
Archive& of' Mechanics • Arcbiwum Mechaniki Stosowanej • 29, 2, pp. 289-298, Warazawa 1977 

A note on the existence of entropy in classical thermodynamics 

M. SILHA vY (PRAGUE) 

Two NEW conditions for the existence of entropy for elastic systems are introduced. Both con­
ditions are expressed in terms of some measures of efficiency of cyclic processes. While the first 
condition employs the notion of crude efficiency introduced by Day, the second condition is 
a statement about the efficiency in the usual physical sense. 

Wprowadzono dwa nowe warunki istnienia entropii dla ukJad6w spr~iystych. Obydwa warunki 
wyrai;ono przez miary sprawnosci proces6w cyklicznych. 0 ile pierwszy warunek stanowi poj~ie 
zgrubnej sprawnosci wprowadzone przez Day'a, to drugi warunek jest sformuJowaniem w zwyk­
Jym fizycznym sensie. 

BbiBe~eHhi ~Ba HOBbiX yCJIOBWI c~eCTBoBamm :nrrpomm wm ynpymx CHCTeM. 06a yCJIOBWI 
Bbipa>KeHhi qepe3 Mepbi I<o3$<l>mn~ema noJie3Horo ~eiiCTBWI I.Ufi<JIHlleCI<HX nponeccos. Ilo­
C:KOJibi<y nepaoe yCJioaue coCTaBIDieT noHHme rpy6oro :Ko3<l><l>mn~eHTa none3Horo ~eiiCTBHH 
BBe~eHHoe ,UeeM, llOCTOJibi<Y BTOpoe yCJIOBHe HBJIHeTC.R $OPMYJIHPOBI<Oit I<03ci>$mnfeBTa 
noJie3Horo ~eHCTBWI B o6bli<HoBeHHoM <l>H3HtieCI<OM CMbiCJie. 

1. Introduction 

IN THE ARTICLE [1] DAY has exhibited a condition equivalent to the existence of entropy 
for elastic systems for which the absolute temperature is taken as a primitive concept. 
Day's condition involves the notion of the Camot process of the system and of the crude 
efficiency of a process. The Carnot processes are such processes during which the heat 
is absorbed and emitted at just one temperature or not at allu>. The crude efficiency of a 
process is defined to be the number 

h+ h-
E=F-F' 

where h+ and h- denote respectively the heat absorbed and emitted by the system during 
a process, and ()+ and o- denote respectively the maximUm. and minimum temperatures 
at which the heat is absorbed or emitted. If no heat is absorbed or emitted, we define the 
crude efficiency to be 0. 

The main result of [1] is the following assertion<2>. The system has entropy if and only 
if among all processes connecting two giveri states the Camot processes have the greatest 
crude efficiency. Day also states that systems having entropy satisfy the following condition 

<t> Note that it does not follow from the definition of a Carnot process that Carnot processes are 
isothermal: during _adiabatic parts the temperature can vary in an arbitrary way. 

<2 > For a precise statement see Sect. 2. 
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hereafter denoted as liT: the crude efficiency o"'F each cyclic process is not positive. As he 
notes, it is tempting to conjecture that this condition is· also sufficient for the existence 
of entropy. However, a simple counter"example given in [I] indicates that such a con" 
jecture is false. 

The purpose of this note is to show that it is possible to strengthen Condition Ill in 
such a way that it becomes really necessary and sufficient for the existence of entropy. 

Define a generalized Carnot process as a process during which the heat is absorbed 
at one constant temperature o+ and emitted at a second constant temperature o-, where 
O+ ~ o-. It can be shown (see Sect. 3) that ifth~ sy"tem has entropy, then the crude efficiency 
of each cyclic generalized Camot process is 0. Thus the system which has entropy satisfies 
the following condition (hereafter denoted as Ill'): the crude efficiency of .each cyclic 
process is not positive and the crude efficiency of each cyclic generalized Carnot process 
is 0. 

The main result of Sect. 3 is the assertion that the system discussed has entropy 
if and only if it satisfies the condition III'. 

