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I>eformmable ~electrics 
Ill. A model of interactions 

G. A. MAUGIN (PARIS) 

THE FIELD equations and thermodynamical equations developed in the first two parts of this 
work are recovered by using a direct approach through the postulate of global balance laws 
and by considering a simple model for the interactions that occur between the material lattice 
and the polarization sub-lattices in deformable ferroelectrics. 

R6wnania polowe i termodynamiczne, wyprowadzone w dw6ch pierwszych ~iach tej pracy, 
otrzymuje si~ powt6rnie w spos6b beZposredni za pom~ postulatu r6wnowagi globalnej oraz 
przez rozwaienie prostego modelu oddzialywania jakie wyst~puje mi~dzy siatk'l materialn'l 
a polaryzacyjnymi siatkami drugiego ~du w odksztalcalnych ferroelektrykach. 

TioneB&Ie H TepMO~aMWieCKHe ypasHeHHH, B&me,lteHH&Ie B ,ltByx nepB&IX qacrmc: J:t&HHOH 
pa6on.I, fiO.nytlaiOTC.R fiOBTOpHO Henocpe,ltCTBeHHbiM o6pl;l30M npH DOMOUUI nOC'rynaTa rno-
6aJILHOro paBHOBeCH.R, a TaiOI<e nyTeM paCCMOTpeHIDI npOCTOH MO):te.JIH B3aHMO):teHCTBHH, 
KaKHe BbiCTYIIaiOT Me>K):ty MaTepHanbHOH peWeTKOH H DOIDIPH3ai.\HOHHbiMH peWeTKaMH BTo­
poro nop.R):tKa B J:te<PopMHpyeM&IX <Peppo3neKTpHKax. 

1. Introduction 

IN THE PREVIous two papers of this series [1, 2](1> a theory of deformable dielectrics made 
of several molecular species has been constructed on rational grounds using as starting 
points: (i) the principle of virtual power along with the objectivity requirement for the 
internal forces - the latter being introduced via the duality inherent in the method; (ii) 
the two principles of thermodynamics. Although it clearly was a theory of interactions 
between deformations and electromagnetic fields, no specific ~odel was used to introduce 
the new internal forces or phenomenological fields. If one d~sires to construct the same 
theory with a similar thermodynamical generality (Lagrangian and Hamiltonian principles 
are here excluded because of their limitation to the description of thermodynamically 
reversible phenomena; furthermore, they require a postulate for the functional dependence 
of the relevant potential, so that the behavior of the material is selected from the start), 
one must con ... sider the so-called "direct approach", which consists in postulating the 
various global balance laws such as those of linear momentum, angular momentum and 
energy, but also in the present case new global balance laws that will govern the new 
fields introduced, such as the polarization. To do so we must consider some kind of model 
for the interactions that take place between the usual deformation field and these new 
fields. This is what is done below for the theory developed in Parts One and Two. The 

c•> Equations of Parts I and II are accordingly referred to by I and II followed by their number. We 
refer to I and 11 for the main notation. 
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interactions will b~ represented by some phenomenological fields for which one needs to 
construct constitutive equations, and which are shown, at least for the nonlinear theory, 
to participate in all field equations, thus providing the necessary couplings<2>. This notion 
of "interaction" field is very similar, and can be traced back, to the concept of molecular 
field introduced by Pierre WEISS [4] in ferromagnetism. The model that follows in a certain 
sense is a generalization (to dynamical processes and to the case of several molecular 
species) of a simpler but ingenious model considered by TIERSTEN [5]. It also clearly is 
the dielectric counterpart of the model considered by the author [6] in his theory of deform­
able ferrimagnetic bodies. It is shown that all local field equations and energetic expres­
sions obtained in Parts One and Two are recovered. 

