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Certain analytical results in the die-swell theory 
of viscoelastic fluids 

S. ZAHORSKI (WARSZAWA) 

TAKING into account various numerical solutions of the die-swell problem (cf. [15, 16, 24]) 
and our theoretical proposals to the entry-flow problem (cf. [25, 26]), certain approximate 
results are presented for a viscoelastic simple fluid emerging from a long tube at very small 
Reynolds numbers. These theoretical predictions, e.g. the relatiom for the die-swell degree, 
for the angle tangential to the jet surface etc., are compared with experimental data on concen­
tnted polyisobutylene solutions. 

Na podstawie r6:inych numerycznych rozwi~zan zagadnienia rozszerzania strugi (por. [15, 16, 24]) 
oraz naszych teoretycznych propozycji dla przeplyw6w w obszarach wejS<:iowych (por. [25, 26]), 
przedstawiono niekt6re przyblirone wyniki dla lepkospr~zystej cieczy prostej wyplywaj~cej 
z dlugiej rury przy bardzo malych liczbach Reynoldsa. Teoretyczne przewidywania, np. zalez­
nosci dla stopnia rozszerzenia, dla k~ta stycznego do powierzchni strugi itp., por6wnano z danymi 
doswiadczalnymi dla skoncentrowanych roztwor6w poliizobutylenu. 

Ha ocaose paaHbiX tmCJieHHLIX pewemtii aanatm pacWHpeHIDI CTpyH (cp. [15, 16, 24]), a TaiOKe 
Hawux reopenNeCJ<HX npewmmemtii ~JUI Tet~eHHH so sxo~biX o6nacrmc (cp. [25, 26]), rrpe~­
CTaBJieHbi Hel<OTOpbie npH6.JIIDf<eHHLie pe3yJibTaTbi AJIR B3RI<o-ynpyroH npOCTOH >KH,Ztl<OCTH, 

HCTeJ<aromeif H3 AJIHHHOH Tpy6bi npH oqeHb MaJibiX qHcJiax PeifHoJib~ca. TeopeTHtlecJ<He 
npe~B~eHHR, HarrpHMep 3aBHCHMOCTH ~JUI creneHH paCWHpeHHR, ~ yrna J<acaTeJibHOrO 
l< nosepXHOCTH CTpyH HT. n., cpaBHeHbi C 3J<CIIepHMeHT3JibHbiMH ~aHHbiMH ~ J<Oin~eHTPHPO­
BaHHLIX paCTBopos noJIHH3o6yrn.n:eua. 

I. Introduction 

THE DIE-SWELL phenomenon observed for various viscoelastic fluids emerging from capillary 
tubes or slits, also called the BARus effect [I] or the MERRINGTON effect [2], has been 
studied experimentally and theoretically by numerous authors (e.g. [3, 4, 5, 6, 7, 8, 9, 
10, 11]). This phenomenon plays an essential role in polymer processing and, in particular, 
in artificial fibre formation from polymer melts and solutions (cf. [12]). The usually observed 
degrees of swell, i.e. the ratios of the expanded jet diameter to the internal tube diameter, 
reach values from 1 to 2.5 and, under extreme conditions, even up to 8 (cf. [5, 121). Such 
degrees of swell cannot be explained only by means of purely volumetric changes and the 
majority of authors takes into consideration various viscoelastic properties of fluids, 
including normal stress effects, stress relaxation, elastic recovery etc. Effects of the geometry 
of a duct, gravitational, inertial and frictional forces as well as surface or interface tension 
forces are also taken into account. 

