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MODELS OF RELATIVE ABUNDANCE DISTRIBUTIONS 11: 
DIVERSITY AND EVENNESS STATISTICS 

ABSTRACT: The recent concepts of diversity 
and evenness and their definitions are discussed. It 
is shown that especially the ambiguities in defining 
evenness has led to confusion about evenness mea­
sures and their applicability. Definitions of diversity 
and evenness from parameters of relative abundan­
ce distributions avoid such ambiguities. In this pa­
per diversity is defined as the negative inverse of 
the slope of the relative abundance distribution in a 
semilogarithmic plot and evenness as the arcus tan­
gens transformed shaping parameter. Diversity and 
evenness depend therefore on the type of relative 
abundance distribution and diversities from com­
munities of different types of relative abundance di­
stributions (power fraction, random assortment or 
Zipf-Mandelbrot type) cannot be compared directly. 
The properties of these newly defined diversity and 
evenness indices and their behavior in samples are 
discussed . It is shown that Tokeshi 's newly develo­
ped power fraction model may serve as a universal 
basis for defining diversity and evenness indices. 
KEY WORDS Relative abundance distributions, di­
versity, evenness, power fraction, random assort­
ment, Zipf-Mandelbrot Model 

1. INTRODUCTION 

The use of diversity and evenness meas­
ures has a long tradition in ecological re­
search and is one of the major tools in studies 
of community structure and for comparisons 

of communities. They also play a central role 
in conservation biology. Recently, the con­
cept ofdiversity has become central in the re­
newed debate about the relation between 
diversity and community stability and eco­
system functioning (T i lman 1996, N aeem 
and Li 1997, Grime 1997, Grady-Steed 
et al. 1997, Hooper and Vitousek 1998, 
S an k a ran and M c N a u g h ton 1 999, T i 1-
m an 1999). However, despite the long use in 
research and despite many papers on the 
mathematics, the characteristics, and the de­
ficiencies of certain indices (see reviews in 
Whittaker 1972, Peet 1974, Pielou 
1977, Magurran 1988, Lande 1996, 
Smith and Wilson 1996) no consensus 
had been reached concerning the question 
what the various evenness and diversity indi­
ces really measure and how to define strictly 
what is meant by evenness (K v ~ lset h 1991, 
Lande 1996, Smith and Wilson 1996, 
Hill 1997). 

The most often used measures of diver­
sity are Simpson 's index of concentration 

1 (1) 
H IID =-.\-. -

LP'2 

1= 1 

derived from the probability that two ran­
domly chosen individuals ofa community are 
from the same species and the Shannon infor­
mation measure 
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H H =- f,p ;ln(p;) (2) 
t = l 

where p, is the relative abundance of the i-th 
species from a community of S species. It is 
frequently overlooked (May 1975, Pie1ou 
1977) that both measures are very similar 
(except for very uneven and ecologically un­
realistic communities). Their interrelation 
may be described by a regression derived 
from Fig. 1 

(3)H vD )HH =ln - - +1( 2 

The traditionally associated evenness 
measures are 

EH = HH (4) 
ln(S) 

and 

_ H ltD (5)E VD ---

s 
From equations 3, 4, and 5 we also get 

the interrelation between both evenness 
measures 

EH--( ln(EvD )-ln(2)+1) +I (6) 
ln(S) 

Another often used measure of diversity 
is the parameter a of the log-series relative 
abundance distribution, defined by 

(7)
S = a ln(l+ ~) 
with Nbeing the total number of individuals. 

Due to the deficiencies of the above two 
evenness indices (they are not independent of 
species numbers and rely heavily on sample 
size) many alternative indices have been pro­
posed (for instance Heip 1974, Molinari 
1989, Nee et al. 1992, Camargo 1993, 
Bulla 1994, Hill 1973, 1997). In their re­
view of evenness indices, Smith and Wil­
s on (1996) advocated the use of the (for 
species numbers) calibrated slope of the rela­
tive abundance distribution in a log abun­
dance - species rank order plot 

2 (8)Eo =--arctan(S x b)- n 
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Fig. I . A: Relationship between the diversity indices 
of Shannon (HH) and Simpson (Ht D) derived from 
170 assemblages following power fraction models 
with parameter values k between - I and 3 and species 
numbers between 5 and 1000 as described in the 
methods section. The points ranging far below and 
above the regress ion line all stem from assemblages 
of I 0 or less species. 

with b being the slope. The arcus tangens 
transformation serves to force the index into a 
0- 1 scale. 