2. The model of interactions 

We shall consider the following model of interactions. Although some microscopic 
concepts are used, there is no one-to-one correspondence between these concepts and 
those introduced below. That is, the model is purely phenomenological. The dielectric 
material is considered to be the assembly of n + 1 co-existing and co-extensive continua, 
one of which being the usual material lattice, the substratum of elastic deformations, 
and then remaining ones being the polarization sub-lattices P11 that arise from the internal 
polarization of n molecular species, a = 1 , 2, ... , n, and contribute to the total volume 
polarization according to the formula 

(2.1) p = ((TC = _l;PIX; PIX = (!CIXTtiX, (!IX = (!CIX. 
(X 

Here e is the matter density at time t, 1t is the total electric polarization per unit mass, 
Tt« is the polarization per unit mass of a-molecular species, (!11 is the mass density of the 
a-molecular species, and c11 is the corresponding mass concentration. Assuming that 
no chemical processes occur between these species, we have 

(2.2) CIX = 0. 

Hence the volumetric behavior of each molecular species is the same as that of the naterial 
lattice. Next, the electric dipole moment density associated with each molecular species 
has charge q11 and results from an elementary displacement W11 , so that we shalllave to 
write an equation of balance of linear momentum to govern this displacement. b a eo­
moving frame, each polarization sub-lattice is subjected to the action of the local electro­
motive intensity 8 - see Part I - and, due to the interactions with the material lattice 
and the other molecular species, to the action of a local electric field LE11 - a phemmeno­
logical field for which a constitutive equation must be constructed. Each electric dipole 
moment is of course subjected in the same fashion to couples (!117t11 x 8 and e~~n~x LE11 , 

which tend to orient the dipole along the fields 8 and LE11 , respectively. The rraterial 
lattice is subjected to usual contact actions and to ponderomotive forces, thus dso to 
surface ponderomotive forces when we consider the whole spatial volume occuped by 

<
2

> We have tried to make clear these general features in Ref. [3]. 
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the material lattice. We suppose however that it is not subjected to a ponderomotive 
couple, the latter ·being assumed to be directly transmitted to each polarization sub-lattice 
(cf. the terms eana x t! referred to above). Nonetheless, it suffers from each molecular 
species the reaction of the local electric field LEa in the form of a volume couple ea LEa x 1ta, 
so that, in virtue of Newton's law of action and reaction, the two couples eana. x LEa 
and ea LEa x 1ta nullify each other when we consider globally the dielectric continuum. 
This last property will be used in writing the global statement of the first principle of 
thermodynamics for the whole dielectric continuum. This simple model is sufficient to 
enable us to write down the relevant global balance laws. 

3. Global balance Jaws 

Let U be the matter velocity, f the volume body force of nonelectromagnetic origin 
acting on the material lattic~, T the prescribed mechanical surface traction, x the spatial 
position with respect to some fixed origin 0, e the internal energy density, E and B the 
electric field and magnetic induction expressed in a fixed Galilean frame, h the heat supply 
per unit mass, and q the heat influx vector through the regular boundary (}p),- of unit 

, outward normal n- of the open, bounded, simply-connected spatial domain p), occupied 
by the dielectric continuum at time t. On account of the above-described model we can 
set forth the following global conservation laws: 

A. M ass conservation 

(5.1) ~ J edv =. 0. 
!Pr 

B. Balance of linear momentum for the material lattice 

(3.2) :r J eVdv =I (f+rm)dv+ I (f+Tem)da. 
!Pr !Jr B!Pr 

C. Balance of linear momentum for each polarization sub-lattice (et = 1 , 2, ... , n) 

(3.3) ~ .r ea.wadv = I ea(<f+LEa)dv. 
!Jr !Pr 

D. Balance of angular momentum for the materia/lattice 

(3.4) ~ J (xxeU)dv =I [xx(f+fem)+c]dv+ J [xx(T+Tem)]da. 
!Pr !Pr B!Pr 

E. Balance of angular momentum for each polarization sub-lattice (et = 1 , 2, ... , n) 

(3.5) ~ f eawa X Wadv = f e(lw(l X (<f+LEa)dv. 
!Jr !Jr 

F. First principle of thermodynamics for the whole continuum 

(3.6) ~ J[ieV'+k'"+ee+ ~ (E'+B')]dv = J<f·V+eh)dv+ J (T· U-q· n)da. 
!Jr !Jr B!Jr 
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G. Secqnd principle of thermodynamics for the whole continuum 

