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Gravitational instability of a composite rotating plasma 

K. PRAKASH (SIMLA) 

THE GRAVITATIONAL instability of a finitely conducting hydromagnetic composite rotating 
plasma is considered to include the effects due to finite Larmor radius, Hall currents and colli­
sions with neutrals. It is found that Jeans' criterion still determines the gravitational instability 
in the presence of rotation, finite Larmor radius, Hall currents and collisions with neutrals. 
The effect of rotation consists in decreasing the Larmor radius by an amount depending on the 
wave number of perturbation. 

Rozwazono problem grawitacyjnej niestateczno5ci hydromagnetycznej zlozonej plazmy wiru­
j~cej o skonczonej przewodnosci, uwzgl~dniaj~c efekty wynikaj~ce ze skonczonego promienia 
Larmora, pr~d6w Halla i zderzen z Clllstkami neutralnymi. Stwierdzono, i:e kryterium Jeansa 
obejmuje zjawisko niestatecznosci grawitacyjnej w przypadku rotacji, skonczonego promienia 
Larmora, pr~d6w Halla i zderzen z c~stkami neutralnymi. Wplyw rotacji polega na zmniej­
szeniu promienia Larmora o wielkosc zalei:n~ od liczby falowej perturbacji. 

PaccMoTpeHa npo6neMa rpaBHTaqHOHHOH, rH~POAHHaM~eCKoH ueyCTOHQHBOCTH cno~ou, 
Bpaw;arow;eHCH nna3Mbl C KOHequoH llpOBO~HMOCTbiO, ~IBaH 3$$eKTbi, BbiTeKaiOw;He H3 

KOHequoro pa~yca JlapMopa, TOKOB Xonna H CTOnKHOBeHHH C HeHTPan&HbiMH MOneKynaMH, 
KoHCTaTHposaHo, liTO KpHTepHii .[(>KHHca oxBaTbiBaeT HBneHHe rpaBHTaq~~oHHoH ueyCTOHtJH­
BOCTH B cny1.1ae Bpaw;eHHH, KOHequoro pa~ca JlapMopa, TOKOB Xonna H CTOnKHOBeHHH 
c HeHTpan&HbiMH MoneKynaMH. BnHHHHe spaw;eHHH 3aKniOtJaeTcH B yMeH&weHHH p~ca 
JlapMopa Ha BeRH1.JHHY 3aBHCHW:Y10 OT BORHOBOrO 'IHcna B03Myw;eHHH, 

List of notations 

~ -density of fluid, ~.t - density of neutral gas, n(O, 0, D)- rotation velocity, H(O, 0, H)- vertical 
magnetic field, g(O, 0, -g) - gravity force, 1J - resistivity, N- electron number density, e - charge 
of an electron, c- velocity of sound in the medium, q4 -velocity of neutral gas, Vc- mutual frictional 
(collisional) effects between the two components of the composite plasma and G- gravitational constant. 

Introdaction 

THE GRAVITATIONAL instability of an infinite homogeneous self-gravitating medium has 
been discussed by CHANDRASEKHAR (1961) and Jeans' criterion for instability has been 
found to remain unaffected by the presence, separately or simultaneously, of rotation and 
magnetic field. The stabilizing influence of finite Larmor radius, which exhibits itself in the 
form of a magnetic viscosity in the fluid equations, on plasma instabilities has been pointed 
out by ROBERTS and TAYLOR (1962). SHARMA (1974) studied the gravitational instability 
of a rotating plasma with the inclusion of finite Larmor radius effects. SHARMA and 
PRAKASH (1974) studied the gravitational instability of a finitely conducting plasma to 
include the effects due to rotation, finite Larmor radius and Hall currents. 
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206 K. PR.AKASH 

In all the above studies, a fully ionized plasma has been considered. 
Quite frequently it happens that the plasma is not fully ionized and may be permeated 

with neutral atoms. As a reasonably simple approximation, it may be taken as an idealized 
composite mixture of a hydromagnetic (ionized) component and a neutral component, the 
two components interacting through mutual collisional effects. BHATIA and GuPTA (1973) 
considered the finite Larmor radius effects on gravitational instability of a composite 
plasma. BHATIA and STEINER (1972) studied the collisional and finite Larmor radius 
effects on the stability of superimpoc;ed media and found that the collisions as well as 
the finite Larmor radius were stabilizing on composite media. 

The object of the present paper is to study the combined influence of collisions with 
neutrals, finite Larmor radius, Hall currents and rotation on the gravitational instability 
of a composite me~ium. 

