
ERRATUM 

At request of Authors the following erratum ill pubHsbed: 

H. SANECKI and M. ZYCZKOWSKI, Basic equations of perfect plasticity 
parametrized by general stress functions, Archives of Mechanics, 29, 2, 359-362, 
Warszawa 1977. 

1) Last term in (3.4) should read 

1 . 
instead of + 3K otJU; 

2) Eq. (3.7) (stress functions in the Hencky-IIyushin theory of plasticity) 
should read 

3 (rp, rx{J +rp, rxOfJ +rp,fJorx+rpo~{J) (.Pu,rx{J+4>a.(J, tJ-4>ta.,Jp-4>;{J, ta) 

+ [ rp,u-ou(V
2 rp+2rp,~<8~<) +rp, ,81+ rp,;o, + ( rp- 3~) (8~J-t5tJV 2)] 

2 1 .z 
x (V 1/>a.a.- 4>-x(J,ap) + K (U, tJ -t5tJ V U) = 0. 

Authors express regret for these errors. 
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Basic equations of perfect plasticity parametrized 
by general stress functions 

H. SANECKI and M. ZYCZKOWSKI (KRAKOW) 

TilE PAPER derives governing equations of perfect plasticity for the general Finzi­
Blokh-Krutkov stress functions (1.1), parametrizing equations of internal equilibrium. 
The Huber-Mises-Hencky yield condition takes the form (2.7) irrespectively of the 
assumed theory of plasticity; compatibility equations turn into Eq. (3.6) for the 
Prandti-Reuss theory, and into Eq. (3.7) for the Hencky-IIyushin theory of plasticity. 
The system obtained consists of four independent equations for four unknows: three 
stress functions (chosen out of six), and the function A. or cp. · 

1. General remarks 

FUNCTIONS parametrizing the equations of internal equilibrium are called stress functions. 
Since equilibrium equations are identical in all branches of mechanics of solids, stress 
functions are also introduced in an identical manner; the differences are seen only in final 
governing equations. 

The general approach to stress functions was worked out by B. FINZI [2], V. I. BLOKH 
[1] and Yu. A. KRUTKOV [4]; they proved that in the case of potential body forces 
the following tensor of stress functions cPiJ satisfies identically the equilibrium 
equations 

(1.1) 

In Eq. (1.1) eia14 and eiP• are the permutation symbols (alternators), ~ii denotes the Kronecker 
symbol, U- potential of body forces. Moreover, the summation convention is employed. 
Notation (1.1) is valid for Cartesian coordinates and only this case will be dealt with 
here; the generalization of Eq. ( 1.1) to arbitrary curvilinear coordinates, also given by 
B. Finzi, is not difficult but final equations are much longer and more complicated. 

The system of stress functions (1.1) is complete for a simply connected body. In general, 
if the boundary consists of several closed surfaces, this system is not complete. A suitable 
generalization was given by N. E. GuRTIN [3]. In our case we confine our considerations 
to the functions cp1,. 

Yu. A. KRUTKOV [4] discussed in detail the basic equations of the theory of elasticity 
expressed in terms of the stress functions cPii· In the theory of plasticity some particular 
cases of Eq. (1.1), namely the Airy and the Prandtl stress functions, have been used 
frequently, but the general case has not been considered up till now. The derivation of 
governing equations of perfect plasticity for general stress functions is the aim of the 
present paper and all the classical theories (Prandtl-Reuss, Levy-Mises, _Hencky-llyushin) 
will be considered. 
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2. The Huber-Mises-Hencky yield condition 

The HMH yield condition will be used in the form 

(2.1) 

where 

(2.2) 

um denotes the mean stress, and u0 - the yield-point stress. To introduce Eq. (1.1) into Eq. 
(2.1) we first determine the mean stress 

I 1 
(2.3) O'm = 3 Un = Teya.pey{Jvl/>a.{J.pv- U. 