(3.7) :r J e'YJdv ~ J o-1ehdv- J o- 1fi. nda. 
!it !it a~t 

The new quantities introduced in these equations are: 'YJ = entropy per unit mass; 0 = 

= thermodynamical temperature; q = q-9', where 9' is the Poynting vector in a eo­
moving frame (Cf. Part 1). c is the volume couple acting upon the material lattiLe. The 
volume force rem and the surface force Tern have the expressions given in Part I (Eqs. (1-2.11) 
and (I-2.24), respectively). k<P> is the kinetic energy associated with the dipole displacements 
"'«. That is, according to Appendix A of Part One (also Eqs. (1-2.4)) 

(3.8) 

In supplement to Eqs. (3.1) through (3.6) must also be postulated the global form of 
Maxwell's equations. We shall not recall here these equations, which do not intervene 
in the argument. 

We claim that Eqs. (3.1) through (3.6) yield the same local governing equations for 
the continuum and the same local energy statements as the method used in Parts One 
and Two. To prove this statement in the next section we however need to recall the following 
global energy identity satisfied by the electromagnetic fields. We identically have (cf. [7]; 
here the magnetization in a eo-moving frame and the conduction current are zero): 

(3.9) 

Combining Eqs. (3.6) and (3.9), we obtain 

~ ( (_!_eU 2 +k<P>+ee.)dv = [ [(f+f~;,.)·U+etl·it+eh]dv 
~ . 2 . 

!it ~t 

(3.10) 

+ ( [ (T +Tern) • U- q • n] da, 
a !it 

which is but an equivalent statement for the first principle of thermodynamics. 

4. Local field equations 

Of course, Eq. (3.1) yields the local form 

(4.1) iJe+V·(eU)=O or e+eV·U=O in ~~· at 
Using Cauchy's principle for stresses and the usual tetrahedron argument, Eq. (3.2) enables 
one to show that, on o~,, T +Tern is linear in n. That is, there exists a Cauchy stress tensor 
tii (a general second-order tensor) such that 

(4.2) 
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On account of this artd Eq. (4.1), Eq. (3.2) yields in the usual manner the local balance 
law of linear momentum: 

(4.3) (!U; = tij,J+ Ji+ Jiem in !iJt. 

According to the comments made in Sect. 2, the couple c appearing in Eq. (3.4) has the 
expression 

(4.4) 

Then, on account of Eqs. (4.2), (4.3) and (4.4), Eq. (3.4) yields the expression of the local 
balance of angular momentum for the material lattice in the form 

(4.5) 

where 

(4.6) t iNT- '\1 LE 
ij - (! L.J cl% rlin«j 

ex 

is the "interaction" tensor introduced in Part One. 
We do not have to use the tetrahedron argument for Eq. (3.3) since there is no surface 

contribution<3 >. On account of Eq. (3.8)2 _ 3 and I-(3.5)2 , Eqs. (3.3) yield the local equations 

(4.7) d«it«=tf+LE« (!X=l,2, ... ,n) in !iJ, 

whereas Eqs. (3.5) yield 

(4.8) 

which are trivially satisfied according to Eqs. (4.7). However, summing Eqs. (4.8) over IX~ 
writing the resulting equation in terms of skewsymmetric tensors, using Eqs. (4.5), (4.6) 
and (2.1 ), and defining the intrinsic spin angular momentum S~f> due to polarization 
inertia and the ponderomotive couple Cij by 

(4.9) 

and 

(4.10) Ctt = P£1811 = - Cji, 

we obtain the unique equation 

(4.11) S. (p) - t cem 
(! ij - [i}]- ij • 

This is the local statement of balance of angular momentum for the combined material.,. 
polarization continuum, whereas Eqs. (4.5) and t4.8) represented the balance laws of angu­
lar momentum for the material lattice and each separate polarization sub-lattice, respective­
ly. 

