkpk, 

RLEai = Oa1-/pqiepq-a;JP«1-b;j(PJ-Pai). 

The fact that Rt;1 is here reduc·~d to the symmetric tensor EtiJ means that the local balance 
law of angular momentum- cf. Eq. 1-(4.14)2 - is no longer satisfied in this approxima­
tion, unless we neglect the ponderomotive couple. 
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The standard theory of piezoelectricity [11]-[12] is recovered as follows. First, ther­
moelastic and pyroelectric effects are neglected, i.e., Vjj = 0' aj = 0. Next, only one 

polarization is considered. Finally, the only remaining equation (2.9), written in electro­
statics and in which the inertia is supposed to be negligibly small, yields 

(4.49) 

On account of Eq. (4.48) and of the different assumptions made, Eqs. (4.47) and (4.49) 
yield 

(4.50) 
Etii = Aiiklekl + hikpk, 

E Ei = /pqie pq + aiipi. 

These are VOIGT's [13] constitutive equations of piezoelectricity expressed with the in­
dependent variables eii and Pi. 

5. Voigt's intramolecular force balance in elastic dielectrics 

The linearization with respect to infinitesimal deformations performed in Sect. 4.4 
being assumed, we can consider, to illustrate the influence of loss mechanisms, that thermo­
dynamically recoverable contributions (already labeled R) and irreversible contributions 
(from hereon labeled D) are additive in the different constitutive equations. That is, given 
the linearity with respect to the dependent constitutive variables of the decompositions 
(2.6), (3.14), (4.13) and (4.25), and taking account of a general decomposition of the type 
(4.37) for each L£«, we can write 

fij = Dtij+Rtij' 

Rt - E ~ RLE ii - tii- (!o .L.J c«n«i «i, 
ex 

(5.1) 
Dt - Yt ~ DLE ij - ij- (!o .L.J C«1C«i aj, 

ex 

where, according to the formulation (4.18), 

whereas vt1b the viscous stress tensor (the analogue of EtiJ for dissipative processes), DLEa 

and q satisfy the remaining dissipation inequality 

(5.2) (/J = vfijDij- 11 
DLE«• Pa-O-lq • VO ~ 0, 

ex 

.L 
and the LEa.'s satisfy the orthogonality conditions: 

.L * 
(5.3) LEa • p (l = 0' (J. = 1 ' 2' ... , n' 
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On account of the assumed linearization for the constitutive equations representing 
the reversible processes, we can use the Onsager-Casimir theory to express the variables 

.l 

Ytii' DL£" and q, and similarly assume a linear expression for each LE". Furthermore, we 
assume that each contribution in Eq. (5.2) is disconnected from the other ones. Hence, 
introducing the phenomenological tensorial coefficients 1Jii'", cljP>, Kii and G~j> such that 

(5.4) 

we can write 

(5.5) 

1'Jiik,DiiDk, ~ 0, }; dj·P>p"iPPi ~ 0, 
a.,p 

DLE . = - '\' c~~P>p . 
(1.1 ~ I) fJJ' 

fJ 

The last of Eqs. (5.4) requires that G1)> be askew-symmetric tensor, so that we can introduce 
its dual axial vector G1cz> and rewrite the last of Eqs. (5.5) as 

(5.6) 

There are no axial vectors in the present theory of unmagnetized dielectrics except the 
magnetic induction B. Furthermore, to obtain a linear equation in time-varying fields 
in Eq. (5.6), only the static part B0 of B, if it exists, can be considered. Introducing the 
absolute scalar coefficients F1, Eq. (5.6) can be rewritten as 

(5.7) 

Finally, Eqs. (5.5)1 _ 2 and (5.1)3 provide the dissipative part of the Cauchy stress in the 
form 

(5.8) DtiJ = 1'JiiklDkl+}; PczicjzP>pfJk· 
a.,fJ 

If a linearization is performed for studying the propagation of small perturbations, then 
Dii = oeii/ot = eii' whereas the second contribution in Eq. (5.8) will be zero except 
if there is some initial static polarization; such a polarization will exist in a classical dielectric 
if there is a nonzero electric bias field. However, it will,also exist in ferroelectrics and 
ferrielectrics even if the static electric field is zero. Thus we have a result similar to that 
obtained in deformable ferromagnets [5]: the loss mechanisms associated with the dielectric 
effects in general contribute to the Cauchy stress. This shows, without studying any specific 
wave propagation problem, that these loss mechanisms will participate, along with the 
usual viscosity processes, in the damping of elastic waves if there is some initial polariza­
tion. 

There is no difficulty to write down the complete expression (5.1)1 of the Cauchy 
stress on account of Eq. (5.8) and the results of the previous sections. More interesting 
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for the present purpose is the complete expression of Eq. (2.9). On account of Eqs. (5.1)5 , 

(5.5)2 and (5.7), Eq. (2.9) yields 

(5.9) RL ~ (tz.{J) • r ( • ) - d •• 8;+ E«;-~ C;j Ppj+ « 8 0 xP« l- «n;. 
{J 

For the case of infinitesimal deformations, denoting by E0 an initial static electric field 
and by ea perturbation, so that Eq. (2.5) gives 

(5.10) 

noting also that, P~0> being the initial static polarizations, 

(5.11) p ~ ap(«) -(P(O). V)~ +P<O>(v. ~) = aptz 
« at « at « at at ' 

and taking account of Eq. (4.45), Eq. (5.9) gives for ex = I, 2, ... , n: 

