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Gravitational instability of a composite rotating plasma
K. PRAKASH (SIMLA)

THE GRAVITATIONAL instability of a finitely conducting hydromagnetic composite rotating
plasma is considered to include the effects due to finite Larmor radius, Hall currents and colli-
sions with neutrals. It is found that Jeans’ criterion still determines the gravitational instability
in the presence of rotation, finite Larmor radius, Hall currents and collisions with neutrals.
The effect of rotation consists in decreasing the Larmor radius by an amount depending on the
wave number of perturbation.

Rozwazono problem grawitacyjnej niestateczno$ci hydromagnetycznej zlozonej plazmy wiru-
jacej o skoficzonej przewodnosci, uwzgledniajac efekty wynikajace ze skoriczonego promienia
Larmora, pradow Halla i zderzen z czastkami neutralnymi. Stwierdzono, ze kryterium Jeansa
obejmuje zjawisko niestatecznosci grawitacyjnej w przypadku rotacji, skoficzonego promienia
Larmora, pradow Halla i zderzen z czastkami neutralnymi. Wplyw rotacji polega na zmniej-
szeniu promienia Larmora o wielko$¢ zalezng od liczby falowej perturbacji.

PaccmorpeHa npobnema I'PABHUTALMOHHOM, THAPOJHHAMHYECKOH HEYCTONUHBOCTH CIOMHOM,
Bpallaiolefic nasMel ¢ KOHEUHOH NMPOBOAMMOCTBIO, YUMTBIBAsK 3¢ deKTbl, BhITEKaOUHE U3
KOHeuHoro pamuyca Jlapmopa, TokoB X0JIa H CTOJIKHOBEHHMH C HEHTPANbHBIMH MOJICKYJIAMH.
KoncratupoBaHo, uto kputepuii JDKHHCa OXBAaTLIBACT ABJICHHE TPABHTAIIHOHHOH HeyCTOHUM-
BOCTH B CJIydae BpallleHH#A, KOHeuHoro pagmyca Jlapmopa, ToxoB XO/lJa H CTOJIKHOBEHMH
C HeHTpalbHBIMH MOJIEKY/amH. BnusHHMe BpallleHHA 3aKIIOYACTCA B YMCHBIUCHHH paauyca
Jlapmopa Ha BenMUHMHY 33BHCALIYIO OT BOJHOBOIO YHCIA BO3MYILLCHHA.

List of notations

o — density of fluid, p, — density of neutral gas, £(0, 0, £2) —rotation velocity, H(0, 0, H) — vertical
magnetic field, g(0, 0, —g) — gravity force, n — resistivity, N — electron number density, e — charge
of an electron, ¢ — velocity of sound in the medium, q; — velocity of neutral gas, . — mutual frictional
(collisional) effects between the two components of the composite plasma and G — gravitational constant,

Introduction

THE GRAVITATIONAL instability of an infinite homogeneous self-gravitating medium has
been discussed by CHANDRASEKHAR (1961) and Jeans’ criterion for instability has been
found to remain unaffected by the presence, separately or simultaneously, of rotation and
magnetic field. The stabilizing influence of finite Larmor radius, which exhibits itself in the
form of a magnetic viscosity in the fluid equations, on plasma instabilities has been pointed
out by ROBERTs and TAYLOR (1962). SHARMA (1974) studied the gravitational instability
of a rotating plasma with the inclusion of finite Larmor radius effects. SHARMA and
PrAkASH (1974) studied the gravitational instability of a finitely conducting plasma to
include the effects due to rotation, finite Larmor radius and Hall currents.
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In all the above studies, a fully ionized plasma has been considered.

Quite frequently it happens that the plasma is not fully ionized and may be permeated
with neutral atoms. As a reasonably simple approximation, it may be taken as an idealized
composite mixture of a hydromagnetic (ionized) component and a neutral component, the
two components interacting through mutual collisional effects. BHATIA and GUPTA (1973)
considered the finite Larmor radius effects on gravitational instability of a composite
plasma. BHATIA and STEINER (1972) studied the collisional and finite Larmor radius
effects on the stability of superimposed media and found that the collisions as well as
the finite Larmor radius were stabilizing on composite media.

The object of the present paper is to study the combined influence of collisions with
neutrals, finite Larmor radius, Hall currents and rotation on the gravitational instability
of a composite medium.

Here we consider an infinite homogeneous composite medium consisting of a finitely
conducting hydromagnetic fluid of density ¢ and a neutral gas of density p;, which is
uniformly rotating with velocity £ and acted upon by a uniform vertical magnetic field H
and gravity force g. We make the assumptions that both the ionized fluid and the neutral
gas behave like continuum fluids and the effects on neutral component resulting from the
presence of a magnetic field and the fields of gravity and pressure are neglected.

