
84.

ON AN ELEMENTARY PROOF AND GENERALIZATION OF SIR ISAAC NEWTON’S HITHERTO UNDEMONSTRATED RULE FOR THE DISCOVERY OF IMAGINARY ROOTS*.[Syllabus of Lecture delivered at King’s College, London +, June 28, 1865. 
Proceedings of the London Mathematical Society, I. (1865—1866), pp. 1—16.]Let fx = 0 be an algebraical equation of degree n.Suppose fx = a0xn + na1xn-1 + 1/2n (n — 1) a2xn-2 +................. + nan-1x + an;

a0, a1, a2................. an may be termed the simple elements of fx.Suppose
Ao, A1, A2, ................ An may be termed the quadratic elements of fx.
ar, ar+1 is a succession of simple elements, and Ar, Ar+1 of quadratic elements. is an associated couple of elements;

is an associated couple of successions.A succession may contain a permanence or a variation of signs, and will be termed for brevity a permanence or variation, as the case may be. Each succession in an associated couple may be respectively a permanence or a 
variation. Thus an associated couple may consist of two permanences or two variations, or a superior permanence and inferior variation, or an inferior permanence and superior variation; these may be denoted respectively by the symbols pP, vV,pV, vP, and termed double permanences, double varia­tions, permanence variations, variation permanences. The meaning of the simple symbols p, v, P, V speaks for itself.* In chap. 2 of part 2 of the Arithmetica Universali», entitled “De Forma AEquationis.+ The substance of this lecture was communicated to the Mathematical Society of London(Professor De Morgan in the Chair), June 19, 1865.
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84] On Sir Isaac Newton's rule for Imaginary Roots 499Newton’s rule in its complete form may be stated as follows:—On writing the complete series of quadratic under the complete series of simple elements of fx in their natural order, the number of double per­manences in the associated series, or pair of progressions so formed, is a superior limit to the number of negative roots, and the number of variation permanences in the same is a superior limit to the number of positive roots in fx.Thus the number of negative roots = or < ΣpP) This is the Complete Rule as „ „ „ „ positive roots = or < ΣvP∫given in other terms by Newton.The rule for negative roots is deducible from that for positive, by chang­ing x into — x.As a corollary, the total number of real roots = or < ΣpP + ΣvP, that is, = or <ΣP.Hence, the number of imaginary roots= or > n — ∑P, that is, = or > ∑ V.This is Newton’s incomplete rule, or first part of complete rule, the rule as stated by every author whom the lecturer has consulted except Newton himself*. By a group of negative signs, or a negative group, if we understand a sequence of negative signs, with no positive sign intervening, this incomplete rule may be stated otherwise, as follows :—The number of imaginary roots of an algebraic function cannot be less than the number of negative groups in the complete series of its quadratic elements.Arithmetical illustrations:—Relation of Newton’s complete rule to rule of Descartes. Newton’s “ Imaginary positives,” “ imaginary negatives ” equivalent to ΣpV, ΣvV.Newton’s complete rule may be made to undergo its first step of gene­ralization as follows:—Let the two series of simple and quadratic elements of f(x + λ) be formed, and the double permanences due to this transformation, say ΣpP(λ), or more briefly, pP (λ), be called the number of double permanences proper to λ, and in like manner pP (μ) the number of the same proper to μ.
In some cases this rule appears to give very little information. For example, If we take the equation x3 + 3qx + r=0, its immediate application will only show that if all the roots are real q<0. If, however, we make y=xλ and apply the criteria to the transformed equation in y, 

giving λ successive values between 1 and ∞, the rule will in fact lead (though by a difficult process) to the true discriminative criterion ; this example serves to show that there is a deeper signficance seated in the Newtonian criteria than does at first sight appear. 32—2
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500 On Sir Isaac Newton’s rule [84[N.B. pP (0) becomes the notation for what has been termed above ΣpP.]Then we have the theorem following:—Supposing μ > λ, pP(μ) = or >pP(λ),or more exactly, 
pP (μ) - pP (λ) = (μ, λ) + 2k,where (μ, λ) denotes the number of real roots included between μ and λ, and 