Another index of evenness based on the 
variance of the log transformed relative den­
sities, strongly recommended by Smith and 
W i I son (1996) and studied by We i her and 
Keddy (1999) is 

f ln(p ,) (9)s 

L(/n(p,) " / 
Ev., = 1-I1 

2 
arctan( ~1 s )

s 
Again, the arcus tangens transformation 

serves to force the index into a 0-1 scale. It 
should be noted that this index is very similar 
to the Gaussian width (the standard deviation 
of the log transformed densities). In the case 
of a power fraction type model, for instance, 
it is nearly the inverse quadrate of it, random 
assortment type models result in a sigmoidal 
relation and Zipf-Mandelbrot models in hy­
perbolic ones (plots not shown) . . The Ga~s­
sian width is often used to descnbe relative 
abundance distributions (S u g i ha r a 1980, 
To k e s hi 1993) but depends strongly on 
species numbers (especially at low species 
numbers) which makes the index not well 
suited for measuring evenness. 

The question remains what do these indi­
ces really measure and what are the ecologi­
cal foundations of them. The traditional view 
interprets diversity as the combined effect of 
species number and their relative abundances 
(Schaefer 1983) or (largely being the 
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same) as a measure of the joint effects of 
species number and evenness ofa commu­
nity (Pie I o u 1977). Such a definition be­
tween evenness E and diversity H can be 
expressed by a simple equation (Magur­
ran 1988) : 

H =EX f(S) (10) 

With f(S) being a function that de­
pends on the species number s. However, 
such an implicit definition does not tell 
what is in fact measured by both variables 
and a part of the confusion stems from this 
ambiguity. For instance the classical text­
books(Begon eta!. 1986, Krebs 1995) 
and reviews (May 1975, Pielou 1977, 
Land e 1996) but also most modern prac­
titioners treat HH, H 110, and a. as measures 
of diversity. Wh i ttaker (1972) and 
Tokeshi (1993), however, noticed that 
HH is rather a measure of evenness (of eq­
uitability in the words of Whittaker) but 
treated H 110 , and a. further as diversity (or 
dominance) measures. From equation 3 
follows that for H 110 this is then impossi­
ble. The view that H 1;0 (and therefore HH 
too) is indeed a measure of evenness was 
also expressed by Camargo (1993, 
1995). 

The parameter a. of the log-series 
model was strongly recommended by 
Taylor et al. (1976), Taylor (1978), 
and Ro se n zweig (1995) as a diversity 
measure although the latter author self ad­
mits that a. is constant for all communities 
of the same relative abundance distribu­
tion . This is clear because a. describes 
nothing more than the slope of the log se­
ries, the geometric or the random assort­
ment model in a log abundance - species 
rank order plot (in the following shortly 
termed slope). But, in the case of the geo­
metric model the slope has long been in­
terpreted as a measure of evenness 
(Motomura 1932, Tokeshi 1993), a 
combination which is logically impossi­
ble . 

Due to the confusion concerning the 
interpretation of the various diversity sta­
tistics the situation for evenness indices is 
not better. Cam a r go (I 99 5) was surely 
right in stating that "at the present time 
there is great con fusion on how to measure 

and interrelate species evenness and asso­
ciated parameters of community struc­
ture". 

In part, this confusion stems from the 
fact that there is no concern about how to 
define evenness. One school starts from 
the intuitive notion that the slope of the log 
(abundance)- species rank order plot tells 
something about evenness. If all species 
have the same abundance this slope is zero 
and a maximum evenness is reached (Fig. 
2) . Such a view has been followed by 
Bulla (1994), Camargo (1995), 
Smith and Wilson (1996), and Hill 
(1997). Another view (Wh i ttaker 1972, 
May 1975, Rout! edge 1983) states that 
all communities of the same relative abun­
dance distribution should have the same 
evenness. That means, for instance, that all 
communities following a canonical log­
normal distribution or a power fraction 
model with identical shape parameter 
have the same evenness (Fig. 2). However, 
May himself gives in Table 1 ofhis classi­
cal paper (May 1975) for the canonical 
log normal (E11 = 2TI 112 I ln(S)-111 ) and for 
the broken stick (EH = 1 - 0.42 I ln(S)) 
equations for the evenness which are 
clearly not independent of species number 
and the relation between EH and E11o in 
equation 5 also depends on S. 

Sometimes, both ways in defining 
evenness are mixed which further adds to 
the confusion about the matter. For in­
stance, Smith and Wilson (1996) in 
their review of evenness indices took the 
slope to measure evenness but also treat 
the density sequence 1497, 1, 1, 1 ( 4 spe­
cies) and multiples of it (for higher species 
numbers) as a test of independence of an 
index on species number. Such sequences 
all have the same community structure, 
but their slopes in log density species rank 
order plots are different. 

