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Optimal control in the unilateral thin plate theory<*> 

P. D. PANAGIOTOPOULOS (AACHEN) 

IN THE PRESENT paper the optimal control problem of unilateral thin plates is investigated. At 
the beginning, by means of a maximal monotone graph, the problems arising in the unilateral 
thin plate theory are incorporated in the same mathematical model -a variational inequality 
whose solution in sought over a closed convex set. Then, the optimal control problem is formu
lated and an abstract existence result is given. Two numerical approaches are given: the "regulari
zation and penalization" approach and the "decomposition" appro"cn. Finally, the developed 
theory is applied to the numerical computation of the optimal control of a plate with friction 
boundary conditions. 

W pracy bada si~ problem sterowania optymalnego dla cienkich plyt z jednostronnymi wi~zami. 
Na wst~pie sformulowano matematyczny model zagadnienia w postaci nier6wnosci wariancyj
nej, kt6rej rozwiqzania poszukuje si~ w domkni~tym obszarze wypuklym. Nast~pnie sformulo
wano problem sterowania optymalnego i podano dow6d istnienia funkcji sterowania optymal
ncgo dla tego problemu. Zaproponowano dwie metody numeryczne: metod~ "regularyzacji" 
i metod~ "rozkladu". Na podstawie sformulowanej teorii podano przyklad numeryczny op
tymalnego sterowania dla plyty z tarciowymi warunkami brzegowymi. 

B pa6oTe HCCJie~yeTcH npo6neMa onTHMaJILHoro ynpaBnemm ~JI.H TOHI<HX ITJIHT c o~HocropoH
HHMH CB.H3HMH. BHat:IaJie c<t>opMyJIHpOBaHa MaTeMaTHtieCI<a.H MO~eJIL 3a~atiH B BH~e BapHal.{HOH
HOrO HepaBeHCTBa, peiiieHHe I<OTOporo Hll.{eTC.H B 3aMI<HYTOM Bbinyi<JIOM o6JiaCTH. 3aTeM CcPOP
MYJIHpOBaHa npo6neMa onTHMaJILHoro ynpaBJieHHH H ~aeTCH ~oi<aaaTeJihCTBO cymecrBoBaHH.H 
<flyHI<l.{HH OITTHMaJihHOrO ynpaBJICHHH ~JI.H 3TOM npo6JieMbl. flpe~JIO>KeHbl ~Ba tiHCJICHHbiX 
MCTO~a: MeTO~ ,perymipH3al.{HH" H MCTO~ ,pa3JIO>KCHHH". 0nHp3HCh Ha c<t>opMyJIHpOBaHHyro 
TeOpmo ~aeTCH tiHCJICHHbiH npHMep OITTHMaJihHOrO ynpaBJICHH.H ~JIH ITJIHTbl C rpaHHtiHbiMH 
yCJIOBHHMH c TetieHHeM. 

1. Introduction 

IN RECENET years many inequality constrained problems in mechanics have been 
examined. These problems are called "unilateral problems", because the variations of the 
inequality-constrained quantities are "unilateral" [9, 13], i.e., they take place inward to 
the admissible set defined by the inequality conditions. Usually this set satisfies the clo
sedness and convexity property in an appropriately chosen function space and can be 
defined by means of the notion of "subdifferential" [12]. In these problems, because of the 
unilateral character of variations, the "principles" of virtual (resp. complementary virtual) , 
work are valid in an inequality form called "variational inequality"- or "abstract unilat
eral problem" in the terminology of [7]- the solution of which must be sought in a 
convex closed set. The mathematical theory of variational inequalities which are actually 
the weak formulation of the unilateral boundary value problems is developed by FICHERA 
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26 P. D. PANAGIOTOPOULOS 

in [6, 7] and by LIONS, STAMPACCHIA [10], BREZIS [3] etc. Except for the problem of SIGNORI

NI and some relative dynamical problems [14] many other unilateral problems of mechanics 
can be found in [4]. In static problems the variational inequalities are equivalent to the 
minimum problem of a functional over a convex set and, accordingly, after the discretiza
tion, the algorithms of non-linear optimization can be used. In dynamic problems the 
variational inequalities are approximated using a regularization technique by a sequence 
of appropriately defined variational equalities corresponding to non-linear differential 
equations. 