Here we consider an infinite homogeneous composite medium consisting of a finitely 
conducting hydromagnetic fluid of density (! and a neutral gas of density (!4 , which is 
uniformly rotating with velocity A and acted upon by a uniform vertical magnetic field H 
and gravity force g. We make the assumptions that both the ionized fluid and the neutral 
gas behave like continuum fluids and the effects on neutral component resulting from the 
presence of a magnetic field and the fields of gravity and pressure are neglected. 

2. Perturbation equations and dispersion relation 

The linearized perturbation equations appropriate to the problem are: 

(2.1) 

(2.2) 

(2.3) 

(2-4) 

(2.5) 

(2.6) 

(2~7) 

aq 1 
(!Tt = -V<5p-VP+ 

4
n (V x h) x H+eV<5U+2e(q x A)+eavc(q4 -q), 

0'14 7ft= -vc(Qa-q), 

a 
at<5e = -ev. q, 

<5p = c2 <5(!' 

V2 <5U = -4nG<5e, 

aiz c at= V x (q x H}+rJV 2h-
4
nNe V x [(V x h) x H], 

V·h = 0. 

Here c( =V:) and 6p, 6~, 6U, q(u, v, w), h(h., h,, h,) denote the perturbations 

in pressure, density, gravitational potential, velocity and magnetic field, respectively. 
For the magnetic field along the z-axis, the components of pressure tensor P, taking 

into account the finite ion gyration radius, are (RoBERTS and TAYLOR 1962): 

(2.8) 
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(2.8) 
[cont.] 

Here ev = 
4
NT , where N and T are number density and ion temperature of the 
WH 

hydromagnetic component, and wH is ion-gyration frequency. 
Analyzing in terms of normal modes, we seek solutions whose dependence on the 

space and time coordinates is of the form 

(2.9) 

where kx, kz are the wave numbers of the perturbation along the x- and z-axes, and a 
is the growth rate of perturbation. 

Equations (2.1)-(2.8) with the help of expression (2.9) give 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

a'u = - (i£ )Q: • s+ [iv(k~+2ki)-2i.O]v+ 4~e (k,h.-k.h,), 

a'w = - (Z~ )Q:s+2ivk.k,v, 

{i<I+'f/k2)hx = ik,Hu- ( 4:~. )k; h,, 

(ia+"'k')h, = ik,Hv- ( 4:~.} [ -k;h.+k.k,h,], 

(ia+'f/k2)h, = -ik.Hu + ( 4:~. )k.k,h1 • 

Here •( = ~e} denotes the condensation in the medium, k 2 = k~+k;, Q: = c2 k 2
-

-4nGe, a' = a (1 + .rx0 "c ) and cx0 = e4/(!. 
za+vc 

Equations (2.10)-(2.15) can be written in the determinantal form 

(2.16) IXIIYI =0, 

where lXI is a sixth order determinant and I Yl is a single column vector, whose elements 
are u, v, w, hx, h.,, s. 

The vanishing of the determinant lXI gives us the dispersion relation and we will discuss 
the problem for transverse (kz = 0) and longitudinal (kJ(; = 0) modes of wave propagation 
separately. 
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Parallel propagation (k. = k, k~ = 0) 

For perturbation along the direction of the magnetic field, the determinant lXI gives 

(2.17) 

2i!J-2ivk2 -a' 0 0 _!!_k 
4ne 

0 

0 0 -a' 0 0 
-!J; 
-k-

ikH 0 0 - (ia+nk2) -(-_:!!+' 4nNe 
0 

0 (ia + rJk2
) ikH 0 (ia+rJk2) 4:~ek2 - (ia + 'f}k2)2 0 

a' 2i!J-2ivk2 0 kH 0 0 
4ne 

0 0 0 0 0 (aa' -!J;) 

Equations (2.17) can be simplified to give 

(2.18) a'(aa' -!Ji) (ia+nk2) [W6
- AW5 + BW4

- CW3 + DW2- EW + F] = 0, 

where we have written iw = a and 

A= 2(1'jk2+1+cx0 vc), 

B = 4( -il+Yk2
)

2 +2k' V2 +(! + a~v:+47]k2vcl + «o+'1'k")+ ( 4~~e r k", 

C = 8( -!J+vk2)2(1'}k2 +vc)+2k2 V2('f}k2 +2+ cx0 ,,c) 

= 0. 