Because of serious difficulties connected with the mixed boundary value problem, 
the unknown shape of an expanded jet and the singularities in stresses appearing at the 
tube edge (cf. MICHAEL [13]), the most frequently used theoretical approach was base 
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on the momentum balance for some characteristic volumes and cross-sections of a tube 
and jet. This method was applied in early papers by GASKINS and PHILIPPOFF [3] and by 
METZNER et al. [4]. It was also assumed, among other simplifications occurring in many 
papers, that fully-developed viscometric flows continued up to the tube exit (cf. [3, 4, 6, 7]). 
Frequently, certain additional and unfounded assumptions were made on the pressure 
distribution at the exit cross-section (cf. the discussion by DAVIES et al. [14]). The results 
obtained on the basis of the momentum balance method not always correspond to experi­
mental data in a quantitatively good manner, even for relatively high Reynolds numbers, 
i.e. for dominating inertial effects. For strictly creeping (inertialess) flows the momentum 
balance method is not adequate, since the resulting equations involve neither final jet 
diameter nor final velocity and, therefore, no bounds on the die-swell can be found. In 
such cases the boundary value problem must be solved directly (cf. [15, 16]). 

The momentum balance method gives a 13% contraction in the jet diameter of purely 
viscous Newtonian fluids; this contraction may be less for fluids described by a power-law 
equation.(cf. [3, 4, 17]). Other simplified considerations, e.g. COLEMAN et al. [18], cannot 
explain the considerable die-swell observed experimentally for Newtonian fluids at very 
small Reynolds numbers. MIDDLEMAN and GAVIS [19] were probably the first who found 
the die-swell of order 13% for Newtonian fluids at Reynolds numbers less than 16. Next, 
GAVIS [20], GOREN and WRONSKI [21], GAVIS and MODAN [22], in their papers devoted to 
surface tension effects and related corrections, confirmed the degree of swell about 1.13, for 
simultaneously small surface tensions and Reynolds numbers about 2. Similar values 
resulted from unpublished data obtained by TANNER (cf. [16]) for certain silicone liquids 
emerging from a tube at very small Reynolds numbers of order to- 3 • In Tanner's experi­
ments the gravitational effects were entirely eliminated and the interfacial tension, inertial 
and external viscous forces were highly reduced by means of specially matched surrounding 
baths. The recent experiments of BATCHELOR and HORSFALL [23] seem to prove the existence 
of a 13.5% limit in the die-swell of Newtonian fluids, at least for Reynolds numbers and 
surface tension forces tending to zero. 

Many earlier theoretical attempts to solve the problem of die-swell for Newtonian 
fluids in "reeping and slow flows can be found in the available literature (cf. ZIDAN [6], 
RICHARDSON [8, 9], JosEPH [11]). It must be stressed, however, that credit for the first 
complete numerical solution goes to TANNER and his collaborators [15, 16]. The stress and 
velocity distributio~s in the exit region as well as in the swelling jet region were determined. 
by means of the specially worked out finite element method. In the next paper, TANNER 
et al. [24] presented certain particular results for second-order fluids and for Newtonian 
fluids in flows with finite values of Reynolds numbers. 

In this paper, taking into account some of Tanner's numerical results (cf. [16, 24]) 
and our own proposals for viscoelastic flows in the entry regions of channels and tubes 
(cf. [25, 26]), we present certain approximate analytical results for viscoelastic fluids 
emerging from a long tube at very small Reynolds numbers (creeping flow). We assume that 
the constitutive equations describing fluid behaviour are those for an incompressible 
simple fluid (cf. [27]) and that surface tension forces as well as frictional effects can be 
disregarded. The results obtained may be useful for certain comparisons of theoretical 
predictions with experimental data. 
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2. Equilbrium and boundary cODditions 

Let us consider the tube and the emerging free jet presented in Fig. 1, where le and 1:~ 

denote the corresponding lengths of the exit region inside the tube with diameter d and 
in the jet region where maximum diameter D is reached. These lengths are purely conven­
tional; for Newtonian fluids (cf. [15, 24]) they can be considered as le ~ 1:~ ~ d or I = 
= le+l:~ ~ 2d. For viscoelastic fluids similar or slightly longer regions are reported for 
sufficiently long tubes (cf. [24, 28]). 

r 

z 

FIG. 1. 