k is zero or any positive integer.Statement of this theorem in general terms.This is to Newton’s what Fourier’s is to Descartes’s.Fourier’s theorem recalled; it may be stated as follows:—Form the simple elements appertaining to f (x + λ) and to f (x+μ); then 
p (μ) — p(λ) = (μ, λ) + 2k, briefly p(μ,)-p(λ)= or > (μ, λ); as a con­sequence
p (0) — p(— ∞)=p (0) for p (— ∞ ) = 0 ; hence permanences in fx = superior limit to number of negative roots;p(∞)-7)(O) =v(0) for p(∞) = n; hence variations in fx = superiorlimit to number of positive roots.So from the new theorem, briefly No. 1 Theorem (presently to be esta­blished in a more general form), namely,

pP(μ) -pP(λ)= or >(μ, λ), since
pP (0) — pP(- ∞ )=pP(0); for p (— ∞ ) = 0, pP (— ∞ ) = 0, we obtain pP(O) = or > (0, — ∞ ).On examination it will be found that P (+ ∞ ) = P (— ∞ ) = n or (n — 2) according as the second quadratic element in P(0) is positive or negative*.  Thus

* If fx=(a0, a1, α2,...αn)(x, 1)n, and if B=α12-α0α2, and h=÷∞, the series of quadratic elements (when in each term only the highest power of h is retained) will be found to be α2; ' 
Bh4; ...Bh2n-2; a2h2n.

pP (∞)—pP(0) = n — pP(0) = υV(0) + vP(0) +pV(0) = or > (∞ , 0), or else
pP (∞) — pP (0) =n - 2 — pP(Q) = vV(0) + vP(0) + pV(0) — 2 = or > (∞, 0), which is not what is wanted; but by changing x into - x, and thereby com­muting the variations and permanences of the simple elements of f (x) one 
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84] for the discovery of Imaginary Roots 501into the other, the rule for the negative roots gives the rule required, namely, vP(0)= or >(∞, 0)*.No. 1 theorem may be transformed or, rather, otherwise stated as follows:—The simple elements of f (x + λ) are in fact
It will not affect the successions either in this series itself or the derived series of quadratic elements if we reject the common factor 1/Π from each term. It then becomes 

and similarly rejecting the positive factors 12, (1.2)2, (1.2.3)2, etc., from the second, third, fourth derived terms respectively, the derived series may be written where in general 
γr denoting the fractionTheorem No. 2 stated. If γr in the above association of series be subject to satisfy the equation in differences 2 — γr = —, provided γr re-. Υr+1mains always positive from r = n to r=l inclusive +, and if we call the number of double permanences in pP(λ), then it is still true that 
The theorem will be subsequently simplified by integrating the above equa­tion, and will be shown to include theorem No. 1.* So in general vP (λ) -vP(μ) = (μ, λ) + 2k', where k' is zero or a positive integer. We have thus a second theorem as general as the first, and the two will give different limits unless k = k' , that is, unless P (μ) = P (λ), for 2 (k - k') = P (μ) - P (λ). There is nothing corresponding to this in Fourier’s theorem ; for the two inequalitiesp(μ)-p(λ) = or <(μ, λ), v(λ)-v(μ) = or <(μ, λ) constitute not distinct but identical assertions.+ As regards the necessity of the extreme limits n and 1, observe that unless yn were made positive the product of  (see C, p. 502) would not follow the sign of ε for the case of r=n-1, Gn-1≡0 ; and unless γ1 were made positive, f'' .f would not be positive (see p. 504) when G1=0; consequently the three final associated pairs of signs as x increases might pass through the successive phases 
and thus a double permanence would be lost in the ascending transit.
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502 On Sir Isaac Newton's rule [84A theorem No. 3 exists derived from an order of considerations into which this Lecture will not enter. It gives much greater generality to the value of γr by the introduction of a second arbitrary parameter into the criteria: see footnote * p. 508.I proceed to establish theorem No. 2 by a method precisely analogous to that used in establishing Fourier’s simpler one.For brevity, by fr understand frx; by fr (+ ε), understand fr(x + ε); and so by Gr, Gr(± ε) understand Grx, Gr (x ± ε).ε will denote an infinitesimal.WhenWhen
WhenButand