In the present paper we consider the optimal control problem corresponding to the 
unilateral thin plate theory [4]. The system, whose optimal control has tQ be discussed, 
is governed by an elliptic variational inequality. The mathematical theory of optimal 
control problems governed by variational inequalities is still a largely unexplored field, 
·except for some results already presented in [11, 17]. 

First, the unilateral boundary value problems of thin plates are incorporated in the 
:Same mathematical model by means of a general convex functional. Then, the optimal 
control problem is formulated and the existence of its solution is discussed. The theory 
is illustrated by means of a numerical example concerning the control of the displacement 
.of a unilateral plate. 

2. Unilateral thin plate theory presented in a unified manner 

In this paper R 3 is a three-dimensional Euclidean space and Ox 1 x 2 x 3 is an orthonormal 
·system. Let Q c R 2 be an open, bounded connected domain of the Ox 1 x 2 - plane with 
boundary F belonging to C2

• ti denotes the region occupied by the middle surface of the 
plate which is assumed to have a small thickness h. In the sequel the summation convention 
for repeated indices will be employed and C are generic positive constants, which are not 
necessarily the same in any two places. Further, 'YJ = (1] 1 , 1]2 ) (resp. T = (r1 , r 2))denotes 
the unit normal vector in an outward direction to the boundary r (resp. the unit tangential 
vector to the boundary, resulting from 'YJ through a rotation of n/2). Following the assump
tions of the theory of thin plates [16], we obtain such relations for the considered problem 
[4]: 

(2.1) DiJ2u = / 3 in !J, 

(2.2) - oM'I ~ oLJu Q3 = Q3--- = -D --+(l-v) or aYJ :T [ ~ 1 ~2 ( ::~ - -::~) 
+('YJI-rJD a:.2;xJ on r, 

(2.3) MT: = -D{L1u+ (1-v (21J 1 1'} 2 0 °
2

; -'YJ~ 08
2

~ -'YJI ~
2

~} on r. x 1 x 2 x 1 ux2 

Here, u(x1 , x 2 ) is the vertical displacement of the middle surface of the plate, / 3 (x1 , x 2 ) 

is the prescribed distribution of external loads acting vertically to the plane of the plate, 
D is the bending rigidity -assumed to be uniform- of the plate, v is Poisson'3 ratio. 
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OPTIMAL CONTROL lN THE UNILATERAL THIN PLATE THEORY 27 

The biharmonic differential equation (2.1) is valid in every point of Q. At every point 
of the boundary a shear force vector Q 3 and a moment vector, analysed in a bending mo
ment M-r: parallel to r, and a torsional moment M YJ parallel to r; appear. According to the 
simplifying hypothesis of Kirchhoff the influence of MYJ is incorporated in the shear force 

- aM 
vector Q3 and thus the shear force Q 3 = Q3 - -ar YJ results . Expression (2.2) resp. (2.3) 

gives the relationship between Q-3 (resp. (M-r:)) and the displacements of the plate. Assuming 
that v E C2 {Q) and using Green's identity, the relations (2.2), (2.3) can be written compactly 
in the variational form 

(2.4) 

where 

(2.5) (cp, tp) = f cptpdQ' ( (/> , 1p) r = J (/>tpdT, 
D r 

and the bilinear form a(u, v-u) is 

(2.6) 

Expression (2.4) is valid, by means of a functional extension, when functions u, v belong 
to the Sobolev space Wi(Q) supplied with the norm 

(2.7) !lull = (}; IDau!iJ+, la! =at +a2 , 

! a l ~2 

i]lal 
where a = (a1, a2 ), a 1, a2 are non-negative integers Da = and I· ILz denotes 

ox~1 8x~2 

the L 2 -norm. 