Condition Ill' has the advantage that it can be easily reformulated as a statement 
about the real efficiency of cyclic processes, defined as the ratio of the total work done 
by the system to the heat absorbed by that system during the cylic process. In fact, the 
total work w done during a cyclic process is the difference between the heat absorbed and 
the heat emitted, 

In classical thermodynamics the real efficiency p is defined as 

w h+-h-
1-' = Ji+ = h+ 

The condition E ~ 0 may then be l'ewritten (see Sect. 4) as 

and similarly the condition E = 0 as 

o+-o­
"' ~ --=-:-­o+ 

p= 
o+-o­

o+ 

Accordingly, the new condition of the existence of entropy may be reformulated as 
follows. The system has entropy if and only if real efficiency of each cyclic process satisfies 

p ~ 6
+
6
-;_

8
- and real efficiency of each cyclic generalized Camot process satisfies p = 

o+-o-
=~ 

The fact that entropy is derivable from the physically plausible conditions on the real 
efficiency given above seems to have significance for the axiomatic development of thermo­
dynamics. 
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2. Basic concepts and results of [I] 

The basic mathematical structure underlying considerations in the following sections 
is the same as in [1]. For our purposes, the thermodynamical system, or simply a system, 
is defined by two continuous mappings () and (J, defined on an open and <;onnected subset 
U of some finite-dimensional inner product space V and with values in R++ = (0, oo) 
and V, respectively: 

0: U--+R++, 

(J: U--+ V. 

The subset U of V is called the state space of the system and its elements x, y, ... are called 
states. The values O(x) and (J(x) of th_e mappings () and a are called the temperature and the 
generalized stress of the state. x. The term process will denote any function f mapping 
a non-degenerate interval · [0, d1] into the set U which is continuous and piecewise contin­
uously differentiable~ The number d1 > 0 will be called the duration of the process and 
the values / 1 = /(0) and JF = f(d1) will be refered to as the initial and final values of the 

process. For each t e [0, d1], for which j(t) exists, the value 

(2.1) q(t) = a(f(t)). iu> 
will be called the rate of heat supply at time t during the process f. The quantity h(f), 

dt 

h(J) = J a(f(t)) • j(t)dt 
0 

is then the total heat absorbed by the system during the process f. 
An example of a system is provided by an elastic fluid. The state x is completely deter­

mined by the specific internal energy e and by the specific volume v, x = (e, v); the pressure 
p and temperature () are determined by "equations of state" 

(2.2) () = ()(e,v), p =p(e,v). 

In this case the inner product space V is identified with R 2 , the set of all pairs of real 
numbers, and the state space U with the set of all possible values of e and v. Of course, 
the mapping () of Eqs. (2.2) is identified with the mapping () in the definition of a system. 
According to this definition, a has to map U into V, i.e. the subset of R 2 into R2

, but 
function p maps U into R. Define a(x) = a(e, v) as 

a(x) = a(e, v) = (1 ,p(e, v)) e R2 • 

The definition of the rate of heat supply, Eq. (2.1), then gains the familiar form of the 
First Law of Thermodynamics 

q(t) = e(t)+p(e(t), v(t))· v(t)' 

where f(t) = (e(t), v(t)) is a process of the system. 
We now turn back to general systems defined at the beginning of this section. 
Let x, y e U and f be a process. If f 1 = x and JF = y, then the process is said to 

connect x toy and we write P(x, y) for the set of all processes connecting x toy. The process 

7* 
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is said to be cyclic if / 1 = jF. If f E P(x, y), then the time-reversal off will be defined as 

the process le P(y, x) of duration d" for which 

f(t) = f(d1-t) for each t E [0, d1]. 

If x, y, z E U, f P(x, y) and g E P(y, z), then the continuation off with g will be defined 
as the process f * g E P(x, z) of duration d1+d,, for which 

{
f(t) if t E [0, dt] 

(j *g) (t) = g(t-dt) if t E [d,, dt+d,]. 