2. Perturbation equations and dispersion relation
The linearized perturbation equations appropriate to the problem are:

Q1) 0 = —Vop-VP+ (v xb) x H+oVoU+20(a% R) +r(0s—0),

@2 T = (w0,
2.3) iﬁe = —¢V-gq,

at
(2.49) dp = c%dp,
(2.5) V26U = —4aGdp,
(2.6) %f:‘ = V x (qx H)+7V?h— mj\,ev x [(V x ) x H],
2.7) V+h=0.

Here c(: ]/ _’;i) and 8p, dg, OU, q(u, v, w), h(hy, hy, h;) denote the perturbations

in pressure, density, gravitational potential, velocity and magnetic field, respectively.
For the magnetic field along the z-axis, the components of pressure tensor P, taking
into account the finite ion gyration radius, are (ROBERTS and TAYLOR 1962):

u ov ou ov
2.8 P = —ov|—+ P,, = ov '
2.8) = ( dy 0x )' ” ( dy Ox ) )
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d v
(2.8) Py =0, Py=Py= 9"(_3%”5),

[eont.]
o ow o [ow
sz—‘Psx‘— '_'29”(_3'2_"?' ay)! Pr:“Pzr_ZQp(E'i'_a_;)'

Here ov = %, where N and T are number density and ion temperature of the
H

hydromagnetic component, and wy is ion-gyration frequency.
Analyzing in terms of normal modes, we seek solutions whose dependence on the
space and time coordinates is of the form

(2.9) exp i (kex+ksz+ot),

where k., k, are the wave numbers of the perturbation along the x- and z-axes, and ¢
is the growth rate of perturbation.
Equations (2.1)—(2.8) with the help of expression (2.9) give

L k-‘ 2. 7 2 2 : H
(2.10) du= — (P_)Q' s+[iv(k2+2k2)—-2iQlv+ %(k,h,—k,h,),
2.11) a'v = [21'.9—fv(k§+2k§)]u—2kaxk,w+%k,h,,
'3 k‘ -
(2.12) ow=— (F)Q,’s+2wk,k,v,
H
2. i N = ik Hu—| -5 | &2
(2.13) (ic+nk*)h, = ik, Hu (4::Ne)k'h”
(2.19) (ioc+nk?)h, = ik, Ho— ( 4:;.9) [—k2he+kek, h,),
: " cH
(2.15) (ic+nk*)h, = ;kau+(4nNe)k,k,h,.

Here s( = %) denotes the condensation in the medium, k? = kZ+k2, Q = c?k*~

. Oo Ve -
—4nGo, o' = 0o (l+_—ic+v,_.) and o, = pafo.
Equations (2.10)—(2.15) can be written in the determinantal form
(2.16) |X]1Y| =0,

where |X]| is a sixth order determinant and |¥] is a single column vector, whose elements
are u, v, w, hy, hy, s.

The vanishing of the determinant |X| gives us the dispersion relation and we will discuss
the problem for transverse (k, = 0) and longitudinal (k, = 0) modes of wave propagation
separately.
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Parallel propagation (k. = k, kx = 0)

For perturbation along the direction of the magnetic field, the determinant |X| gives
2.17)

2i2—2ivk? -0 0 0 —H—k 0
4mp
02
0 0 —q 0 0 f‘
. i 2 [ ¢H ),
ikH 0 0 (ic+nk?) (4:!Ne)k 0 o
" 2 s " o CH 2y io +nk?)?
0 (io+nk*)ikH 0 (io+nk )4nNek (io +nk?) 0
pL 2iQ-2ik* 0 - 0 0
4o
0 0 0 0 0 (00'—22)

Equations (2.17) can be simplified to give
2.18)  o'(00’ —Q2) (iog+nk?) [WS— AW*+ BW*—~CW*+DW?*—-EW+F] =0,
where we have written iw = o and

A =2(mk*+1+o9v,),

2
B = 4(=Q2+4vk?)2 +2k2 V2 + (1 + adv2 +dnk3y, l-l-—oso+q’k‘)+( 4;’;9) ol
C = 8(—Q+vk?)*(k? +v) +2k*V2(k? + 2+ oo 1)

2
+2nk?ve(1+ ao) (1 + agve+nk?) +29.(1 + o) (4;1;'8) K

cH
7t

2
4e]

cH )
4nNe

D = 4(— Q+vk?)2 (2 k* + nk2v,+v2) +k* [Vz-(-m+2vk2)

2
+2K2VA(2nk2y+ 2 + 1k 4 veoove) + 07 k*vi (1 + o) + (1 +a0)*k*2,
E = 8(—24+vE>) (k> +v)nk*v . +2(1 + ap)k* Vv 7y

2
+2k“[V‘-—(-—2.Q+2vk’) cH :]vc,

4nNe

H |
4 2)2,.274 4| rp2 2y © 2
F = 4(—Q2+vk**n*k*v.+k [[V (—292+2k )4nNe] vE.