According to he boundary conditions imposed, the solution will be sought in an appro
priately chosen Hilbert space V, which has the basic structure of space W~(Q). Let V' be the 

dual space of V and let (1, v) = J lvdQ be the duality pairing defined on Vx V' (v E V, 
• D 

I E V'). The dual space is supposed to have the strong topology defined by the norin {11111 = 

= supl(/,v)l, llvll ~ I, v E V, I E V'}. Then the form (2.4) will have a meaning if/3 E V'. 

The forms (Q3 , v-u) and (M., a(~~u)t have a meaning if Q3 E Wz3
' 2 (F) and M, E 

E Wz'' 2 (T) since, by the trace theorems, v-ulr E Wt 312 (F) and il(~~ul E Wt'I2 (F). 

The unilateral problems considered in this paper result from the following unilateral 
conditions: 
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28 P. D. PANAGIOTOPOULOS 

1. Unilateral conditions with respect to the displacements u of the points of a subset 
Fs cF. 

2. Unilateral conditions with respect to the rotation~~ of the points of a subset Fs cF. 

3. Unilateral conditions with respect to the displacements u of the points of a properly 
regular subset D0 c D. 

All these unilateral conditions can be interpreted in a unified manner by means of a 
"maximal monotone graph". Let us introduce a non-decreasing, possibly multivalued, 
mapping B: R--+ (- oo + oo], defining a relation on R x (- oo + oo]. It is assumed that the 
effective domain of B, i.e., the set D 8 = {~IB(~) < + oo~ ER}, is not empty and that B(O) < + 
+ oo. The graph (~, B(~)) c R 2 is maximal monotone, i.e., every parallel to the second 
bisector of the Ox 1 x 2 coordinate system has only one common point with the non-decreas
ing graph. The unilateral conditions 1), 2), 3) stated before can be written respectively 
in the form 

(2.8) -Q3 E B(u), Vu EF5 , 

(2.9) M, E s(:~), Vu EF5 , 

(2.10) -hE B(u), VuE D0 • 

In Eq. (2.10)/3 =/3 -h, where,h is the given external load andh is the reaction intro
duced by the unilateral condition. The symbol E has been used because the mapping B 
is generally multivalued. 

a 
B(t.) 

b c 
8(£) 

FIG. 1. 

For example the Signorini's boundary conditions [6] are obtained by the graph (Fig. la) 

if ~ > 0, 

if ~ = 0, B(~) = {~ -co, 0] 
if ~ < 0, 

(2.11) 

and have the form 

(2.12) 

In Fig. 1 b, c the graphs defining the elastic unilateral and the friction boundary condi
tions are given [3]. It results from the generality of the form of the graph that many other 
forms of unilateral conditions may be defined in such a manner. 

In this paper the optimal control of the following boundary value problems will be 
examined: 
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OPTIMAL CONTROL IN THE UNILA,TERAL THIN PLA,TE THEORY 

1st problem: 

u = 0, M,= 0 (resp. u = 0 ;~ = o) on Fv, 

-Q3 E B(u), Mr: = 0 on Fs = T-Tv; 

then V= {vlv E Wi{.Q), V = 0 on rv }, 

resp. V= {vlv E WW2), v = 0, 

2nd problem: 

av = 0 on rv}· ar; 

u =·o, M, = 0 {resp. u = 0, aa~ = o) n ., on .1. v, 

u = 0, M, EB(;~) on rs = r-ry, 

then V = {vlv E W~(.Q) n W1{.Q)}, 

resp. V= {vlv E WW'.!)n W~(!:l)' ~~ = 0 on rv}. 
3rd problem: 

u = 0, M,= 0 (resp. u = 0, ~~ = o) on r = Fv, 

/3 = /3+/3, -hE B(u) on .Q0 c .Q, 

then V= {vlv E WH.Q) n W1{.Q)}, 

resp. V= {vlv E W~(.Q)}. 

29 

In these problems the Fv part of the boundary is assumed to be non-rectilinear only 
in the case in which the condition MT = 0 is valid on Fv. The existence and uniqueness 
theory of the optimal control problem is based upon the coercivity of the bilinear form 
a(u, v) on V. If boundary conditions other than the preceding ones are valid, or if Fv 
is non-rectilinear, there is the possibility that the form a(u, v) will not be coercive, but 
semicoercive and thus the solution of the unilateral problem will not be unique< 0 [7]. 