Following Day, we define for each process/ 
(1) the set of all times at which the heat is absorbed and the set of all times at which the 

heat is emitted during/respectively, by 

t+(J) = {t E [0, d]lj(t) is defined and u(f(t))·j(t) > 0}, 

t-(f) = {t E [0, dlli(t) is defined and u(f(t))·i(t) < 0}; 

(2) the heat absorbed on f and the heat emitted on f respectively, by 

h+(f) = J u(f(t))·j(t)dt;?; 0, 
-r+(f) 

h-(f) = - J u(f(t))·i(t)dt;?; 0. 
t-(/) 

If t+(f) = r(f) = 0, then the process is said to be adiabatic. If/is not adiabatic, we then 
define the maximum and minimum temperatures at which heat is absorbed or emitted on f 
by 

()+(f)= sup{O(f(t))lt et+(f)ur(J)}, 

()-(f) = inf {O(f(t) )lt Et+ (f) ut- (f)}, 

respectively, in the same way as in [1]. 

Following Day we then define the crude efficiency of the process f to be the number 
~(f) where 

h+(f) h-(f) 
Uf) = o+ if> - o- (f) 

if f is not adiabatic, and ~(f) = 0 if f is adiabatic. 
We now give a precise definition of a notion of a generalized Carnot process as mention­

ed in Sect. 1. A process f is said to be a generalized Carnot process if there are two positive 
numbers ()+ and o- with ()+ ~ o- such that 

t Et+ (f)=> O(f(t)) = ()+, 

t e r(f) => O(f(t)) = o-. 

This means either that f is adiabatic or that O(f(t)) = ()+(j) = o+ for t et+ (f) 
and O(f(t)) = o-(f) = o- fortE t-(f). Note that, generally, the time reversal of a gener­
alized Carnot process is not a generalized Carnot process. The concept of a generalized 
Carnot process is a generalization of the concept of a Camot process introduced in [1]. 
A process is said to be a Carnot process if there is a number a; such that O(f(t)) = a; for 
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each t et+(j)ur(f). This means that either f is adiabatic or that()+(!)= o-(j) = ex. 
The set of all Carnot processes connecting x toy will be denoted by C(x, y). It is a straight-

forward matter to verify that if f E C(x, y), then f E C(y, x) and ~(fj = -~(f). In the 
subsequent sections we shall also need the following special type of Carnot processes: 
Camot process is said to be a monotonous Carnot process if either t +(f) = 0 or t- (j) = 0. 
Each adiabatic process is a monotonous Carnot process. The set of all monotonous Carnot 

processes connecting x toy will be denoted by C0 (x, y). Iffe C0 (x, y), thenfe C0 (y, x). 
In the remaining part of this section we shall state precisely Day's results mentioned 

in Section 1. The main result concerning the necessary and sufficient condition for the 
existence of entropy requires a mild restriction C on the system: 

C. Jfx, yE U, and ex E O(U), then there is a Carnot process g E P(x, y) such that (J+(g) = 

= o-(g) = ex. 
Day's THEOREM. Suppose that C holds. Then the following conditions I and 11 are 

equivalent: 
I. If x, yE U,/E P(x, y) and g E C(x, y), then ~(f)~ ~(g). 
II. There is a smooth scalar field 'YJ: U -+ R such that 

rJ = OV'YJ. 

Day's Theorem has the following corollary also stated in [1]: 
CoROLLARY to Day's Theorem. Suppose that C holds. Then, Condition I (and hence 

also Il) implies Ill: 
Ill. If f is any cyclic process, then ~(f) ~ 0. 

3. Conditions equivalent to the existence of entropy 

The following technical assumption about the system will be appropriate for our 
purposes: 

C'. If x, y E U and ex E 0( U), then there is a monotonous Carnot process g E C0 (x, y) 

such that for every t et+(g)ur(g) we have O(g(t)) =ex. 
This axiom says that any two states may be connected by a process which is either 

adiabatic or such that the heat is only absorbed or only emitted during that process 
at a prescribed constant temperature. Note that C' does not imply C, since C requires that 
each of the two states be ccnnected by a Carnot process g which is not adiabatic and which 
satisfies (J+ (g) = o- (g) = ex. 

Now we are able to state and prove the main result of this note. 
THEOREM. If C' holds, then I, 11, and Ill' are equivalent: 
I. If x, ye U,fe P(x, y) and g E C(x, y), then ~(f) ~ ~(g). 
ll. There is a smooth scalar field 'YJ: U -+ R such that 

rJ = OV'YJ. 

In:. Iffis a cyclic process, then ~(f)~ 0; if, moreover,fis a generalized Carnot process, 
then ~(f) = 0. 