+27Jk2v.(! +«o)(l +«oVc+7Jk2)+2Yc(! + «o) ( 4:. r k 4 
• 

D = 4(-D+vk2)2(rJ 2k4 +rJk2v +v2)+k4 [V2 -(-2!J+2vk2)~]
2 

c c 4nNe 

+ 2k2 V2(27Jk2Y c + y: + 7Jk2 + • c«o. cl+ 'I' k•v:(l + «o)2 + ( 4~~. r (I + «o)'k•v:, 

E = 8( -D+vk2)2(1]k2+vc)'f}k2vc+2(1 +cx0)k4 V2Vc1'J 

+2k"[v'-( -W+2vk2
) 4~~e ]',.., 

F = 4( -!J+vk2)2rJ2k4v +k4 [[V2 - ( -2!J+2vk2)~]
2

v2 c 4nNe c· 

The first factor of eq. (2.18) can be written as 

(2.19) 

i.e. either a = 0 or a = iv c(1 + cx0). 
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The first value of a in Eq. (2.19) gives a mode of neutral stability while tlte second 
one corresponds to a viscous type of damped mode modified by, frictional effects with 
neutrals. 

The second factor of Eq. (2.18) can be written as · 

a2 (1 + .rt.oPc ) = !J2, 
la+Pc 1' 

or, replacing a by iW, as 

W3 -Pc(cx0 + I) W 2 +D: W-D:.,c = 0; 

when a: < 0, at least one root of the above equation is negative, what means _that the 
plasma is unstable. The Jeans' criterion thus determines the gravitational instability. 

The third factor of Eq. (2.18} gives 

a= i1Jk2 

what correspon4s to a viscous type of a damped mode modified by finite conductivity. 
The last factor of Eq. (2.18) has altem~tely positive and negative coefficients~ The 

real part of W is therefore positive and the compo.site plasma is· stable. 

PerpenclkuJar propagation (k;e = .k, k. = 0) 

For this mode of propagation the determinant lxl gives 

2i!J-tvk2 · -a' 0 0 0 

o o -a' o o 
0 0 0 - (ia+1Jk2) · 0 

0 0· 0 0 -(ia+f/k2) 
(2.20) 

(a-- i!k:~:,) 2i!J-W 0 0 0 

k3V2 
i ik(Pk2 - 2JJ) 0 

ia+1Jk2 0 0 

Equation (2.20) gives the- dispersion relation 

0 

0 

0 

0 

(2.21) a'2(ia+1Jk2
)

2 [W5 -A'W4 +B'W3 -C'W2 +D'W-E1 = 0, 

where we have written iW = a and 

A' = (1Jk2 +21 +cxo Pc), 

B' = (- 2D +Pk2
)

2 + (1 + CXo) (1 + CXo + 21Jk2) pc+ n: + k 2 V2 ' 

= 0. 

C' = ( -2D+Pk2
)

2 (1Jk2 +2Pc)+ (1 +a0 )
2"c'1k2 +D: (2+ 1XoPc+?]k2)+k2 V2(2+cxo)Pc, 

D' = (-2!J+Pk2
)

2 (2?]2 +Pc) Pc+k.~_V2(1 + tXo) P: +D: (1.+ IXo Pc+ 2+ 1Xof/k2
) Pc, 

E' = ?]k2 P:£D:(l + cx0)+ (-2!J+Pk2) 2]. 

The first factor of Eq. (2.21) can be written-. as 

(2.22) a2 [- 0' + w c(1 + cx0))2 = 0, 

i.e; either a = 0 or a = ;., c(l + cx0) • 

2 An:h. Mech. Stos. JU" 2n1 
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The first value of G in Eq. (2.22), gjves a mode of neutral stability while the second 
one corresponds to a viscous type of a damped mode modified by frictional effects with 
neutrals. 

The second factor of Eq. (2.21) gives 

(] = i'Yjk2 

what corresponds to a viscous type of a damped mode modified by finite conductivity. 
Considering now the last factor of Eq. (2.21), we find that for 

(2.23) D;(l+(X0)+(-2D+vk2
)

2 > 0 

the roots of Ware either all real and positive or there is a positive real root (or three pos­
itive real roots) and the remaining ones are complex. The real roots are responsible for 
stable modes. In the case of complex roots, Re W is positive, since the equation has alter­
nately positive and negative coefficients. The composite plasma is stable. 

If 

i.e. 

(2.24) 

at least one root of the last factor of Eq. (2.21) is negative real and so the plasma is 
unstable when inequality (2.24) holds true. 

The critical wave number k* is given by 

(2.25) 
k*2 = 4v.Q- c2 (1 + (X0 ) ± Jl[c2 (1 + (X0)-;v.Q]2 + 16v2 [nG!!(l + (X0)-.Q2

] • 

2v 

The plasma is unstable for the wave number range k < k*. It is clear from Eq. (2.25) 
that the critical wave number is independent of finite conductivity and Hall currents. 

Hence we conclude. that the Jeans' criterion for gravitational instability holds true 
even if the effects due to rotation, collisions with neutrals, finite Larmor radius and Hall 
currents are included. The effect of rotation consists in decreasing the Larmor radius 
by on amount depending on the wave number of perturbation. 
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