Because of the properties of the (~, B(~)) graph, there exists a convex function j:R ~ 
~ (- oo , + oo], j =I= oo , such that the values of the posibly multi valued mapping B at 
the point ~1 ER constitute the subdifferential set of the function at the point ~1 [3, 15]. 
The subdifferential set B(~) of a convex function j(~) at point ~1 is given by 

(2.13) 

i.e., for ~ ~ ~t ,j(~1 ) < oo, x belongs to the "contingent" set 

(2.14) 

(I> In this case many problems related to the general form of the solutions are, as far as we know, 
unsolved. 
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30 P. D. PANAGIOTOPOLJLOS 

Elementarily it could be concluded that the following inequality is valid (for the I st prob
lem) 

(2.15) j(v)-j(u) ~ ( -Q3 ) (v-u), 

because of the convexity of function j which is defined as an integral of the monotone 
mapping B, i.e., 

(2.16) 
~ 

J<~) = f Ba)d~. 
0 

Now, a function $:V~ (- oo, + oo] is defined by means of 

(2.17) { 
J j(v)dF 

(/) (v) = rs 

00 

if j(v) e L 1(F) 

Function (/) is convex, weakly lower semicontinuous (w.l.s.c) on V, and not identically 
+ oo. Moreover, the mapping J: V~ V', which is defined by means of 

(J(u), v )r = J B(u)vdF, Be B, Vv e V nD,p 
rs 

(2.18) 

is an element of the subdifferential 8$ of (/) [3], i.e., 

(2.19) J(u) E o$(u), VuE V nD., 

and accordingly 

(2.20) $(v)- $(u) ~ (J(u), (v-u))= J -Q3 (v-u)dF, Vv e V n D,p. 
rs 

From Eq. (2.20) it results that the admissible perturbations v of the solution u take place 
in the convex, closed set V n Dcp defined by 

(2.21) V nDcp = {vlv e V, $(v) < oo }. 

For example, it follows in the case of the graph of Fig. la that V nDcp = {vlveV, v~O}. 
Similarly we can obtain the functions j and (/) for the other considered problems as 

well. (Only for the 3rd problem the integrals in the expressions analogous to Eqs. (2.18) 
and (2.20) are extended over !10 , and instead / 3 , f-; must be written). From Eq. (2.20) 
and the identity (2.4), after its functional extension in the space W~(Q), it follows that the 
variational inequality as presented below is valid: 

(2.22) a(u, v-u)~ (/3 , v-u)-$(v)+$(u), Vv e V nDcp. 

The converse is always true, i.e., conditions (2.1 ), (2.2), (2.3) and the boundary conditions 
can be deduced from inequality (2.22) [3]. 

Accordingly, the function u e V is a solution of the unilateral boundary value problem 
if and only if it is a solution of the variational inequality (2.22) over the convex set V n Dcp. 

As it is known [4] the bilinear form a(u, v) is continuous and coercive for u, v E V, 
i.e., we may write 

(2.23) a(v, u) ~ Cllull~. 
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OPTIMAL CONTROL IN THE UNILATERAL THIN PLATE THEORY 

According to [11] the problem (2.22) is equivalent to the optimization problem 

(2.24) 

31 

ll(u) = inf{JI(v) = } a(v, v)+<P(v)-([3 , v) (resp.]; in problem 3), v E V nD.,}, 
which admits a unique solution u for every / 3 E V' [11]. 

3. Definition and existence of the optimal control fWlction 

Until now we have considered the spaces V and V' and the duality pairing between them. 
It may be observed that the property 

(3.1) 

is valid, where the injections of V into L 2 (Q) (resp. L 2 (Q) into V') are dense, i.e., V = L 2 (Q) 
(resp. L 2 (Q) = V'). The unique extension of the scalar product of L 2 (Q) coincides with 
the duality pairing on Vx V'. To formulate the control problem let us introduce the Hilbert 
space U of control functions C over Q, and suppose that the controls C are constrained 
to belong to a convex, closed subset of U called Uad. Define further two linear bounded 
operators B: U ~ V' and· M: V~ H, where His a Hilbert space of functions h called 
"observation functions". With every control C we associate a "state function" u(C) by 
means of the variational inequality 

(3.2) a(u(C), v-u(C))+4>(v)-4>(u(C)) ~ (f3 +BC, v-u(C)), Vv E VnD.p, VC E Uad, 

which admits a unique solution u(C) for every C, and the "cost" to be optimized I 

(3.3) I(C) = IIMu-hllfi+(NC, C)u. 