orSimilarly, whenit may be proved that
* Consequently if we write the product of these four quantities obeys the signof ε. For example, If Gr=0 and Gr+1=0, we have

ButThus
and consequently
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84] for the discovery of Imaginary Roots 503We can now trace the law of the change in the number of double permanences in the associated pair of series,whereas x increases continuously.No change can take place except at the instant tvhen one or more of the terms in the inferior or superior series, or in both, simultaneously become zero.l0. Suppose a single term in the upper series as fr to become zero.Writing down the sequence fr+1, fr, fr-1 in conjunction with the asso­ciated terms,
Gr+1, Gr, Gr-1,

Gr+1, Gr-1 are seen to be necessarily positive, and Gr of the contrary sign to 
fr+1 fr-1∙The number of cases depending on the signs of fr+1 and fr-1 are four, but reducible to two essentially distinct ones as below *,

For (x-ε) these become respectively
For (x + ε) they become
And there is neither gain nor loss of double permanences.20. Suppose a single term in the lower series to become zero. From the value of Gr in terms of fr+1,fr,,fr-1, it follows that the two extremes of these three must have the same sign ; and the signs of fr+1 fr, Gr+1 Gr-1 give rise to sixteen cases reducible to the four following essentially distinct ones +:—

* For the simultaneous reversal of the signs of the upper line will not affect the reasoning.+ For neither the reversal of the signs in the upper nor in the lowerreasoning. ...
.... + ++ as χ ascends from λ to μ will,+ The number of occurrences of the combination +++except for special cases, be the value of k, and the number of occurrences + θ +manner, the value of k'; k, k' having the meanings attributed to them at footnote *, p. 501.
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504 On Sir Isaac Newton’s rule [84Immediately after the transit of the root, see footnote *,  p. 502, these become of the form
+  + +-+ +  + +- ++ + + + — + 4- + — + — —And immediately before the transit they were of the form
+  + +-+ +  + +- +
 -+ +  + +-- +  -In the first of the four cases there is a gain of two double permanences in ascending from x — ε to x + ε; in the other three cases there is neither gain nor loss.Thus for a single vanishing of an intermediate term in the upper or lower series double permanences may be gained, as x continuously increases, but can never be lost.The same conclusion may be also established in a similar manner when several consecutive terms of the lower series forming a group vanish simul­taneously, without the associated upper terms any of them vanishing; and also when two or more consecutive terms in the upper series vanish, which necessitates all the associated terms in the lower series also vanishing; and the law which limits the increase may be ascertained, and such increase may be shown to be always an even number.But these cases are singular cases, and may be met at once by the consideration (equally applicable to the proof of Fourier’s simpler theorem) that if two or more functions of x depending on fx vanish simultaneously, this must be by virtue of one or more relations existing between the coeffi­cients of fx; and by giving infinitesimal variations to the coefficients, we shall leave the criteria [the two sets of terms corresponding to given limits] virtually undisturbed, and may manage that the coincidence of the transits will no longer take effect; at the same time in general the character of the roots will remain unaltered as regards the number of real and imaginary ones; so that the singular cases come under the operation of the same law as the general case. There is, however, an apparent possible exception to this reasoning, namely, when fx possesses one or more groups of equal roots, in which case an infinitesimal variation in the coefficients may be accompanied with a change of character in the roots, such as a passage from real equal to imaginary pairs: to meet this objection without embarrassing oneself with intricate considerations as to the signs to be given to the infinitesimal varia­tions in order to avoid liability to such change, it is better to adopt the same kind of proof as is usual with Fourier’s method, which there is no difficulty in doing by aid of the expressions given above with reference to the value of 