(5.12) 

+ h;j(Pi- P«i)- Oa; + e pq [fpqi + Y~~k P tzk + Y~~~HPk- P«k)] · 

If we compare this equation to the following equation proposed by VOIGT [14] in his 
pioneering work devoted to rigid stationary isotropic dielectrics<*>: 

( P _ o2Ptz - aP« r- aPtz k-
5.13) a+a«-----af2 + b«ift + "at X B0 = «E, 

we may claim that Eqs. (5.12) are the generalization of Voigt's (5.13) intramolecular force 
balance equations to the case of elastic anisotropic dielectrics made of several polarization 
sub-lattices, by accounting for the static and dynamical electromagnetic fields, the effects 
of pyroelectricity, piezoelectricity and electrostriction, and the coupling between the 
different polarization sub-lattices and the associated loss mechanisms. Furthermore, 
Eqs. (5.12) are valid for all states of dielectricity (e.g., ferroelectricity, and antiferroelectri­
city). For isotropy in a rigid stationary body, Eq. (5.12), however, does not reduce exactly 
to Eq. (5.13), since we obtain 

(5.14) E _ o2
Pa <rta> aP« r aP" h(P P) <«fJ> a (P P) -a"-----af2+c fu+"atxB0 +aP«+ -«+c Tt -«, 

the last two terms arising from the interactions between the different polarization sub .. 
lattices (we have assumed that c<«fJ> is independent of the choice of the couple ex ::1= {3). Eq. 
( 5. 13) is recovered only if b = 0 and c<«fJ> = 0 for ex ::1= {3, i.e., if these interactions are 
discarded. 

(•> The coefficients in Eqs. (5.12) and (5.13) do not have the same values. 
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Some remarks should be made concerning equations of the type (5.12) or (5.13). First, 
it must be remarked that in taking the time-derivatives of the polarizations in Eqs. (5.12), 
(5.13) and (5.14), we need to consider only the time-varying perturbation part of the P a's, 
I.e. 

(5.15) Pa = Pa-P~0>. 

Next, the equations (5.12) and (5.13) are true balance laws in which constitutive equations 
have been carried for LEa, and are not constitutive equations of the rate-type (up to second 
time derivatives) as it has been advanced by certain authors (e.g., in [15]). In particular, 
the second time-derivative belongs to a real "inertia" term, as it was demonstrated in Part 
One, and suspected in the early work of TOUPIN [16]. In fact, Eq. (5.12) or, simpler, the 
equations (5.13) and (5.14)- which are not coupled with the deformation field- is, apart 

from the term involving Fa or Fa, closely related to the resonance equation built after 
a simple mechanical model and used to study, in an elementary fashion, the damping and 
relaxation phenomena in rigid dielectrics (cf., for instance, [7] Eq. 16.4; also [17]- [ 18]). 
Hence Eq. (5.12), when supplemented with Cauchy's equation and Maxwell's equations, 
serves to study the sanie phenomena coupled with elastic deformations. Finally, terms 

of the type of those that contain the constant Fa or Fa are known to provide an ad hoc 
description of the Faraday effect in dielectrics (cf. [14], [16]). It has been argued [19] 
that the introduction of such terms was not "rational" because they include the magnetic 
induction whereas all other constitutive equations are supposed not to depend on B, so 
that the so-called "principle" of equipresence would be violated. We recall that "equipres­
ence" is only a precautionary measure<•>. Anyhow, one can always suppose that all depen­
dent constitutive arguments depend on B to start with. Then, using the Clausius-Duhem 

inequality in which there appears no time rate B, all constitutive equations will be shown 
J. 

to be independent of B, except LEa. which, after Eq. (5.3), does not contribute to this ine-
quality, so that nothing can be decided concerning this field for which the approximation 
(5.7) seems satisfactory in the linear theory. We thus conclude that there is no need to 
consider weakly magnetizable viscoelastic dielectrics to substantiate the Faraday effect. 
Finally, the above equations can be related to other simpler equations found in the litera­
ture. For instance, for a rigid anisotropic dielectric, considering only one polarization 
field, in absence of static magnetic induction, and if the polarization inertia is negligible 
(which is most often the case), Eq. (5.12) reduces to 

(5.16) 

This equation, which is a generalization of the Maxwell-Neumann equation of classical 
photoelasticity (if ail and cii depend on the strains), and which describes a birefringent 
gyrotropic crystal with dichroism<**>, is given by RAMACHANDRAN and RAMASHESHAN [21]. 
The presence of the dissipative contribution C;j oPj I ot indicates that such a crystal in 
general is not transparent, i.e., it produces an absorption of electromagnetic waves. 

<•> As was already noted by several authors, it is in fact impossible to call a "principle" something 
that is regularly violated (e.g., the free energy does not depend on the temperature gradient at the output). 

< .. > See the treatise of BoRN [20] for these notions. 
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In conclusion of these remarks, we want to emphasize the evident wealth and the rich 
possibilities offered by Eq. (5.12) and the allied Cauchy's equations for studying coupled 
electromechanical and electro-optical effects in elastic dielectrics, ferroelectrics and anti­
ferroelectrics. This must be the concern of further researches. In particular, the treatments 
of ToKUOKA and KOBA Y ASHI [22]- [23] could be extended to the case of elastic ferroelectrics. 
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