Here, h is an element of H and N: U ~ U is linear bounded, symmetric and coercive 
operator, i.e., 

(3.4) (NC, C)u ~ CIICIIb, VC E U, C > 0. 

Further, let us denote by v and z the perturbed values of the functions u and C respective
ly, which are constrained to remain in the convex closed sets V n D.p and Uad' respectively. 

The optimal control problem is: to find 

(3.5) 
Inf /(z) 

The following proposition holds: 
Proposition 1 : If the state u( C) and the control C are defined by means of Eqs. (3.2) 

and (3.3), then there exists at least one optimal control C. 
Proof: Let z"~ be a minimizing sequence in Uad, i.e., 

(3.6) 
J(z

11
) ~ inf I(z) 

Z E Uad 

and let v"~ = vr,(z"~) the solution of Eq. (3.2), which belongs to V nD.p. Because of Eqs. 
(2.23), (3.3), (3.4) the sequences z,

1 
and v"~ are bounded, i.e., llz"~ll ~ C and llv"'ll ~ C. 
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32 P . D. PANAGIOTOPOULOS 

Accordingly, we may extract subsequences { z~} and {vP} such that zJJ -+ z0 weakly in 
Uad and v~-+ v0 weakly in VnD~. Since VnD~ and Uad are convex sets, they are weakly 
closed, and thus z0 E Uad and v 0 E VnD~. We must prove that v 0 and z0 satisfy the varia
tional inequality, i.e., that v 0 = v 0 (z0 ). With Sobolev's imbedding theorems the injection 
from V into L 2 (Q) is compact and thus, if v 11 -+ v 0 in the weak topology of V, then v,, -+ v 0 

strongly in L 2 (Q). 
Moreover, we may define according to Eq. (3.1) the linear bounded operator ii: U-+ 

~ L 2 (Q), such that 

{3.7) (Bz,v)v xv', = (Bz,v)L 2 xL2 

and accordingly 

Thus if Eq. (3.2) is satisfied by vP and z~, we may take the limit and we obtain - using 
that t/>(v) is w.l.s.c.- that v 0 and z0 are indeed solutions of Eq. (3.2). Now it will be 
proved that z0 is the optimal control which is denoted by C. Functional /(z) is w. l .s.c. 
in U and hence 

(3.9) 

But 
(3.10) lim inf I(z~) = inf l(z) for z E Uad 

and thus l(z0 ) = inf J(z)Vz E Uad' and we may take z0 = C in the proposition q.e.d. 

4. Regularization and penelization of the control problem 

The control problem is not of a usual type and it cannot be attacked with the usual 
computational techniques of optimal control theory. The main difficulty is the variational 
inequality which gives the state function u· as a function of the control C. Here, we replace
using the techniques of regularization and penalization -the variational inequality by 
a sequence of variational equalities which are weak formulations of respective operator 
equations. 

Let us introduce a family of everywhere finite, convex, differentiable, functionals 
<l>,(v) depending upon a small parameter c which is destined to tend to zero, and suppose 
that 
(4.1) lim t/>£(v) = <P(v), Vv E V. 

6--+0 

a) b) 

j{~) 

0 

FIG. 2. 

Functionals t/>e(v) can easily be derived by "penalizing" and/or "regularizing" function 
(;).To regularize (resp. penalize) a function}(;) means to replace it in the neighbourhoods 
of the non-differentiable points (resp. points of infinity) by a differentiable curve (resp. 
a curve taking everywhere finite values), depending continuously upon E. In Fig. 2a the 
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OPTIMAL CONTROL IN Tl{E UNILATERAL THIN PLA.TE Tl{EORY 33 

j(~) function of Signorini's problem is given and in Fig. 2b its regularized and penalized 
form is given. 