fn(ε), and consequently also of fn+1 (ε), fn+2(ε), ...fn+i-2(ε), when fn, fn+1, 
...fn+i-1 are all zeros, from which may easily be deduced also the special 
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84] for the discovery of Imaginary Roots 505expressions for Gn(ε), Gn+1(ε), ... G(n+i-2) (ε) applicable to this case; and again, as regards the case when a group of lower terms vanish without the associated upper ones so doing, by aid of the general expressions given for the 
G functions last above written. But time would not suffice for going into these details in a single lecture*.We must, lastly, consider what happens when one or more of the terms at either extremity vanish.

fn and Gn are constants, and can never vanish, and G is a square, and essentially positive.But suppose x to become a root of fx, so that f = 0, then the last pair of couples in the associated series immediately before the transit will be and immediately subsequent to the transit ; thus there will be one double permanence gained when a simple root is passed over.Suppose now x to become a root of the ith order of repetition, equiva­lent, that is, to i roots passed over, so that f = 0, f1 = 0, f2= 0, ... fi-1 = 0, then the last i + 1 superior terms of the Association become, immediately after the transit, 
tantamount to 
and the lower terms associated therewith, rejecting the common factor fi, and certain obviously superfluous positive numerical factors besides, become

By hypothesis 2 — γi-1 > 0. Hence there is obviously one double per­manence, namely at the first couple of pairs above written, corresponding to a value of x immediately greater than a multiple root, whereas for a value of x immediately less than such root, there is no double permanence at all corresponding, for the upper series will consist exclusively of variations of sign when ε is changed into — ε ; as regards the other terms in the lower series, they will not necessarily be all positives, unless, in order to meet the 
case of equal roots in fx, we determine the value of γr in the equation2- γ r= 1/γ r+1  , subject to the condition that γr shall be not only positive, butalso subject to the limitation yr<   for all values of i not superior to n 

See Appendix for summary of demonstration applicable to these hypotheses.
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506 On Sir Isaac Newton’s rule [84[r of course being supposed less than i]. This latter limitation, however, will eventually be seen to be included in the former*.  This being the case, it follows that the number of double permanences appertaining to the associated series
will be increased by at least as many units as there are real roots, equal + or unequal, passed over as we ascend from λ to μ, and that the excess, if any, of the increase of such number over the number of real roots will be an even integer.To determine the value of yr, make yr = , then
orof which the general solution is Ur = A + B (r— 1) ; so that

If we write A =n, B = — 1, we obtain
These are the values of yr in the theorem No. 1, and they satisfy the two conditions above stated. For (1) yr is positive, and (2)
for all values of i <n+.Hence theorem No. 1 is contained in theorem No. 2, and Newtons theorem is contained in theorem No. 1, so that it is a corollary in the

* It is shown at p. 507, that v having any value not intermediate between -nand 0. When v is positiveAgain, when v is negative let v= — v', then v'= or >n= or >i.Hence or and the required condition is still satisfied. The  soleexception is when v=-n and i = n, that is, when the original Newtonian criteria are those employed, and the equation has all its roots equal to one another, for which case see footnote +, below.+ Each root repeated m times counts as m roots.÷ The degree of fx being n, i is necessarily less than n, unless all the roots are equal, a case which may be considered excluded, as then all the Newtonian criteria become zero.
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84] for the discovery of Imaginary Roots 507second order of derivation from our theorem No. 2. The general value of v + (r — 1) . . γr is  -———- , v being any real quantity whatever not intermediate between 0 and —n. To obtain theorem No. 1 we must make υ = -n. In that case γn = 1/0 and accordingly when Gn-1 = 0, Gn-1 (ε) by the formula at p. 502 should vanish. It will easily be found that for this peculiar value Gn-1(x) becomes independent of x, in fact a constant*.Theorem No. 2 may also be stated as follows:—If and v be any real quantity not intermediate between 0 and — n, and if 
say, be taken as the simple elements of fx, and 
say, as the quadratic elements of the same; and if we understand by the (cA) association the paired series 
and if pP(λ) signifies the number of double permanences in the (cA) association corresponding to fax + λ), then 
where k is zero or some positive integer.When v = -n, this theorem becomes effectively identical with theoremNo. 1 in its original form.The existence of a theorem No. 3, including No. 2, and containing two arbitrary parameters, becomes apparent from the consideration that will have the same finite roots as Fx = 0, where