Another point that serves attention is 
that communities following different rela­
tive abundance distributions may react 
different on diversity and evenness meas­
ures. Frequently, a log-series serves as a 
starting point for a definition on an index 
(Routledge 1983, Hill 1997). In this 
case the difference in definition between 
diversity and evenness index is hidden by 
the fact that in a log-series (or a random as-
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sortment or a geometric series) slope of the 
log abundance - species rank order plot and 
shaping parameter are either identical or re­
lated by a constant factor but independent of 
species number. In other distributions, such 
as a log-normal, a Sugihara fraction or a 
Zipf-Mandelbrot model, shape parameters 
and slope are connected by the number of 
species according to equation 10 (see below). 
In this case the type of relative abundance 
distribution matters when defining diversity 
and evenness indices and will influence the 
way an index behaves. 

The use of the shaping parameters of 
relative abundance distributions as measures 
of diversity and evenness has been advocated 
by various authors (Whit taker 1972, 
Kempton and Taylor 1976, Taylor 
1978, To k e s hi 1993), however, in the case 
of log-normal or Zipf-Mandelbrot distribu­
tions the existence of two shaping parameters 
has prevented the use ofthem as diversity sta­
tistics. In this respect the development of the 
power fraction model by To k e s hi ( 1996) 
may mark a breakthrough (see part I for com­
putation procedures, Ulrich 2001b). This 

Fi g. 2. Assemblages following power fraction 
models with different species numbers (S) and 
resulting slope values a. A: 3 assemblages 
with a shape generating parameter k = 0.1. 8 : 
3 assemblages with the same slope a = - 0.12. 

model is driven by a single shaping parameter 
and encloses the whole range of the tradi­
tional sequential breakage and log-normal 
models. The model therefore allows to sepa­
rate the effects of shaping parameter and 
slope on diversity and evenness indices and 
may help to clarify both concepts . 

In the following study the behavior of 
the above mentioned diversity and evenness 
statistics will be compared using three differ­
ent stochastic relative abundance distribu­
tions representing the three main types of 
distributions which were identified in the first 
part of this study (U 1 rich 2001 b): the power 
fraction model , the random assortment and a 
stochastic version of the Zipf-Mandelbrot 
model. It will be shown how they are related 
to the model parameters . 

2. MATERIALS AND METHODS 

For the present study 170 assemblages 
(in this study assemblage always refers to 
model communities, whereas community is 
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used for real ones) each of a power fraction, a 
random assortment, and a stochastic version 
of the Zipf-Mandelbrot model (with only one 
shaping parameter) were generated giving a to­
tal of 510 assemblages. The models are de­
scribed in detail in To k e s hi ( 1996) and in the 
first part of this study (Ulrich 2001b). Be­
cause they are stochastic models species densi­
ties of each of these assemblages were mean 
values of I00 replicates each. Table 1 shows 
the species number and parameter combina­
tions of these assemblages. The parameters 
were chosen to span over the whole range of 
possible and biologically realistic shapes. Ex­
cluded from further analysis were a few of 
these assemblages where the least abundant 
species had relative densities below I0-15 

. 

HH is for all three types of models a 
logarithmic function. For a this relation is a 
hyperbola. That means HH and a are in fact 
estimates of the slope of the relative abun­
dance distributions in semilogarithmic plots. 

The evenness indices studied were nei­
ther strongly correlated with the slope of the 
distributions nor with the shaping parameter 
k. Only EH and Evar showed a good correla­
tion with k in the case of power fractions 
models (Figs 4 and 5) . EQ which measures the 
calibrated slope of the distribution and E11o 
performed not better (data not shown) . That 
means the existing evenness indices measure 
something not immediately connected with 
RADs . It means also that communities of the 
same type of distribution with the same shap-

Table I . Species numbers (S) and parameter values (k) of 510 assemblages from three different relative 
abundance distributions generated for this study. See Tab. 1 of part I of this study (U 1rich 2001 b) for 
generating algorithms 

Model s k 

3, 2, 1, 0.5, 0.2, 0.1, 
Power frac tion 

5, 10, 15, 0, - 0. 1' - 0.5, - 1 

20, 25 , 30, 
50, 75 , 100, 0.03, 0.05 , 0.075 , 0.1' 0.15 , 

Random assortment 150. 200, 300, 0.2. 0.25, 0.3, 0.5, I 
400, 500. 600, 

800, 1000 
Stochas tic Zipf-Mande lbrot 

For each assemblages HH, H uo, EH, E,/D, 
a , Evan EQ as well as slope (a) and intercept 
(b) of the middle ranking 70% of species of 
the log (abundance) - species rank order plot 
were computed. 