The regularized and penalized graph (~, Bs(~)) permits us to construct by a limit 
procedure [8] the convex functional j which has B as subdifferential set. 

Let us define further by U6 (C) the solution of the variational inequality 

(4.2) a(u8(C), V-U8(C)+4>~(v)-4>s(ue(C)) ~ (f3+BC, v-ue(C)), Vv E V, C E Uad· 

Following the methods of [4] it is easy to prove that Eq. (4.2) is fully equivalent to the 
variational equality 

(4.3) a(ue(C), v-u6 (C))+ (Je(u(C)), v-us(C)) = (f3+BC, v-ue(C)), Vv E V, C E Uad' 

where 

(4.4) 

Then the following proposition can be proved: 
Proposition 2: As e--+ 0 the solution U6 (C) of (4.2) or (4.3) tends to the solution u(C) 

of (3.2). 
Proof: Following the same argument as for the existence proof, we can take the 

limits with respect to e in Eq. (4.2) and accordingly the proposition is proved. q.e.d. 
Define further as C8 the solution of the problem: 

(4.5) Find 18 (C8 ) = inf 18 (z), 
z e Uad 

where 

(4.6) 1.(z) = IIMu8 (Z)-hllJ+(Nz, z)u. 

Then the following proposition is valid: 
Proposition 3: There exists at least one solution C," u. of (4.3), (4.5), and as e --+ 0 

there exists a subsequence denoted {Ce} such that 

(4.7) 

(4.8) 

(4.9) 

C. --+ C m Uad (strongly), 

u.(C.,)--+ u(C) m VnD~ (strongly), 

Is(C.) --+ I( C). 

Proof: The existence of the solution C., U11 results easily from the given existence 
proof. From the preceding proposition we have 

(4.10) 

Hence 

(4.11) 

and thus 

(4.12) 

But 

(4.13) 

3 Arch. Mech. Stos. nr 1/77 

18 (z) --+ /(z), Vz E U. 
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34 P. D. PANA,GIOTOPOULOS 

and thus IICsllu is bounded. Accordingly we may extract a subsequence denoted {C8 }, 

such that Ce-+ Co weakly in Uad because Uad is weakly closed. It can be proved by taking 
the limit in the variational inequality that 

(4.14) 

and thus 

(4.15) 

which together with Eq. (4.12) gives C = Co and accordingly Eq. (4.9) has been proved. 
We have for e -+ 0 that 

(4.16) lim/e(Ce) = lim(Mus(Ce), Mue(Ce))H+(NCe,Ce)u-2(Mue(Ce),h)H+IIhll~ = I(C) 

and from Eq. (4.10) that 

(4.17) lim/e(O) = /(0) . 

Moreover, there exist constants C1 > 0, C2 > 0, such 

(4.18) C211CII5 ~ (M(u(C)-u(O)), M(u(C)-u(O))H+(NC, C)u ~ CliiCII5, V' E U, 

which means that (M(u(,)-u(O)), M(u(C)-u(O)))H+ (NC, C)u is a norm equivalent to 
IICIIu· Accordingly, from Eqs. (4.16), (4.17) and (4.18) it results that the already obtained 
weak convergence in Eqs (4.7) and (4.8) is indeed strong convergence, q.e.d. 

Accordingly, we can overcome the non:-differentiability of the mapping(]> by considering 
the sequence of the regularized problems, whose numerical computation does not present 
any insuperable numerical difficulty. 