The first factor of eq. (2.18) can be written as
(2.19) o[—o+iv(l1+ap)] =0,

i.e. either ¢ = 0 or o = iv (1 +ay).
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The first value of ¢ in Eq. (2.19) gives a mode of neutral stability while the second
one corresponds to a viscous type of damped mode modified by frictional effects with

neutrals.
The second factor of Eq. (2.18) can be written as

2 ao”t - 2
s (l+ !'a+v¢) 2,
or, replacing o by iW, as
W3—v (ao+ 1) W2+ Q2 W—-Q2%v, = 0;
when 022 < 0, at least one root of the above equation is negative, what means that the
plasma is unstable. The Jeans’ criterion thus determines the gravitational instability.
The third factor of Eq. (2.18) gives
o = ink?

what corresponds to a viscous type of a damped mode modified by finite conductivity.
The last factor of Eq. (2.18) has alternately positive and negative coefficients. The
real part of W is therefore positive and the compogite plasma is stable.

Perpendicular propagation (k: =k, k; = 0)

For this mode of propagation the determinant |x| gives

2iQ— ivk? ¢ 0 0 0 0
0 0 - 0 0 0
0 0 0 —(@o+nk?) 0 0
_ 2
220 0 o 0 0 Gotnk) 0 [
o=V ) skt 0 0 0 @
= v
BV oki-20) 0 0 0 o —Q?)
Tornir el

Equation (2.20) gives the. dispersion relation
.21) o' 2(io+nk?)? WS- A'W*+BW*~C'W*+D'W—-E']1 =0,
where we have written iW = o and
A" = (k*+21+09%,),
B’ = (=22+49k*)? + (14 ap) (1 + oo +20k?) v+ Q22 + k2 V2,
C' = (—=29Q+vk*)? (pk*+2v.) + (1 + do) v, nk? + Q2 2+ o ve+nk?) + k2 V22 + o) v,
D = (=2Q2+4vk?)? 202 +v) v+ k2 V(1 + ag) v2 + Q2 (1 + 0o .+ 2 + aonk?) 3,
E' = nk*v2[Q2(1+ ap)+ (—2Q+vk?)?].
The first factor of Eq. (2.21) can be written as
222 o*[—o+iv(l1+ao)]* =0,
i.e: either ¢ = 0 or o = v (1+ay).

2 Arch. Mech. Stos. nr 2/77
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The first value of ¢ in Eq. (2.22), gjves a mode of neutral stability while the second
one corresponds to a viscous type of a damped mode modified by frictional effects with
neutrals.

The second factor of Eq. (2.21) gives

o = ink?
what corresponds to a viscous type of a damped mode modified by finite conductivity.

Considering now the last factor of Eq. (2.21), we find that for
(2.23) 22(1+0p)+(—22+4v*> > 0
the roots of W are either all real and positive or there is a positive real root (or three pos-
itive real roots) and the remaining ones are complex. The real roots are responsible for
stable modes. In the case of complex roots, Re W is positive, since the equation has alter-
nately positive and negative coefficients. The composite plasma is stable.

If

Q21+ ap)+ (k2 -20)2 < 0,
ie.
(2.24) V24 4 [c?(1 + ) — D2 k2 + 4[R2 — nGo(1 + )] < 0,

at least one root of the last factor of Eq. (2.21) is negative real and so the plasma is
unstable when inequality (2.24) holds true.
The critical wave number k* is given by

Q2 —c*(1+ao) 1/ [2(1 + o) — 4212 +16v2 [2Go(1 + 0p) — 27]
W2 '

The plasma is unstable for the wave number range k < k*. It is clear from Eqy. (2.25)
that the critical wave number is independent of finite conductivity and Hall currents.

Hence we conclude that the Jeans’ criterion for gravitational instability holds true
even if the effects due to rotation, collisions with neutrals, finite Larmor radius and Hall
currents are included. The effect of rotation consists in decreasing the Larmor radius
by on amount depending on the wave number of perturbation.

(.25 k*? =
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