• Analogous observations apply  to the so tkat when f1 before such transit may be     ,and after transit   of two doubleusually happens (see p. 503), there may on the above hupothesis be an extra of k and k, in permanences and loss of two variation permanences, thus theorem,toolnote ∙, p. 501, which of course does not affect the validity of positive integer.+ And of course also  vP(λ)-vP(μ) = (μ,λ + 2k',where k' is zero, or some positive integer.
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508 On Sir Isaac Newton’s rule [84ε, η being two infinitesimals: this brings in two parameters, which, so far as this particular method of demonstration of their existence applies, would seem to be necessarily integer, but, from the nature of the question, must obviously admit of some wider definition*.The labours of all preceding writers on this subject have been confined exclusively to the imperfect form of Newton’s theorem; nor previously to the lecturer’s communication of his Trilogy of Algebraical researches to the Royal Society of this year was anything more made out of it than to show that if any negative terms occur in the quadratic elements, there must be 
some imaginary roots + ; but this becomes immediately apparent if we con­sider f a homogeneous function of the nth degree in x and y; for then the number of imaginary roots of x/y or y/x in f(x, y) cannot be fewer than in 

* If we use theorem No. 2, j may be made zero (it will be found) without any loss of generality; in fact if it be made greater than zero, the result obtained will be included in that obtained by making it equal to zero. On the other hand, if we use theorem No. 1, retaining for 
i, j their general values, the result obtained will be the same as that which flows from the use of theorem No. 2, with j = 0, except that it will be specialized by v being restricted to integer values only. By aid of the method above indicated, we may substitute as the values of α0, a1, a2, ...an  in p. 507, [see Erratum, p. 513] 
provided v= or >i or v= or < -n and i= or >0. The particular form of demonstration indi­cated requires i to be integer; but this restriction I have great reason to believe, indeed have scarcely a doubt, is unnecessary and may be neglected.
may be termed a divestible system of coefficients; such system is a generalization of the ordinary binomial system

If we call a, β, γ ... any system of the like nature, and form the equationit is obvious, or at least very readily proved, that the simple roots of this equation must all, or all but one, be imaginary. It is not unlikely that every system a, β,y... which satisfies the above condition and one or more other general conditions, may be employed as a divestible 
system. The particular system, involving two arbitrary parameters, above given will be found to satisfy the further condition that all its Newtonian non-trivial criteria (the A1, A2, .........An-1 ofp. 488) become negative. When n = 2 or n = 3, the second condition implies the first; and for these cases it is easily proved that every system of quantities which satisfies the second (and therefore the first condition) forms a valid system of divestible factors. If we make i=0 and 
r = l, we learn that the equation can never have more than one real root; if we make i = 0 and v = ∞, we learn the same of equation
Newton’s own rule would only, in these and such like examples, reveal the existence of a single pair of imaginary roots.