Pro of. It suffices to show the following three implications: I => 11, ll => ill', 
and ill'=> I. 

Now, the proof of 1 => II may be accomplished in a very similar way as that of I => 11 
in the Proof of Day's Theorem (seep. 163 in [1]). Note that our conditions I and 11 are 
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completely identical respectively with the conditions I and 11 in [1]. However, for our 
purposes Day's proof must be slightly modified since the author uses in his proof the 
condition C, while we have at hand our C'. Such a modification is only a technical matter 
and this is why the proof of I ~ II is omitted here. 

P r o o f of II ~ III'. The fact that Condition II implies ~(f) ~ 0 for each cyclic 
process f is proved in [1 ]<3>. Hence it remains to be shown that if the system has entropy, 
then each cyclic generalized Camot process satisfies ~(f) = 0 .. Let f be a cyclic generalized 
Carnot process. First, if /is adiabatic, then by the very definition of~. one has~(/) = 0 . 
. Next, suppose that f is not adiabatic. Observe then that 

for all t E t+(j) 

(3.1) 

and for all t Er (f) 

(3.2) 

o (f(t)) = o+ (f) 

O(f(t)) = o-(f). 

The steps in the following computation follows from Eqs. (3.1), (3.2), from the definitions 
of h+(j) and h-(f), from the existence of entropy, and from fF = f 1

: 

l:(f) = h+(f) __ h-(f) = J a(f(t))·j(t) d -J a(f(t))·./(t) d 
~ o+(f) o-(f) o+(f) t+ o-ct> t 

t+(f) t·-(f) 

• • df • 

= J a(f(t))·f(f) dt+ .J a(f(t))·f(f) dt = J a(f(t))·f(t) dt 

t+<J> O(f(t)) t-<n O(f(t)} . 0 O(f(t) }-

df df 

=I V'YJ(f(t))·i(t)dt =I ~ ['YJ(f(t))]dt ~ 'Y}(/F)-'Y}(/1
) = 0, 

0 0 

i.e. ~(f) = 0. 
To show III' ~I, three preliminary results stated in Lemmas 1, 2, and 3 are needed. 

From now on till the end of the Proof of Theorem we suppose that C' and Condition Ill' 
hold. 

LEMMA 1. Let x, y E U. Then, either 
(a) for all g E C0 (x,y) we have h+(g) > 0, or 
(b) for all g E C0 (x, y) we have h+(g) = h-(g) = 0, or 
(c) for all g E C0 (x, y) we have h- (g) > 0. 
P r o o f. It suffices to show the following implications: 
(it): gt, gl E Co(X, y), h+(g1) > 0 ~ h+(g2) > 0. 
(i2): gt,g2 E C0 (x,y), h-(g1) > 0 ~ h-(g7 ) > 0. 

In fact, (i 1) says that if for some gin C0 (x, y) the inequality h+(g) > 0 holds, then this 
inequality holds for all gin C0 (x,y). Similarly, (i 2) says that if for some ·g in C0 (x,y) 
the inequality h-(g) > 0 holds, then this inequality holds for all gin C0 (x, y). As a con­
sequence of (i 1) and (i2) we have the following. If there is a gin C0 (x, y) which is adiabatic; 

<3> In this proof Day does not use Condition C. 
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then all gin C0 (x, y) are adiabatic since the inequality h+(g') > 0 for some g' in C0 (x, y) 
contradicts (i 1) and the inequality h-(g')> 0 for some g in C0 (x, y) contradicts (i2). 

(i1). Suppose that there exists a pair such that gbg2 e C0 (x,y) and h+(g1) > 0 and 
h+(g2) = 0. Then g2*g1 is not adiabatic and th~refore 

h+ (gl*gt) h- (g2*g.) 
<3·3> ~{g2 •g1) = o+ (g2*g1) - o- (g2*g1) 

h-(g2)+h+(gt) h+(g2)+h-(gt) h-(g2)+h+(gl) 0 
= o+cg;*gJ-- o-(g2*gt) o+(g2*gt) > · 

(Here we have used the fact that by hypothesis h+(g2) = 0 and also t~at h-(g1) = 0 
since h+(g1) > 0 and g 1 is a monotonous Carnot process). But g2•g1 is cyclic and therefore, 
according to Condition Ill', Ui2 *g1) ~ 0 which contradicts Eq. (3.3). 