<J> However, as it was remarked in Part IT, the consideration of such a term (a surface density of po­
larization) would allow us, after using Cauchy's principle and the tetrahedron argument, to introduce in 
the resulting Eq. (4.7) terms having the form of the divergence of second-order tensors. These tensors 
would account for the spatial disuniformities in each polarization field, and thus for the ordering effects 
observed iw ferroelectrics and antiferroelectrics below their critical temperature (compare [8]). 
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Finally, let us find the local form of Eq. (3.10). Taking the scalar product of Eq. (4.3) 
with U, the scalar product of each of Eqs. (4.7) with the corresponding 7t(p summing the 
equations resulting from the latter over ex, taking account of Eqs. (2.1) and (3.8) 1 , substi­
tuting from these in Eq. (3.10) while accounting for the boundary condition (4.2), and 
finally localizing the resulting global equation, one arrives at the local statement of the 
energy equation in the form: 

(4.12) ee = tij Ui,j- (! .2; Ca LE(J. ita-V. q +eh in !!)t. 
Ot 

Now call aii the symmetric part of the Cauchy stress tensor, and DiJ and Q1b respectively, 
the rate-of-deformation and vorticity tensors, in such a way that 

(4.13) 

Then, according to Eq. (4.5) and Eqs. (4.13), we have 

(4.14) 

and 

(4.15) t1iUt,i = a,iDt1+e}; c/Ea~'llaJQiJ· 
Ot 

Substituting from the latter result in Eq. (4.12), we finally obtain 

(4.16) ee = CliiDiJ-(! .2; ea LEa· fla-V · q+eh, 
Ot 

where 

(4.17) 

defines the eo-rotational Jaumann derivative of 7ta. 

We need not look for the local expression of the inequality (3.7), for the initial global 
expression is the same as that postulated in Part Two and the agreement of all previously 
obtained local equations with those obtained in Parts One and Two is already complete. 
Indeed, Eqs. ( 4.2), ( 4.3), ( 4.5), ( 4.6), ( 4. 7), ( 4.11 ), ( 4.14) and ( 4.16) are none other than Eqs. 
(I-4.10), (I-4.9), (1-4.142), (1-4.3), (1-4.11), (1-4.25), (1-4.12) and (11-3.9), respectively, 
QED. 

5. A special case 

In conclusion let us briefly consider a special case. Namely, that of a deformable die­
lectric with an overall description accounting only for the total volume polarization and 
neglecting polarization inertia. Obviously, all the above results can be specialized to agree 
with these hypotheses. However, one can also start with modified balance laws (3.2) 
through (3.6). If we retain Eq. (3.3), without inertia, then we shall get LE = -4 instead 
of Eqs. (4.7), and Eq. (4.8) will be replaced by the equation 

(5.1) C=Cem:=Px8, 
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as is readily checked. That is, we need not introduce the phenomenological field LE, and 
the material lattice is directly subjected to the ponderomotive couple. Eq. (4.5) is replaced 
by 

(5.2) 1[ij] = p[i8 j]' 

whereas Eq. (4.12) takes on the form 

(5.3) 

Defining now the symmetric stress tensor Lt;J by 

(5.4) 

and noting that, according to Eqs. (5.2) and (5.4), 

(5.5) 

and that 

(5.6) 

Eq. (5.3) transforms to 

(5.7) 

eit = P+P(V • U), 
* . P = P-(P· V)U+P(V· U), 

This is the local energy equation to be considered in order to deduce Toupin's theory 
of dielectrics [9]. The corresponding transformation of Cauchy's equation was given in 
Part Two. 