+ See Postscript.
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84] for the discovery of Imaginary Roots 509
, i and j being any two integers : making i +j = n — 2, andgiving j all values from 0 to n — 2 in succession, it will readily be seen that Newton’s criteria are the quantities which respectively serve to determine whether the quadratic functions obtained by these various substitutions have real or imaginary roots. If any one of them is negative, one of those deriva­tives has imaginary roots, and therefore the primitive function f(x, y) has at least one such pair*.Newton’s assertion (if it is his own assertion), that his rule will in general give the actual number, and not merely a superior limit to such number of real roots, is certainly more than questionable. For if f'x, f"x, f"'x, f""x, 

f''",x have respectively not more than i1, i2, i3, i4, i5 pairs of imaginary roots, this rule cannot reveal the existence of more than J pairs, where j is the least number of the set of numbers i1 + 1, i2 + 1, i3 + 2, i4 + 2, i5 + 3,..........Geometrical illustration.Ortae a Cartesio, quam Newtonus insuper auxit, Doctrinae, en ! demum, fons et origo patent.
Postscript.Dr J. R. Young contests the accuracy of the assertion on p. 508, and claims to have demonstrated Newton’s rule twenty years ago. Call the equation 

the derived cubics are of course to a factor pres respectively
* In like manner, if [a, b, c, d] represent the discriminant with its sign reversed of the fact of any of the quantities becoming negative will imply the existence of some imaginary roots in and so in general. One would be glad to know whether by aid of a complete table of the discriminants of a function of the nth order and of its successive derivatives (respectively 2, 3, ... (n- 1) in number), it is possible or not to ascertain the exact number of its real roots.When n is 4 the only dubious case arising under such table is that where the discriminant of the quartic itself is positive but those of its two derived cubics and three derived quadratics each negative. In such case it remains to be ascertained whether it is true or not that the roots of the quartic cannot all be imaginary, or (which is here the same thing) must all of necessity be real.It seems desirable to show ft priori that when the roots of are all real, the criteria p-q, q2-pr, &c. are necessarily all positive. This endoscopic method of proof I have not yet been able to complete ; but I have noticed that if α, β, γ, δ ... are the roots of fx, and

the following somewhat curious relations obtain, namely,
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510 On Sir Isaac Newton's rule [84It is with these cubics that Dr Young, in his argument (if it may be called so) exclusively deals. Omitting merely superfluous observations his ratioci­nation runs as follows:—“If any of these limiting cubics indicate imaginary roots when submitted to the criteria, such indications will imply imaginary roots in the proposed equation. But several indications, apparently distinct, may offer themselves in those equations which, upon closer examination, may be found to be necessarily dependent or concurrent. Distinct imaginary pairs can of course be inferred only from independent and non-concurring conditions. We have therefore to inquire how these are to be discovered in the above series of equations. And first we may remark that since only one imaginary pair can enter into a cubic equation, it follows that whether the criterion of imaginary roots is satisfied by the three leading terms of any of the above cubics or by the three final terms, or simultaneously by both sets of three, one imaginary pair, and one only, is implied. Hence when both sets of three terms, furnished by any cubic, fulfil the proposed conditions, these conditions, though really independent, that is, not necessarily implied one in the other, nevertheless necessarily concur in indicating the same thing. Thus only a single imaginary pair can be inferred from any one of the limiting cubics, whether the criterion is satisfied for one set of three terms or for the two consecutively.
“ If the first set of three (that is, the leading terms in the first set) satisfy the criterion, we can immediately infer the existence of one imaginary pair. If the next set (the final terms of the same cubic) also satisfy it, the preceding condition merely recurs, and supplies no additional information. In this case the following set of three, the leading terms of the next cubic..., furnish the same concurring condition..., and so on, until we arrive at a set of three terms for which the condition fails, thus putting a stop to the series of concurring indications, and preparing the way for new and distinct con­ditions altogether unconnected with the former. As soon as the criterion again holds, the condition being thus entirely independent of, and unconnected with, the former, must imply another and distinct imaginary pair, and so on to the end of the series.” Dr Young subsequently goes on to observe that the criteria of the successive cubics (discarding repetitions) are identical with those of the original equation, which he says, “ we now know to be so connected together, that if, when proceeding from one set of three terms in the equation to the three next in order, the consecutive criteria both have place, the recurrence is to be regarded merely as a second indication of the same thing—the existence of a single imaginary pair; and that as soon as the condition fails, preparation is made for a new and independent indication, and so on, until all the sets of three have been examined. Hence the indications that are really non-concurrent, and consequently the number of imaginary 
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84] for the discovery of Imaginary Roots 511roots inferrible from them, may be noted ” according to a rule “ which is virtually the same as that of Newton.”This is the sum and substance, in a simplified form, of Dr Young’s so- called proof. “ It is such stuff as dreams are made of,” and, culminating as it does in a palpable petitio principii, does not need a detailed refutation at the hands of the author of this lecture. It is not by such vague rhetorical processes, but by quite a different kind of mental toil, that the truths of science are to be won, or a way opened to the inner recesses of the reason.
Appendix on the singular cases referred to in the text foregoing, 