3. RESULTS 

3. 1. DEFINING DIVERSITY AND 
EVENNESS MEASURES 

What do diversity measw-es measw-e? Fig. 
3 shows for assemblages following power frac­
tion, random assortment and Zipf-Mandelbrot 
distributions that the slope value of the log 
abundance - species rank order plots is highly 
correlated with HHand a independent ofspecies 
number. EH - and the other evenness indices of 
which the data are not shown- are not correlated 
with slope. The regression between slope and 

I , 1.25, 1.5 , 1.75, 2, 
2. 5, 3, 4, 5, 6 

ing parameters have not necessarily the same 
evenness when this is measured by EH, Evan EQ 
or another index. For instance, two communi­
ties following canonical log-normal distribu­
tions but with different species numbers may 
have different evenness values. This appar­
ently contradicts the common view of even­
ness . 

The above result implies that the indices 
may depend on species number. Fig. 6 shows 
that contrary to recent literature claims 
( Smith and Wilson 1996, Weiher and 
Ked d y 1999) none of the tested evenness in­
dices is independent of species number. Best 
performs EH. For relative abundance distribu­
tions similar to a classical canonical log­
normal (power fraction with k = 0.1) E 11 is 
nearly independent of species number. The 
other indices mostly decrease at higher spe­
cies numbers, a fact which has implications 
for published evenness studies (We i her and 
Keddy 1999, Wilson et al. 1999, Ulrich 
200la) . 
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Fig. 3. Relationships between the slope of the log abundance - species rank order plot and HH, EH, and a 
(equations 2, 4, and 7 in the introduction) of 170 assemblages each following a random assortment (A, B, C), a 
power fraction (D, E, F), and a stochastic Zipf-Mandelbrot (G, H, I) RAD. Given are also the regression 
functions . R

2
- variance explanation of the regression. Notice the different scales for HH and a. 

The above results show that only diver­ distribution . Such a concept implies that all 
sity measures can unambiguously be con­ distributions with the same set of parameters 
nected with features of relatives abundance have the same evenness. Another attractive 
distributions. They leave open the question of feature is that evenness then is by definition 
a strict definition of evenness. independent of species number. The defini­

If diversity measures slope than it seems tions imply however that there can't be one 
convenient to define evenness in terms of the measure for all distributions . Each shape of 
shaping parameter of a relative abundance RAD has accompanying evenness and diver-
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Fig. 4. Rela tionships between the shape parameter k and HH, EH, and a of J70 assemblages each following a 
random assortment (A, B, C), a power fraction (D, E, F), and a stochastic Zipf-Mandelbrot (G, H, I) RAD. 

sity indices . They also imply that diversities Slope = - k ln(2) (I I ) 
from communities of different types of rela­
tive abundance distributions cannot not be The slope is therefore independent of 
compared directly. This fact had been ob­ species number. If we take k which ranges 
scured by the existing indices. from 0 to +oo as a starting point of a measure 

The simplest form is met in the case of of evenness it is convenient to use an arcus 
communities following random assortment, tangens transformation of the inverse of k 

then. This leads to a measure that is 0 at mini­or geometric or log-series RADs. For a ran­
mal and 1 at maximal evenness.dom assortment model 
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Fig. 5. Dependence of Evar (equation 9 in the introduction) on the shaping parameter k in assemblages 
following A - the power fraction , 8 - the random assortment, and C - the stochastic Zipf-Mandelbrot model 
ofRAD. 

2 (12)
E nA =-arctan(l/ k) 

1t 

Following equation 10 the associate di­
versity index would be 

( 13) 

In commumtles following Zipf-
Mandelbrot models the slope depends on k 
and on species number. k can take values 
from l to oo We can therefore define an even­
ness index simply by 

EzM = 1 I k (14) 

The slope at species number S is given 
by 

-k (15)
Slope 

s 
An appropriate measure of diversity is 

therefore the negative inverse of the slope 
which range then from 1 to +oo 

H zM =S I k ( 16) 

Both definitions can be combined via the 
standard of equation 10: 

( 17) 

More difficult is the case in communities 
being described by a power fraction model 
(Sugihara fraction, log-normal, random frac­
tion and others (see Tokeshi 1993). The 
shaping parameter k of the power fraction 
model may take values between -oo and +oo 
It is therefore again convenient to transform k 
into a 0-1 range by 

( 18)
EPF = k' =]_arctan (k) + !__ 

1t 2 

to get an appropriate evenness index (EPF). 
The slope can again be defined as diver­

sity according to 

HPF = - 1 I slope (19) 

An empiric approximation of the relation 
between H, E, and S according to the standard 
of equation 10 is developed as follows . For 
shaping parameters k between -0.3 and 3 the 
quotient of HPF I EPF is linearly related to S 
(Fig. 7 A) . Relating the slopes for each k of 
these linear regressions to EPFresults in a plot 
which can be described by an equation simi­
lar to the Michaelis-Menten model ofenzyme 
kinetics (Ulrich 1999a) (Fig. 7B). Including 
this correction factor results then in a simple 
relation between S, HPF, and EPF according to 
equation 10 (Fig. 7C). 