In the system of cylindrical coordinates (r, 0, z), the origin of which corresponds to 
the centre of exit cross-section, for z ~ -le we have a fully-developed viscometric flow 
of the Poiseuille type. Physical components of the stress tensor satisfying the. equations 
of equilibrium for an incompressible simple fluid are in the form (cf. [26]): 

(2.1) 

T<'Z> = - _!_fir 
2 ' 

T<m = -h-k(r)+eVJ+fz, 

T<n> = T<m+a.(S)-a2(S), 
where h is a constant depending on the hydrostatic pressure, f denotes the specific driving 
force (pressure gradient), 'P -potential of conservative body forces, (! - density of a fluid, 
and 

(2.2) 

The modified functions of normal stress differences (cf. [18]) are defined as follows: 

(2.3) a1(S) = T<%%>_ T<~0>, 0o2(S) = T<m_ T<00>, 

1 
where S = T fr. 

For z ~ 1. in a free jet without gravitational forces, we have 

(2.4) 

If the jet is loaded with its own weight, then T<zz> = T- gz, where T denotes an additional 
extensional stress at the tube exit (for z = 0) and g is the gravity acceleration. 
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In the central region -le < z < Is the flow is highly non-viscometric and the stress 

components just at the exit lip, i.e. for r = ~ , z = 0, may exhibit essential singularities 

(cf. [8, 11]). It can be concluded, on the basis of Tanner's results (cf. [15, 16, 24]), that 

the shear stress T~Z> at the tube wall changes along the exit region from - ! f d to higher 

values when approaching the tube lip; outside the tube this shear stress vanishes at the free 
surface. The axial stress T<_!z> at the tube wall changes its negative value into a positive one 
in the neighbourhood of z = 0, and the stress distribution across the tube exit must be such 
that the total axial load is properly equilibrated. For Newtonian fluids, for which the 
total axial load amounts to zero, the axial stress for r = z = 0 is of a negative sign. A change 
of sign is also observed for the radial stress component, although this component does 
not exhibit any remarkable discontinuity. The pressure at the exit centre, i.e. for r = z = 0, 
is usually positive and any extrapolation to the tube wall, i.e. for r = d/2, z = 0, does 
not lead to zero values. The stress singularity at the tube lip disappears very rapidly for 
Newtonian as well as for other viscoelastic fluids described by simple models (cf. TANNER 

et al. [24]). 
Physical components of the stress tensor in the exit and swelling jet regions must 

satisfy the following equilibrium equations: 

(2.5) 

and the appropriate boundary conditions (see Sect. 3), in particular, on the free surface 
of a jet. 

Let us introduce an auxilliary system of orthonormal coordinates (s, n) connected 
with the free surface (Fig. 1). If the axis sforms an angle q; with the axis z, we shall denote: 
q; = q;0 for z = o+ and q; = 0 for z = Is. The free surface of jet corresponds to a stream 
surface; this implies that the normal velocity component satisfies the following conditions: 
v,. = 0 and ov,.j os = 0. It is also necessary that normal and tangential components of the 

stress tensor vanish at the free surface, i.e. T<""> = T<"s> = 0, if only the pressure of the 
surroundings is taken as equal to zero. 

On transforming the stress tensor T as follows: 

(2.6) T = QTQ', [Q] = [c?s~ ~ -s~~l. 
smq; 0 cosq; I 

where superscript t denotes the transpose, we arrive at 

(2.7) 
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It is seen from the above relations that urider the assumption of the positively defined 
normal stress difference T<Z%>_ T<m> 0, the angle q; is positive if T<'z> > 0 in the neigh­
bourhood of the jet surface, and negative if T<'Z> < 0 . For very small positive angles q;, 
or more exactly for q; -+ 0, it results from the relation 

(2.8) 

that the radial stress is also positive. It may happen, however, that T<m 
some small but finite values of the angle q;; then 

(2.9) ( 
T<">)T 

tgq; > - T<zz> if T<zz> > 0. 

is negative for 

Therefore, the pressure along the flow axis and the boundary (the tube wall together with 
the jet surface) changes from positive to negative values. These changes of signs are realized 
earlier at the boundary than at the axis. In the jet where the maximum diameter is reached 
(z = Is), · the pressure - T<m tends to zero, retaining positive values in the whole cross­
section. 