Given the rather simple features of the above described model, one may wonder why 
we took the pains to develop a more formal and somewhat cumbersome energy approach 
in Part One. The reason is that the latter approach is easily extended to much more compli­
cated situations while the direct approach through balance Jaws becomes rapidly unmanage­
able as the model becomes more and more complicated. Such a situation is the following 
one. Let us imagine that one envisages the study of wave propagation in a thin layer of 
ferroelectric elastic material (this would be a typical electronic component). Then a charac­
teristically small length is involved and the usual elastic description reveals itselfunsufficient 
to describe this size effect. A finer mechanical description must be considered. Also, one 
has probably to consider the effects of polarization gradients to account for the ferroelectric 
ordering. Then the virtual power method used in Part One will yield, in a straightforward 
and elegant 'manner, all field equations and associated boundary conditions - the latter 
are known to be quite involved (compare the ferromagnetic case [10]). 

Note added in proof. While lecturing at the Bell Telephone Laboratories, Murray Hill, 
N.J., (USA) in may 1976, I was kindly handed by Dr. D. F. NeJson and Prof. M. Lax 
reprints of their most recent papers [11]-[12]. It appears that these authors, by using 
a Lagrangian variational principle and a semi-microscopical model, arrived at equa­
tions quite similar to ours in the precise case of purely elastic pyroelectrics. In par­
ticular, their internal-motion equations, which describe the evolution of internal coor­
dinates in a primitive-unit cell in the long-wavelength approximation-Eq. (6.2) in Ref. 
[ 11 ]-is the same as our equation (1-4.15) in the case of hyperelastic dielectrics. They 

5 Arch. Mech. Stos. nr 2177 
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have no general statement of the second principle of thermodynamics at their disposal 
to enable them to study dissipative processes (compare Part Two). As was pointed out 
in Part One, this is but one shortcoming of the Lagrangian approach. 

References 

1. G. A. MAUGIN, Deformable dielectrics. I. Field equations for a dielectric made of several molecular species, 
Arch. Mech., 28, 4, 679-692, 1976. 

2. G. A. MAUGIN, Deformable dielectric. 11. Voigt's intramolecular force balance in elastic dielectrics, 
Arch. Mech., 29, 143-159, 1977. 

3. G. A. MAUGIN, On the foundaTions of the electrodynamics of continua with interactions, Lecture at the 
Symposium on Physical Fields in Material Media, Warsaw, Aug. 1975 (Lett. Appl. Engng. Sci., 4, 
3-17, 1976). 

4. P. WEISS, L'hypothese du champ mo/eculaire et/a propriite ferromagnetique, J. de Physique, 6, 661-690, 
1907. 

5. H. F. TIERSTEN, On the nonlinear equations of thermo-electroe/asticity, Int. J. Engng. Sci., 9, 587-604, 
1971. 

6. G. A. MAUGIN, A continuum theory of ferrimagnetic bodies. I. General field equations, J. Math. Phys. 
17, 1727-1738, 1976. 

7. G. A. MAumN, B. CoLLET, Thermodynamique des milieux continus e/ectromagnetiques avec interactions, 
C.R. Acad. Sci., Paris, 2798, 439-442, 1974. 

8. B.COLLET, G. A. MAUGIN, Sur l'electrodynamique des milieux continus avec interactions, C. R. Acad. 
Sci., Paris, 2798,379-382, 1974. 

9. R.A. TOUPIN, A dynamical theory of dielectrics, Int. J. Engng. Sci., 1,.101-126, 1963. 
10. B. COLLET, G. A. MAUGIN, Coup/age magnetoelastique de surface dans les materiaux ferromagnetiques, 

C.R. Acad. Sci., Paris, 280A, 1641-1644, 1975. 
11. M. LAX, D. F. NELSON, Electrodynamics of elastic pyroelectrics, Phys. Rev., 813, 1759-1769, 1976. 
12 . . D, F. NEUON, M. LAX, Linear elasticity and piezoelectricity in pyroelectrics, Phys. Rev., 813, 

1785-1796, 1976. 

UNIVERSJrt DE PARIS-VI, LABORATOIRE DE MECANIQUE THEORIQUE 
ASSOCIE AU C.N.R.S, TOUR 66, 4 PLACE JUSSIEU, 75130 PARIS CEDEX 05, 

Received January 19, 1976. 

http://rcin.org.pl