H ~'~- (20) £ 1',.. ~--+0.4 
s 

with a minimum value of 0.4. Equation 18 
gives a minimum evenness of0.4 for k =-0.3. 
For smaller shaping parameters equation 20 
does not hold . However, the range of - 0.3 to 
3 encloses nearly all k-values up to now re­
corded (Sugihara 1980, Tokeshi 1996, Ut­
rich unpubl.) . 

Equations 13 , 17, and 20 show that for 
each type of relative abundance distribution 
there is a simple relation between diversity 
and evenness . These relations equal the clas­
sical form defined by H = E f(S) (M a g u r ran 
1988). 
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What are the relationships of these newly dance - species rank order plot or by fitting 
defined indices to the classical ones? In the the power fraction model to the data set and 
case of the diversity indices Fig. 3 showed the estimating k directly. The first way is of 
high correlation between the latter and the course the more easier and does not require 
slope values. Because the new diversity indi­ knowledge of the number of species . 
ces all use the negative inverse of the slope If one uses the slope of the log abun­
the relations between them and the older ones dance - species rank order plot both £pp and 
are as close as in Fig. 3. HH, H 1 0 or a may Hn-appeared to be highly dependent on sam­
further be used as diversity measures. How­ ple size (Fig. 9). In the case of an assemblage 
ever, this is not the case in the evenness indi­ following a power fraction model with k = 0, 
ces. Fig. 8 shows only weak correlations HPF may be estimated correctly if at least 
between EH and Evar and £pp, ERA, and EzM­ 35% of the species are represented in the 
The fact that these correlations depend on the sample, at k = 0.2 a sample has to contain at 
type of RAD casts further doubts on the ap­ least 60% ofthe species and at k = 1.0 at least 
plicability of EH and Evar· 80%. The evenness estimates stemming from 

these diversity values are either too high or 
too low depending on the assemblage struc­3.2. SAMPLING BEHAVIOR OF EPF 
ture (Fig. 9 A to C). It is therefore difficult to AND HPF estimate evenness via diversity. 

The opposite way, however, gives much 
Any new definition of a diversity statis­ better results . Fig. 10 shows fits of a power 

tics has to study the question how the new in­ fraction assemblage at various samples sizes 
dex depends on species numbers and sample and proofs that only 30% of the total species 
sizes. £pp and Hpp have the fortunate feature number has to be represented in the sample 
that we may estimate them independently ei­ for a correct estimation of evenness and di­
ther by computing the slope of the log a bun- versity. It is not necessary to know the total 
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number of species in the assemblage (Ulrich 
in prep.). 

How large has the sample to be to reach a 
good discrimination power? In part one (U 1-
r i c h 2001) it was shown that for a suffi­
ciently correct identification of the shaping 
parameter k the sample has to contain be­
tween 200 and 500 times the species number 
of the assemblage. 

It was also shown that it makes few sense 
to estimate k for assemblages of less than 20 
species . Table 2 gives estimates of confi-

dence limits of fits of k and EPF for assem­
blages of 10 to 50 species. The Table shows 
that an assemblage size of 20 species indeed 
marks a boundary because of the step in the 
confidence limit. Below this species number 
k- and therefore EPF -have large error terms 
which in practice make it impossible to dis­
criminate between evenness v~lues from dif­
ferent assemblages. Fig. llA shows ErF 
values derived from fits of assemblages from 
10 to 50 species and again shows that a step is 
reached at species numbers above 20. At spe-

Table 2. 95% confidence limits for fits of assemblages (the data set) following a random fraction 
model of lO to 50 species (S). Given are estimates for the slope and the shaping parameter k after 
computing and afterwards fitting each assemblage 20 times . The upper part of the table gives the 
confidence limits of slope and k, the lower part these values in relation to the diversity index HPF 

and the evenness index EPF (see equations 18 and 19, respectively) 