The above discussion shows an important role played in the stress analysis by the angle 
q; ::/= 0. For small values of q;0 , i.e. the angle tange,ntial to the jet surface for z = o+, it 
results from Eq. (2.7)1 that 

(2.10) 

T<"'( ~. o• )-T""( ~. o•) 
The above relation is used in Sect. 3, where certain approximate expressions for stresses 
are specified. 

All the above considerations are also valid for plane jets eme-rging from long channels 
or slits. Then, instead of Eqs. (2.1) we use (cf. [25]) 

T<X1> = -fy, T<Y1> = -h+eVJ+fx, 

T<""> = T<>''1>+a1(")-a2("), . 
(2.11) 

where " denotes the shear gradient and ai(") (i = l, 2) are the normal stress differences. 
Other relations remain the same after changing formally r into y and z into x. 

3. Stress distributions in the exit and swelling jet regions 

In our previous papers [25, 26] on viscoelastic flows in the entry regions of plane 
channels and tubes we proposed approximate stress distributions satisfying the equations 
of equilibrium and the corresponding boundary conditions. To this end we expanded 
the stresses into series with respect to e = d/ I, where d denoted the tube diameter (or the 
channel height) and 1- the total length of the entry region. The series contained three 
arbitrary functions of z (or x) and their derivatives with respect to z (or x), the values of 
which at various cross-sections resulted from the boundary conditions. Such an approach 
made it possible to treat any type of continuous entry flow as "an almost parallel flown 
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(cf. [29]), in which stress gradients in the axial direction were by one order of e less than 
those in the transverse direction. The effective, self-consistent solutions could be obtained 
for second order approximations, i.e. retaining terms proportional to e2

• 

Trying to apply a similar procedure to the case under consideration, we must assume 
that: 

I) the length of the exit region plus the length of the swelling jet region (/= le+ Is) 
is sufficiently greater than the tube diameter d, what justifies treating e as a small para­
meter; 

2) singularity in stresses at the tube lip can be expressed by certain discontinuous 
functions at the exit cross-section (z = 0). 

Under the above assumptions physical components of the stress tensor up to terms 
proportional to e3 can be written as follows (cf. [25, 26]): 

I I 
T<'Z> = T ( c + g' (z) + N' (z} )r + U(g'" (z) +M"' (z) + N"' (z) )r3

, 

(3.1) 
I 

T<"> = -h -k(r)+e1J'-CZ-g(z)-M(z)-4 (g"(z)+N"(z))r 2 , 

I 
T<%%> = - h-k(r)+e1p-cz-g(z)-N(z) - 3 (g"(z)+ M"(z)+N"(z) )r 2 , 

where c, h are constants and g(z), M(z), N(z) are arbitrary generalized functions with 
possible jumps for z = 0. 

If the functions g, M and N, having the dimension of fd (or ai), are of order I, the 
terms 

(3.2) g<">(z)r", M<">(z)r", N<">(z)r", 

having the dimension ofjd(d/1)", are assumed to be of order e". Thus the terms proportional 
to e3 in Eqs. (3.1) are inc1uded into the shear stress, while those proportional to e2 are 
present in the expressions for normal stresses. It is easy to verify that the equations of 

equilibrium (2.5) are satisfied identically if the term ~(g1v (z)+M1v (z)+N1v (z))r 3 , 

having the dimension ofj(d/1)4, can be disregarded as proportional to e4 • 

It can be shown that the functions g, M and N satisfy the appropriate boundary and 
-continuity conditions for z = -le and z = lu leading to self-consistent relations. 