(i2). Suppose that there exists a pair g 1 , g2 e C0 (x, y) such that h- (g 1) > 0 and h- (g2 ) = 
= 0. Similarly, we can show as above that the cyclic process g1 *g2 satisfies 

~c * > _ h-Cgt)+h+(g2) 0 g • g 2 
- o+ (g 1 * g 2) > ' 

which contradicts Condition Ill'; q.e.d. 
LEMMA 2. Let x, y eU and g1 , g2 e C0 (x, y). Then, ~(g1) = ~(g2). 
Proof. By Lemma I, there are three possibilities: 
(a) h+(g 1) > 0, h+(g2) > 0, 
(b) h+(gl) = h-(gt) = h+(g2) = h-(g2) = 0, 
(c) h-(g1) > 0, h-(g2) > 0. 

First, let us consider the case (a). Suppose without any loss of generality that O+(g1) ~ 

~ O+(g2). It then follows that O+(g1*g2) = O+(g1), o-(g1*g2) = min{O-(g1), O-(g2)} = 
= min{O+(g1), O+(g2)} = min{O+(g1), O+(g2)} = O+(g2). 

Moreover, g1 and g2 are monotonous Carnot processes and (a) holds; hence h-(g1) = 
= h-(g2 ) = 0. The above particular results then justify the following computation: 

~(gt*Kl) = · ~+(g1*g2) _ h-(g.•g:J h+(gJ)+h-(g2) h-(g1)+h+(g2) 
o+(gt*g2) o-cgt*gl) o+(gl) --o+(g;r-

h+(gt) h+(g2) 
= O+(gt) - o+(gS- = ~(gt)-~(g2). 

As gt*K2 is a cyclic generalized Carnot process, we must have, according to Condition Ill', 
~(gt *K2) = o and, consequently, ~(g 1 ) = e(g2). In the case (b) the processes g1 and g2 

are adiabatic and therefore ~(g1 ) = ~(gJ = 0. In the case (c), assume as in the case (a) 
that O+(g1) ~ O+(g2). Similarly as in the case (a) we can show that the cydic generalized 
Carnot process Kt *g2 satisfies o = e(g1 *g1) = ~(g2)- ~(gt) and hence that e(gx) = ~(g2); 
q.e.d. 

LEMMA 3. If X, yE U, fe P(x, y) and g E C0 (x, y), then ~{f)~ ~(g). 
Proof. As in the proof of Lemma 2, we consider the three possibilities (a), (b), 

and (c), stated in Lemma 1. In the case (a)fis not adiabatic, hence o-(f) is defined. By the 
axiom C' there is a g' E Co(X, y) such that t E t+(g')ut-(g') => O(g'(t)) = o-(f). It follows 
that o+(g') = o-(g') = o-cn, 
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(J+(j•g') = max{O+(J),O+Cf)} = max{O+(j),(J+(g')} = max{O+(J),O-{f)} = (J+(J), 

o-(f*g') = min{O-(f), o-cf)} = min{O-(J), o-(g')} = min{O-(f), o-(f)} = o-(f). 

Moreover, as g' is a monotonous Carnot process and h+ (g') > 0, we have h- (g') = 0 . 
The steps in the following computation then follow from the above relations: 

h+(f•g') h-(f•g') h+(J)+h-(g') h-(f)+h+(g') 
E(J•g) = o+(J•g') - o-(f•f) = o+(J) o-cJ> 

h+ (f) h- (f) h+ (g') 1 

= o+ (f) - o- (f) - o+ (g') = E(f)- ;(g). 

Now f*g' is a cyclic process and hence by Condition Ill', ~(f*g') ~ 0; consequently 
~(f) ~ E(g'). By · Lemma 2, E(g) = E{g'), therefore also E(J) ~ ~(g). Next, turn to 
the case (b). Then each g E C0 (x, y) must be adiabatic and a straightforward computation 
shows that ~(f*g) =~(f). As f*g is cyclic, we have ~(j) = E(f•g) ~ 0; but since g is 
adiabatic, E(g) = 0 and hence ~{f) ~ ~(g). Finally, consider case (c). Similarly as in the 
case (a) there is a process g' e C0 (x, y) such that h- (g') > 0 and ()+ (g') = o- (g') = ()+(f). 