95% confidence limit I slope 
s Slope Data set reElicated 

Once 3-times 10-times lOO-times 
10 -0.404 0.499 0.288 0.158 0.050 
15 - 0.355 0.226 0.130 0.071 0.023 
20 -0.288 0.295 0.170 0.093 0.030 
25 -0.243 0.246 0.142 0.078 0.025 
30 -0.236 0.129 0.075 0.041 0.013 
35 -0.202 0.140 0.081 0.044 0.014 
40 -0.180 0.089 
50 -0.155 0.088 

s HPF 

Once 
10 2.474 0.757 
15 2.815 0.480 
20 3.475 0.673 
25 4.245 0.429 

0.051 0.028 0.009 
0.051 0.028 0.009 

95% confidence limit I HPF 

Data set reElicated 
3-times 10-times lOO-times 
0.437 0.239 0.076 
0.277 0.152 0.048 
0.389 0.213 0.067 
0.248 0.136 0.043 

30 4.109 0.666 0.385 0.211 0.067 
35 5.556 0.395 0.228 0.125 0.040 
40 4.951 0.512 0.295 0.162 0.051 

95% confidence limit I k 
k Data set reElicated 

Once 3-times 10-times lOO-times 
0 1.064 0.614 0.336 0.106 
0 0.657 0.379 0.208 0.066 
0 0.272 0.157 0.086 0.027 
0 0.262 0.151 0.083 0.026 
0 0.342 0.197 0.108 0.034 
0 0.390 0.225 0.123 0.039 
0 0.304 0.176 0.096 0.030 
0 0.208 

EPF 

Once 
0.469 0.887 
0.447 0.928 
0.507 0.348 
0.478 0.430 
0.485 0.297 
0.497 0.215 
0.487 0.241 

0.120 0.066 0.021 

95% confidence limit I EPF 

Data set reElicated 
3-times 10-times lOO-times 
0.512 0.281 0.089 
0.536 0.293 0.093 
0.201 0.110 0.035 
0.248 0.136 0.043 
0.172 0.094 0.030 
0.124 0.068 0.021 
0.139 0.076 0.024 

50 6.458 0.439 0.254 0.139 0.044 0.488 0.264 0.152 0.083 0.026 
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A B Fig. 11 . Dependence of estimates of evenness 
(EpiC) on the number of species in the 

0.8 ..--------, 0.8 ..--------, assemblage for power fraction assemblages 

0.7 
0.7 

0.6 

IS: 0 .5 t 0 .6 w w 
0.4 

0.5 
0.3 

0.2 

0 1 0 20 30 40 50 60 0 1 0 20 30 40 50 

No. d sp:lde; No. of s p:lde; 

cies numbers above 20 a 95%- confidence of 
0.08 (Table 2) for instance means that it 
would be impossible to discriminate between 
a random fraction and a canonical log-normal 
distribution and their associated evenness. 
Because these fits are obtained using the 
whole community the associated sample size 
in this case is 180 times the number ofspecies 
(it is the quotient of the relative densities of 
the least and the most abundant species). This 
is quite a weak discrimination power and 
shows again how large sample sizes have to 
be to compute useful evenness values. 

For the diversity statistics there is no 
such sharp boundary in species numbers and 
the confidence limits given in Table 2 are 
nearly all higher than in the case of the k -
values. That means that the computation of 
diversities even needs higher sample sizes 
than of evenness if the diversity is computed 
via the slope values. If we compute evenness 
via the slope and use equation 20 than the 
evenness estimates are clearly species 
number dependent and good estimates will 
only be obtained at species numbers above 
I 00 (Fig. 11 B) . 

Important for diversity and evenness sta­
tistics are also upper and lower boundaries . 
Upper and lower boundaries of -oo and +oo 
for diversity and 0 to 1 for evenness values 
are of course only of theoretical interest. No 
real community will have such extreme 
shapes. Even in the most equal distributed 
community not all species will have the same 
density but they will have slightly different 
densities stemming from statistical noise. 
Their distribution will therefore follow a 
Poisson distribution. Such a distribution will 
have a slope of-2 I S and therefore a maximal 
diversity of 

Hmar = S I 2. (21) 

This results in a maximum evenness of 
0.992 for the power fraction and of 0.998 for 

with k = 0. A: estimates using least square fits 
of the assemblages as described in part one of 
this paper (Ul rich 2001 b) and using equation 
18. 8 : Estimates obtained by computing the 
slope and using equation 20. The error bars 
indicate in every case one standard deviation 
obtained from 20 replicates. The theoretical 

60 value for these power fraction assemblages is 
according to equation 18: En·= 0.5. 

the random assortment type ofdistribution . A 
Zipf-Mandelbrot distribution has a maximum 
evenness of 1 at k = 1. 