At the upstream end of the exit region, we have successively ((cf.2.1) ): 

<'Z> _ _ _ __!_ -+ jC+g'( -le)+N'( -/e)= -J, 
(3.2) T (r, le} - 2 fr lg"'( -le)+M"'( -le}+N"'( -le} = 0, 

(3.4} O:T<rz>(r, -le} = 0 -+ g" (-le)+ N" (-le) = 0, 

Jcle- g( -/e) = -fie, 
(3.5) T<">(r,-le) = -h-k(r)+e1J'-fle-+ lM( -/e)= O, 

(3.6) O:T<m(r,-le) = O:T<ZZ>(r,-le) = (>Oz1J'+f-+ 

{
-c-g'(-le} =/, M'(-fe) = N'(-le), 

-+ g"'(-fe)+M"'(-fe}+N"'(-fe) = 0, 

(3.7) T<n>(O,-le)- T<m(O,-le) = 0-+ M( -le)= N( -le), 
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and, consequently, for the normal stress difference 

(3.8) T<z:z:>(r, -le)- T<">(r ,-le)= a1 (S)- &2 (S) = -*M"( -le)r2 • 

Outside the tube, at the cross-section corresponding to the maximum jet diameter, 
we also have (cf. (2.4) ): 

{
c+g'(ls)+N'(ls) = 0, 

(3.9) T<'Z:>(r, Is)= 0 __. g"'(ls)+M"'(/s)+N"'(ls) = O, 

{

-h-cl11 -g(/11)-N(l11) = 0, 

(3.10) T<Z:Z:>(r, Is)= T<rr>(r, Is)= 0 __. g"(/s)+N"(l~) = M"(/11) = 0, 

M(ls) = N{ls), 

and consequently 

(3.11) 

At the beginning of a free jet, i.e. for z = o+, we see that 

(3.12) T<rz:>(r, o+) = A(O+)r+B(O+)r 3 , 

(3.13) T<z:z:>(r, o+)- T<">(r, o+) = M(O+)-N(O+) --k-M"(O+)r2 , 

where A(z), B(z) denote generalized functions resulting from Eqs. (3.1). 
Therefore, the shear stress distribution for z = o+ is determined by a polynomial of 

third order in r, while the normal stress dependence on r is rather parabolic. The relations 
(3.3) to (3.11) are by no means contradictory and can be simultaneously satisfied by properly 
chosen functions g, M and N, e.g. in the form of higher order polynomials involving 
certain jump functions and their derivatives. It follows from Eqs. (3.1) that the stress tensor 
exhibits certain discontinuities in the components T<'Z> and T<Z:Z:> if only the derivatives 
M" and M"' have some jump properties for z = 0. Since the shape of a jet is not known 
a priori, such an approach may lead to essential difficulties in satisfying all the relations 
(3.3) to (3.11) and the conditions (2.7) defined on the free surface. What follows, bearing 
in mind at least a theoretical possibility of such reasonable solutions, we seek some simpli­
fied relations between the angle q;0 and the degree of swell s = Dfd. 

For small angles q;0 , after substituting Eqs. (3.12) and (3.13) into Eq. (2.10), we can 
write 

(3.14) 

A(O+)r+B(O+)r3 

tgq;o = r' eo+) = ___ _:__~_....;1~----=----
M(O+)-N(O+) -u M"(O+)r 2 , 

where r = r(z) formally denotes the equation of jet surface in the coordinates (r, 0, z). 
It is evident, of course, that r(O+) = d/2 and r(ls) = D/2. 

Taking into account the order (with respect to c) of terms appearing in the numerator 
and denominator of Eq. (3.14), we can conclude that the shear stress contains terms 
proportional to c and c3 , while the normal stress difference- those proportional to 1 and 
c2

• On the other hand, it follows from the boundary conditions for z = -le that the 
functions g, M and N involve terms either proportional to the shear stress at the wall 
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Sw = ! fd in the upstream Poiseuille flow or proportional to the first normal stress differ­

ence Nw = u1(Sw)-&2 (Sw) in the same type of flow. The quantities Sw and Nw are not 
entirely independent; they depend in some way on the rate of shear. 