5. Numerical approach by means of the dual problem - decomposition technique 

It is known that minimization problems under some conditions can be formulated as 
inf. sup.-problems or as saddle point problems [1]. The minimization problem relative 
to the variational inequality (3.2) has the form 

(5.1) inf {~ a(v,v)+(]>(v)-(f3 +Bz,v)}, VzE Uad' 
veVr- D<I> 

and its dual problem will be formulated. 
Let us introduce the Banach space P and P' its dual space and denote by < , > the 

duality pairing between these two spaces. In the case of the first and second problems 
considered P = L 2 (F), in the case of the third problem P = L 2 (Q) . Further, let us inrot
duce a closed convex bounded set QCP' containing the origin and an operator S: V-+ P 
such that 

(5.2) (]>(v) = sup < q, S(v) >. 
qeQ 

Then the problem (5.1) can be written as the inf. sup.- problem 

(5.3) infsup {n(v, q; z) = ~ a(v, v)+ < q, S(v) > - (/3 +Bz, v)}, 
ueVr.D<1> ,qeQ 
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whose dual formulation exists and is 

(5.4) sup inf {n(v, q; z) = -}a(v, v)+ < q, S(v) > -(f3 +Bz,v)l. 
qEQ 'VE V r, D,p 

According to [8], [1] if the mapping 

(5.5) v-+ < q, S(v) > Vq E Q 

is convex and w. 1. s.c, there exists a saddle point u, r of n(v, q; z), such that 

(5.6) ii;(u, q; z) ~ ii;(u, r; z) ~ ii;(v, r; z), Vv E VnDrt>, q E Q, z E Uad 

and, accordingly, a necessary and sufficient condition for r to solve the dual problem is 

(5.7) <r-q, S(u(r)) > ~ 0, Vq E Q, 

ifS is continuous from V-weak into P'-weak* (star topology). It fo1Iows from the duality 
theory that if r solves the dual problem (5.4), u(r) will solve the primal problem (5.3). 
By means of the inf sup-formulation of the variational inequality (3.2) the optimal control 
problem takes the form 

a) To find r(z) and u (r(z)) such that to solve the problem 

(5.8) sup inf ii:(v, q; z), VzE Uad· 
qEQ,vE V "" Dr/> 

b) To find !; E Uad such that 

(5.9) l(C) = inf/(z), Vz E Uad· 

For the numerical calculation of problem (5.8), (5.9) a multilevel decomposition technique 
[2] will be used. The decomposition is similar to the "non-feasible gradient controller 
technique". The problem (5.8), (5.9) is decomposed into two levels. The first level problem 
has the form: 

Find, for q fixed, the solution u(q; z) of 

(5.10) 

and the solution C(q) of 

(5.11) 

inf ii;(v, q; z), Vz E Uad 
vEVr.Dtl> 

I(C(q)) = inf/(z; q), Vz E Uad· 

Variational inequality (5.7) constitutes the second level problem. Its task is to deter
mine a value of q and to supply it to the first level problem. The algorithm starts with an 
estimated value of q, say q0 • From the first level problem, the C 1 = C(q0 ) and u1 = 
= u (q0 , C(q0 )) are obtained. They are transmitted to the second level problem, i.e., to 
the variational inequality (5.7), which gives for u(r) = u1 a new value of q say q1 , which 
in its turn is transmitted to the first level problem and so on. 

The following proposition is valid: 
Proposition 4: Under the given functional assumptions of the preceding proposition 

and for operator S, there exists at least one solution of the decomposed problem (5.10), 
(5.11). 

3* 
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Proof: By introducing finite dimensional subspaces (Galerkin's bases) of the V, 
U, R-spaces, the problem becomes finite dimensional. For the finite dimensional problem 
the existence of a solution is obvious. Then it is easy to pass to the limit in the variational 
inequality formulations of Eqs. (5.10) and (5.11) by using the same technique as we did 
in proposition 1; q.e.d. 

6. Numerical computation. Application 

In order to obtain the numerical solution of the optimal control problems defined 
for the thin plates with unilateral boundary conditions, both the "regularization-penalization 
approach" and the "decomposition approach" can be used. In the second case the varia
tional inequality (5.7) will be solved by the "projection method" for the solution of varia
tional inequalities [1]. 