Minimum possible diversity values de­
pend on the minimum possible density in a 
community. If the species of a community fill 
the whole density range from maximum to 
minimum possible density then the minimum 
diversity is the negative inverse of the slope 
of the linear regression between maximum 
and minimum density. This slope value is of 
course ln (D 111;,) I S, where D 111 ;11 is the mini­
mum possible relative density. The minimum 
possible diversity value is therefore 

Hmin = S I -1n(Dmin) (22) 

If for, instance, the maximum possible 
density in a community of 50 species is I 00 
individuals I ha and the minimum possible 
density 1 individual I ha then H 111 ;11 = 50 I -In 
(0.000 111 00) = 3.62 . The associated evenness 
of this example will be according to equation 
17 Emin = 0.42. 

4. DISCUSSION 

The above results show how the current 
confusion about the use of evenness indices 
stems from the ambiguities in defining even­
ness. Definitions stemming from basic fea­
tures of relative abundance distributions may 
help to clarify the concepts of evenness and 
diversity. 

The above equations define diversity and 
evenness for three types of relative abun­
dance distributions, a power fraction, a ran­
dom ass01tment, and a Zipf-Mandelbrot type. 
Zipf-Mandelbrot type distributions are only 
seldom encountered in nature and it may be 
that existing examples all stem from trun­
cated power fraction types (Frontier 1985). 
Random assortment type distributions are 
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frequently encountered in samples and were 
indeed originally (as geometric or log-series 
distributions) intended to describe samples. 
Only species poor, early successional or not 
fully censured communities are thought to 
follow this type of RAD (Whittaker 1972, 
Pielou 1977, Tokeshi 1993). The latter 
author rightly remarks that fit ofa random as­
sortment type distribution may only be the re­
sult of too few data points giving the 
impression of a linear sequence. Reanalysis 
ofexisting claims also point to this interpreta­
tion (Ulrich unpubl.). 

The power fraction model of Tokeshi 
( 1996) has the very attractive feature that it 
can encompass many of the so far described 
RAD models by changing one shaping pa­
rameter (Ulrich 200lb). Fork-values below 
- 0.1 it takes a nearly linear shape in a log 
abundance- species rank order plot similar to 
random assortment, geometric or log-series 
models . It is therefore an ideal model to de­
scribe the whole range of shapes by a single 
parameter and it would be very worthwhile to 
reanalyze existing data whether they can be 
described by this model. Preliminary surveys 
suggest such a possibility (Ulrich unpubl.) . 
The model may then serve as a standard for 
diversity and evenness measures. 

What are the properties of the above de­
fined evenness and diversity indices? An im­
portant property of diversity indices is that 
they should be strictly additive that means 
that the total diversity in a pooled set of com­
munities should be greater than the diversity 
within the communities (Lewontin 1972, 
Land e 1996). All three proposed diversity 
measures pass this criterion . This feature also 
allows to separate a , p, and y diversity 
(Whittaker 1972). 

Evenness is always derived from the 
shaping parameter k of a distribution. All dis­
tributions with the same parameter values 
have by definition the same evenness. At first 
glance, this is may be counterintuitive in the 
case of communities following Zipf­
Mandelbrot RADs . However, this stems only 
from the common way of plotting distribu­
tions . Taking a double log plot makes this 
definition the natural way but astonish us in 
other RADs. 

Routledge (1983) and Smith and 
W i Is on ( 1996) listed a number ofprope1ties 
every evenness index must have. Some of 
these criteria are trivial and of course met by 
the above defined evenness indices (mini-

mum value of 0 and maximum of I, inde­
pendent of units of measurement, maximal 
when species abundances are equal, minimal 
when they are as unequal as possible) . Others 
are questionable. Routledge (1983) and 
Smith and W i l son (1996) argued that any 
evenness statistic should decrease by reduc­
ing marginally the abundance of the least 
abundant species or by adding very minor 
species . All common evenness indices pass 
these criteria, but the above defined indices 
not. However, such a concept stems from a 
very static view of communities. Imagine a 
community following a canonical log-normal 
distribution . The most minor species live al­
ways in danger of going extinct and random 
or seasonal fluctuations of the extinction 
level leads to fluctuations in species numbers . 
For insect communities these yearly species 
turnover rates arc frequently in the order of 5 
to 20% per year (Den Boer 1985, Demp­
ster eta/. 1995, Ulrich l999b) . Such fluc­
tuations however do not change the resource 
apportionment and the relative abundance 
distributions . The community will further­
ance be divided according to a canonical 
log-normal and it seems logical to describe it 
with the same evenness value. The changes in 
species numbers are described by varying 
slopes and therefore diversities. 