The above remarks lead to the relation: 

(3.15) 
(a 1 e+a3e3 )Sw+ (c1 e+ c3e3 )Nw a+ev 

tgtpo = (b b 2)S (d d 2)N = --=--=--o+ 2E w+ o+ 2E w b+dv' 

where v = Nwf2Sw. If the parameter e can be taken as a quantity independent of Sw, Nw 

or v, the terms denoted by a, ii, c and dare also constant. This assumption seems to be 
arbitrary and does not result from any physical pr~mises. It is very likely that the exit 
length as well as the swelling jet length might be related to viscometric flow characteristics 
far inside the tube. On the other hand, it turns out from available experiments (cf. [23, 
16, 24, 28]) that in many Newtonian creeping flows, I= le+ls is. of an order of two diam-

eters ( e ""- I /2) and increases rather slightly for viscoelast ic fluids ( e "' -}- - -}). This 

important matter cannot be settled only in an experimental way, since le as well as Is 
are not measurable. On the contrary, the angle tp0 can easily be determined from sufficiently 
enlarged photographs of a jet. 

For very slow flows in which the model of an incompressible second-order fluid is 
relevant (cf. [27]), the ratio v = Nwf2Sw is roughly proportional to shear stress at the 
wall Sw. In this case Eq. (3.15) can be written in the form 

(3.16) 

where A, li, C, i5 are new constants independent of the Poiseuille flow kinematics; they 
depend on three material constants characterizing properties of a second-order fluid. For 
free Newtonian (v = 0) jets without gravitational forces, the ratio ajb in Eq. (3.15) must 
be equal to tgtp0 • According to the data of TANNER [15] and BATCHELOR and HORSFALL 
[23], we obtain a/b :=. 0.2, what corresponds to tp0 :=. ,11.3° (then s :=. 1.13). Although 
tgtp0 results from Eq. (3.15), Eq. (3.16) for Sw = 0 is undetermined (for Sw = 0 there 
exisfs no flow), the lower limit value A/ ii :=. 0.2 must be valid. On the other hand, for 
jets subjected to gravitational forces, the value afb- or A/Band the corresponding values 
of tgtp0 may be much less (see Sect. 5). 

4. Relations for the jet expansion 

On the basis of Eqs. (2.7) and (3.1) an approximate differential equation of the jet 
contour can be derived, the integratjon of which leads to further simple relations between 
the die-swell degrees = D/d and the angle tp0 tangential to the j1..t surface at the exit. 

For small values of <p(tgtp ~ 1), we have from Eq. (2.7) 1 

t4.1) 
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where r = r(z) describes the jet free surface. Substituting for T<rz>, T<n>, T<J'I') the cor­
responding expressions (3.1), we arrive at (cf. (3.14)) 

r'(z) = A(z)r+B(z)r3 

I 
M(z)-N(z)- U M" (z) r 2 (4.2) 

Assuming that for sufficiently small angles q; the normal stress difference T<zz>_ T<J'I') on 
the jet surface, appearing in the denominator of Eq. ( 4.2), does not differ significantly 
from the value for r = dj2<1>, Eq. (4.1) may be written in the approximate form: 

(4.3) r'(z) '::!. / 1 (z)r+ / 3 (z)r 3
• 

Introducing the auxilliary non-dimensional quantities: 

(4.4) 
2r 

R=([' 

we arrive at the equation 

(4.5) 

2z 
Z=-, 

d 
L = 2/s, 

s d 
I d 

'Pt(Z) = --fl(z)-' 
tgrpo 2 

and the boundary conditions: R(O+) = 1, R(Ls) = s. Since, moreover, 

(4.6) 

the functions 'Pt and fJJ3 are not arbitrary but must satisfy the fo1lowing relations: 

(4.7) 

Equation (4.5) is the BernouJli type equation, the general solution of which can be 
presented in the form: 

Z Z D 1 

(4.8) R(Z) = exp( J tgrp0 fJJ 1(A)dA) [ 1-2 J tgrp0 fJJ3 (.Q)exp {2 J tgrp0 fJJ 1(A)dA )d.Q ]-
2

• 
~ ~ ~ 

On expanding all exponential expressions into convergent Taylor series for tgrp0 close 
to zero, retaining only terms proportional to tgrp0 and additionally taking into account 
that in the denominator 

(4.9) 

we finally arrive at 

(4.10) 

where 

(4.11) 

1 

(l-2x)T '::!. 1-x, 

S= 

L, 

I +mtgrp0 

I +ntgrp0 ' 

J 'Pt (A)dA =m, 
o+ 

D 
s = ([ = R(L5), 

L. 