Making use of the identity 

(2.4) 

we obtain finally 

(2.5) 

Substituting Eqs. (1.1) and (2.5) into (2.1) we may now express the deviatoric stresses 

(2.6) 

Further, substituting Eq. (2.6) into the HMH yield condition (2.1), we obtain after contrac­
tion and some rearrangements its final form 

(2.7) 3l/Ja.{J,p11(l/>a.{J.pl1+fj>Jtll,a.{J -l/>ap,fJv-l/>pv,a.p)- (l/>a.a.,fJ{J -c/>a.(J,a.{J)2 = 20'~ • 
If the problem under consideration is internally statically-determinate, then Eq. (2.7) 

is sufficient for solution. For example, for the Airy stress function lf>zz = f/>zz(x, y) putting 
in Eq. (2.7) other stress functions equal to zero, we obtain one equation with one unknown 

(2.8) ( 824>:.:..)2 + ( iJ24>z: )2- (J2fj>%_!_ (J2lf>z: + 3 ( (J2fj>%% )2 = u2. 
ox2 oy2 ox2 oy2 axay 0 

Retaining in Eq. (2.7) only two stress functions 

(2.9) lf>xz = <l>x:(x, y) and l/>y: = c/>y:(x, y), 

we obtain 

3 ( (J2cf>y:._ - (J24>xz )2 + 3 ( o24>y: - (J24>x:_)2 = u~ 
ox2 oxoy oxoy oy2 

and hence for the Prandtl function IJI 

(2.10) IJI - ol/Jyz olf>x:: 
-ax-ay-' 

we derive the well-known equation of the surface of constant slope 

(2.11) (aiJI) 2 (aiJI) 2 

3 Tx + 3 ay = 0'~. 
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In the case of an internally statically-indeterminate problem we have to take the relations 
between strains and stresses into account. Using these relations and substituting the resul­
ting expressions for strains into the Cauchy formulae we obtain a system with 7 unknows, 
whereas the substitution into the compatibility equations leads to a system with only 4 
unknows. Here we follow the latter way, though in certain cases it is impossible to evaluate 
all integration constants without effectively calculating displacements or velocities. 

3. Compatibility equations 

First we apply the Prandtl-Reuss equations as the most complicated law. Making use 
of the law of volume change 

(3.I) 
. I . 
Em= 3K(]m 

and substituting it into the Prandtl-Reuss equations 

(3.2) 

we present them in the form 

(3.3) EIJ ~ A(a1r b,1a...)+ 2~ iriJ- (2~- 3~) b11 irm. 

Substituting here Eqs. (I.I) and (2.5), we may write 

(3.4) E,1 ~ A [e,,,e1p.c/> •. 8.,,-+ b11(c/> ... pp-c/>,p .• p)] 

I . V • • I . 
+ 2G eil%peifJ"cpl%fJ,JJ"- E ~ii(cpl%1%,fJ{J-c/JrzfJ,1%{J) + 3K ~iJ U, 

where vas a multiplier denotes Poisson's ratio and is not to be confused with v as a dummy 
index. 

Now we will substitute Eq. (3.4) into the compatibility equations in the form 

(3.5) 

which has only two free indices and gives only 9 equations, 6 of which are distinct (instead 
of four free indices as in usual notation). We obtain the following system of equations 
for the Prandtl-Reuss theory: 

(3.6) 3 [ A.,p+ A., Op+ A,pO,+ (A+ 2~ ! )a,;P] (c/>IJ .• p+c/>,p.<rcl>, •. 1rci>Jp,«<) 

+ [A.,;-b,J(V2 A+2A.,OJ+A,,O;+A.;O.+(A+ ~ ! )caf1-b,1V2
)] • (V 2c/> .. -c/>,p .• p) 

I . . 
+-(Ut·- ~··V 2 U) = 0 K . J IJ ' 

where tl:e operator at% denotes partial differentiation with respect to the coordinate (X (or 
xl%). 
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The corresponding equations for the Levy-Mises theory may be derived directly from Eq. 

(3.6) if we substitute ~ = ~ = ~ = 0. For the Hencky-Ilyushin theory one obtains 

(3. 7) 3q;(c/Jtj,««IJ{J +c/Jap,ija{J -c/Jia,jafJ{J ~cpjfJ,i{Jaa) 

+ ('I' - 3~) ( </> .... Jpr </>.p.•J•r ~,;<!> ••. pp,,+ ~.J'/>.p .• pwJ 

1 
+ K (U,iJ-~ijU,aa) = 0. 

In fact only three compatibility equations are really independent (cf. L. E. MALVERN [5]) 
and hence the system ofEq. (2.7) with Eq. (3.6) or with Eq. (3.7) contains four independent 
equations. The number of unknows also amounts to four: three stress functions (chosen 
out of six), e.g. the Maxwell or the Morera stress functions, and the function A or cp. 

In their general form those equations are difficult to apply but in some particular cases 
they have already found application, for example in the problems of thick-walled tubes 
under combined loadings (J. SKRZYPEK [6] and M. ZYCZKOWSKI [7]). 
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