Moreover, the continuous problem must be approximated by any discrete scheme, 
either by the "finite difference method" or the "finite element method". Generally speaking 
we have to operate in finite dimensional subspaces of the used spaces. Let us denote by 
h the dimension of the used subspaces; h is destined to tend to inifinity and uh, ell to the 
solution of the discretized problem. If the "regularization-penalization" technique is used, 
the approximate solution U811 , Cah can easily be obtained by an optimization algorithm. 
Moreover, the strong convergence of the solution U611 , Ca11 to the solution u, C of the initial 
problem can be proved by following the same procedure as in the proof of proposition 3. 
The only difference is that we have to take the limit for h for h --+ oo, s --+ 0. The con
vergence question of the solution of the discretized decomposed problem (5.10), (5.11) 
to the solution of the continuous problem (5.8), (5.9) is still an open problem. 

The developed theory is applied to the solution of the following optimal control prob
lem: consider a simply supported square thin plate and let Q = ( -1, 1) x ( -1, 1) in 
the R2-plane (Fig. 3a). On the part Fu of the boundary the static boundary condi
tion M"' = 0 holds, whereas in the remaining part Fs the "friction boundary" condition: 

(6.1) if 

(6.2) if IM"'I = 1 => 3i. ;:::::: 0 such that 

From Eqs. (6.1), (6.2) we can easily obtain the relation $(v) = J I :vI dF and D~ = V, 
rs 'YJ 

where V= {vlv e Wi(Q) n Wj(Q)}. The considered optimal control problem has the 
following form: Find u e V and C e Uad c U = L 2(Q), such that 

(6.3) DJ LJuLJ(v-u)dQ- J (f3 +z)(v-u)dfJ+ Jl ~v ! ar- Ji1 

~u l' ar~ 0, 
D D rs 1 'Y) I rs 'Y) 

V z E Uad, Vv E V, 
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where 

(6.4) Uad = {zlz E L 2 (Q), 0 ~ z ~ 50, J z2 dQ = IOOO} 
{} 

and /(C) = inf /(z), Vz E Uad, where 

(6.5) l(z) = f I av(z) -hl2 dF. 
rs ar; 
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Both the "regularization-penalization approach" and the "decomposition approach" 
have been used. In the second case, P = P' = L 2 (F) where the restriction to F 5 is taken, 

(6.6) 

and 

(6.7) 

rr 

[ 

L'l 

Q = {qlq E P', -I ~ q ~ I on F5 }, 

a 

y!m! 
e 

·- 8 

0 z 
----_..... 
H A 

(A 
(A 

B)u{rt1)=fv 
20 

B)u(llA)=fS 

x! mj 

FIG. 3. 

b 

8 
l 

8 
l 

Following the "projection technique" [1] we define the projection operator () of L 2(F5) 

on the convex set Q and we obtain that inequality (5.7) is equivalent to the relation 

(6.8) Va ~ 0, where 
q 

() · q = sup (I, lql) ' 

In the pre:Sent example we have taken D = INm, h = 0.10, f = -IOONm- 2 • The 
classical finite difference method has been used for the numerical computation. In Fig. 3b 
the optimal control distribution obtained with the regularization-penalization technique 
is given for different values of the parameter e. After discretization, the problem constitutes 
a non-linear programming problem for which the SUMT code originated by FIACCO 
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and McCORMICK [5] has been used. For a constant step size in the finite difference method 
equal to 1/10 the computing time in a C.D.C. 6400 computer was about 15 minutes. 

The same problem has been solved by the decomposition technique (Fig. 3c). In this 
case q0 = 0 initially and we compute the value qi from the value qi-l by means of the 
recurrence criterion 

(6.9) (} aui(qi-l) 
qi= ·(qi-t)+a a'Yj ' 0' ~ 0, 

where a is a parameter chosen properly to assure a better convergence. In the present 
example 0' ranges from 1.0 to 7.0. The value of Uj, ci is obtained by the relations (5.10), 
(5.11), written in their operator form [11] 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

LPui =f3 +Ci, u E V, 

ui = 0 on r. 
M., (see Eq. (2.3)) = 0 

. f J lau; ,12 T 
In ----g--11! d ' 

rs 'Yj I 

Again the resulting non-linear programming problem was calculated by means of the 
SUMT code and the time of computation was about 12 minutes in a C.D.C. 6400 corn-
puter. 
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