J fJJ3 (A)dA = n. 
o+ 

(1) This difference is really very small for small jet expansions and tends to zero rapidly for z- 1 •• 

8* 
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The formula (4.10) gives an approximate relation between the degree of die-swell s 
and the sma11 angle q;0 tangential to the jet surface at the exit cross-section. It is seen that 
s = 1 for tgq;0 = 0, and s > 1 for tgq;0 > 0. Since for free Newtonian jets s ~ 1.13 
and tgq; ~ 0.2, we may postulate that 

(4.12) 1.54 m-1.77 n = 1. 

Substituting formally Eqs. (3.15) or (3.16) into Eqs. ·(4.10), we obtain the foUowing 
a1temative relations: 

(4.13) 
A1 +Ct'V 

s = --=---:---
Bl +Dt'V 

or 

where Ah ii,, eh i5, (i = 1, 2) denote certain new constants. 

5. Comparisons witb experimental data 

We believe that the formulae (3.15) or (3.16) for the angle tangential to the jet surface, 
and the formulae (4.10) or (4.13) for the jet expansions may describe with sufficient accuracy 
the die-swell phenomenon of many viscoe]astic fluids in creeping flows. Any direct compar­
isons with experimental data seem, however, pretty difficult because of very few availab]e 
measurements, especjally for the ang]e q;0 • 

1"0 0'---- --'-------1. ____ 10L--

v-Nw/2Sw 

FIG. 2. 

By way of illustration, we show in Fig. 2 the relation between the normal to shear 
stress ratio v and the degree of swell s (see (4.13) 1 ). The experimental points are taken 
from the graphs presented by TANNER [7] and the constants in Eq. (4.13)1 calculated for 
three values of v, e.g. 0, 1 and 10. The horizontal line denotes s = 1.1. 
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Further comparisons are made using the experimental results obtained by CLERMONT 

et al. [28] for a 50% solution of polyisobutylene (Vistanex LMMS) in the Bayol 80 oil 
(Esso), the viscosity of which was of order 103 poises. These experiments were performed 
for vertical jets loaded with their own weights; surface tension effects as well as frictional 
effects were not consideredu>. 
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In Fig. 3 we show the experimental points and the relation tg rp0 versus Sw resulting 
from Eq. (3.16). The particularly chosen constants are: A= 10, ii = 100, C = 3.79 • 106 , 

D = -4.43 • 106
• For jets without gravitational forces an approximate character of the 

curve is marked with the broken line; the horizontal line tgrp0 ~ 0.2 corresponds to the 
case of Newtonian fluid. Next, Fig. 4 demonstrates a dependence of the die-swell degree s 
on the angle rp0 • The constants m and n are chosen as 0.87 and 0.50, respectively. The 
broken line with the point ® refers to anticipated fluid behaviour without gravitational 
effects. Finally, Fig. 5 presents the curve drawn according to Eq. (4.13)2 , i.e. the relation 
between the shear stress at the wall Sw and the die-swell degrees. The constants A2 = 104, 
B2 = 100, C2 = -1.08 ·106 and D2 = - 2.42 • 106 are calculated for previously chosen values 
of A, B, C, D and m, n, after substituting Eq. (3.16) into Eq. (4.10). 

A general correspondence between the curves shown graphically and the available 
experimental data seems to be fairly good. Some discrepancies can be seen only for the 

<t) The paper [28] was rather concerned with the determination of velocity profiles, using the laser 
anemometry method. Values of rp0 were not published; for various shear stress levels they were measured 
afterwards from the ohotographs taken at the Institute of Mechanics in Grenoble. 
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first experimental points characterized by smaller values of the shear stress Sw or the 
angle q;0 • Much more experimental evidence is required before any final concJusions can 
be drawn out. 
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