The process f*g' then satisfies Hf*g') = ~(f)-E(g') and since f*g' is cyclic, we have 
~(j•g') ~ 0. Consequently, ;{f)~ ~(g') and by Lemma 2 also ~(f)~ E(g); q.e.d. 

Now, after proving necessary preliminary results, it is not difficult to complete the 
proof of the Theorem. Suppose that f e P(x, y), g e C(x, y) .-Our aim is to prove the ine­
quality E(f) ~ ~(g). To this end let us choose arbitrary g' e C0 (x, y). By Lemma 3 then 

· ~(g)~ E(g'). Now since g' e C0 (y, x), g e C(y, x), we must also have E(g) ~ E(g'). 
Using the relations ~(g) = - E(g), ~(g') = - E(g') which hold for all Carnot processes, 
we obtain from ~(g) ~ ~(g') the inequality ~(g') ~ E(g) which together with the inequality 
~(g)~ E(g') yields E(g) = ~(g'). AsfeP(x,y), g' eC0 (x,y), we have by Lemma 3 the 
inequality ~{f)~ E(g') and, consequently, E(f) ~ E(g); q.e.d. 

4. Real efficiency of cyclic processes 

Let us define for each cyclic process/the work done by the system during that process by 

dt 

w(f) = J a(f(t)) • /(t)dt. 
0 

Using the definitions of h+ (f) and h- (f), we obtain, as we should expect, that the work 
done during the process f is the difference between the heat absorbed and the heat emitted 
during/: 

w(f) = h+(J)-h-(j). 

In classical thermodynamics the real efficiency p,(f) of a non-adiabatic cyclic process f is 
defined as the ratio of the work done by the system to the heat absorbed by it: 

w(f) h+(j)-h-(f) 
p,(f) = h+ (f) = h+ (f) . 

In contrast to the functional ;, the functional p. has a direct physical significance. 
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The inequality ~(f) ~ 0 means, for non-adiabatic processes f, that 

or, equivalently, 

and 
h-(J) o-(f) 

1- h+(f) ~ 1- (J+(j). 

Now the left-hand side of the 'last inequality is just the real efficiency of the · process J: 
and hence 

fJ+(j)-O-(f) 
p,(f) ~ ()+(f) . 

Similarly, equation ~(f) = 0 may be rewritten for non-adiabatic processes as 

o+ (f)-o- (f) 
p,(f) = ()+(f) . 

Hence, Condition IIT' may be now reformulated in terms of the functional p, as follows: 
IV. If f is non-adiabatic Clnd cyclic, then 

o+ (f) -o- (f) 
p,(f) ~ ()+(f) 

and if, moreover, f is a generalized Carnot process, then 

To summarize the above considerations, we have shown that Ill'=> IV. Conversely, it is 
possible to show that IV => III': For non-adiabatic processes it is sufficient to proceed in 
an opposite way as above. If /is adiabatic, then ~(f) = 0 and hence also ~(f)~ 0. That 
is, we have: 

Re mark. Conditions lll' and IV are equivalent. 
Condition IV says that among all cyclic and non-adiabatic processes with the maximal 

temperature()+ and the minimal temperature o- (fJ+ ~ o-) the generalized Carnot processes 

give the greatest value of the real efficiency and that this value is ()+ ;;o-. Note that this 

proposition generalizes Carnot's discovery that in an ideal gas the cyclic processes consist­
ing of two adiabatics and two isotherms with the temperatures ()+ and o- have the real 

o+ -o-
efficiency equal to ()+ • 

Implication 11 => IV (which holds according to the Theorem and the Remark) then 
shows that if the existence of entropy is postulated, then the class of all processes with 

o· -o-
the efficiency 0~ is broader, namely, that it contains all generalized Carnot processes 
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with corresponding temperatures. Moreover, it may also be shown that in the case of the 
existence of entropy the generalized Camot processes are the only processes with the 

. o+ -o-
effictency o+ 

Implication IV~ IT has-an important physical significance: it says that entropy is 
derivable from a physically plausible postulate IV. 
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