Another questionable criterion is sym­
metry (Pielou 1977, Smith and Wilson 
1996). According to common interpretation 
of evenness a density sequence 1000, 1000, 
1000, 1 should have the same evenness than 
1000, 1, 1 , 1. £ ,. and EQ pass this criterion 0 , 

other indices not and the above defined even­
ness indices do also not. Both sequences 
clearly follow different relative abundance 
distributions. The first equals more a MacAr­
thur fraction model (To k e s hi 1990), the lat­
ter may stem from a Zipf-Mandelbrot 
division procedure. It is not possible to com­
pare both sequences directly but if we accept 
a power fraction model as the universal stan­
dard then the first sequence has clearly a 
higher evenness than the latter (k = 0.75 and 
0.06). 

Smith and W i Is on ( 1996) also identi­
fied a good mid range behavior of an even­
ness index as a desirable feature. These 
authors favored a density sequence of 800, 
600, 400, and 200 as being intermediate. 
Such a view cannot be accepted because in­
termediate has to be defined in terms of real 
community structures but not of arbitrary 
densities . We have to construct an appropri-
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ate null model, a randomly constructed com­
munity . Such a community should have an 
evenness value around 0.5 . May (1975) fa­
vored the canonical log-normal because of its 
derivation from the central limit theorem. 
Tokeshi (1993), on the other hand, pointed to 
a random assortment model (with k = 1), be­
cause it can be considered similar to the neu­
tral model approach of Cas we 11 (1976). 
From the definition ofequation 12 we see that 
a random assortment model with k = 1 has an 
evenness value of 0.5, a very desirable fea­
ture. Equation 17 gives a canonical log­
normal the evenness 0.52 . Of course, both 
values can only be interpreted in terms of 
their underlying RADs and cannot be com­
pared directly. A third candidate for an appro­
priate null model of a relative abundance 
distribution is the random fraction model of 
To k e s hi (1990), a model in with all niche 
divisions occur at random. Such a model has 
(according to equation 18) an evenness of ex­
actly 0.5. It should however be noticed that in 
real communities evenness values less than 
0.4 (equivalent to k-values less than -0.3) 
will seldom be encountered (S u g iha r a 
1980, Tokeshi 1996, Ulrich unpubl.). 

In Figs 9 to 11 and Table 2 it was shown 
that it makes few sense to compute evenness 
and diversity for communities with less than 
20 species because of the high variance of 
this estimate. Fig. 9 also shows the depend­
ence ofHPF on sample size. This dependence 
will be especially pronounced in small com­
munities. This finding has implications for all 
diversity statistics and studies in which diver­
sity is used for comparison. Recently the sta­
bility- diversity debate gained much interest 
(Naeem eta/. 1994,1995, Tilman 1996, 
1999. Naeem and Li 1997, Doak et al. 
1998, Tilman et al. 1998, Sankaran and 
M c N a u g h ton 1999) although there is little 
concern how to measure stability, evenness 
and diversity (Do a k et al. 1998). Diversity is 
most often defined as species richness. The 
above results indicate that this may be the 
best way in small communities were the spe­
cies number is known . In medium sized and 
large communities the species numbers may 
fluctuate considerably and are often un­
known. Because the estimation of diversities 
via the slope value requires no knowledge of 
the total number ofspecies indices as the ones 
developed above seem to be more appropri­
ate in the latter cases. 
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5. SUMMARY 

The recent concepts of diversity and evenness 
and their definitions are discussed. On the basis of 510 
model assemblages of different species numbers and 
structures (Table I) it is shown that especially the am­
biguities in defining evenness has led to confusion 
about evenness measures and their applicability (Figs 
I , 2, 3, 4, 5, 6). Definitions of diversity and evenness 
from parameters of relative abundance distributions 
(Figs 7, 8) avoid such ambiguities. In this paper diver­
sity is defined as the negative inverse of the slope of 
the relative abundance distributions and evenness is 
the arcus tangens transformed shaping parameter. Di­
versity and evenness depend therefore on the type of 
relative abundance distribution and diversities from 
communities of different types of relative abundance 
distributions (power fraction, random assortment or 
Zipf-Mandelbrot type) cannot be compared directly. 
The properties of these newly defined diversity and 
evenness indices and their behavior in samples (Figs 
9, I0, 11 , Table 2) are discussed and it is shown that 
existing tests contain in part inappropriate features . It 
is also shown that Tokeshi's newly developed power 
fraction model may serve as a universal basis for defi ­
ning diversity and evenness indices . 
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