see ρ. 504.
It may easily be shown that there are only four hypotheses admissible concerning vanishing f's and G’s.l0. fr may vanish, but not the adjacent terms nor the associated term Gr.2o. Gr may vanish, but not the adjacent terms nor the associated term fr.30. Gr, Gr+1, ... Gr+i-1 (i being greater than unity) may vanish without 

any of the associated terms vanishing.40. fr, fr+1, ..,fr+i-l (i being greater than unity) may vanish, and 
consequently also Gr, Gr+1, ... Gr+i-1 all vanish.Hypotheses (1) and (2), which are the only cases that can happen in general, have been discussed in the text preceding.Now consider the 3rd hypothesis.1st. Suppose i any even number (say 4), so that
then have the same sign inter se,and have the same sign inter se,and there will be four essentially distinct cases as below, representing the partial association
at the moment of x taking the critical value which causes the G’s to vanish, namely—
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512 On Sir Isaac Newton's rule [84Immediately after the passage of the critical value these signs become 
as appears from the expression for Gr(ε) in terms of Gr+i, fr, fr+i given at p. 502 ; and immediately before the passage these partial associations are of the form

There will thus be a gain of 4 double permanences in passing upwards through the critical values in the two first cases, and neither gain nor loss in the two last.2nd. If i is any odd number, say 3, there will still be 4 cases, for which respectively the signs after transit will be 
and before transit, 
showing a gain in the upward passage of 4, 2, 0, 0 double permanences respectively.Lastly, let us consider the 4th hypothesis.1st. Suppose i is any even number (say 4), and that 
then, after the transit, the f and G associated series from r + 4 to r -1 become, writing for brevity’s sake Φ for fr+4 and ψ for fr-1, 

where γr is positive, and, as follows from what is proved in footnote *,  p. 502, k1, k2, k3 also will be all positive. Thus there will be essentially only two cases, according as φ, ψ have the same or contrary signs; after transit, the association will be of the form 
and before transit (changing ε into (— ε)) of the form 
showing a gain of 2 double permanences, or else of 4 such.
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84] for the discovery of Imaginary Roots 5132nd. If i is any odd number, as 3, the associated series corresponding to the values of r, from r + 3 to r— 1, using Φ to denote fr+3, will be 

and thus the signs after transit will be 
and before transit 
showing a gain of 2 double permanences on either supposition in the ascent from x — ε to x + ε. And so in general from the 3rd and 4th (the two singular) hypotheses, whatever the value of i may be, an even number of double permanences may be gained in passing upwards through a critical value of x, but none can ever be lost* : this completes the demonstration.* The number of double permanences gained on the 3rd hypothesis will be in the 4 subcases respectively 2i, 2i, 0, 0 if 2i consecutive G’s vanish, and 2i+2, 2i, 0, 0 if 2i + l of them vanish ; on the 4th hypothesis, in the 2 subcases the respective numbers gained will be 2t - 2, 2i if 2i con­secutive f's vanish, and 2i, 2i if 2i + 1 of them vanish: this statement requires a slight modifica­tion for the particular form of the theorem No. 2 corresponding to v=0. It may be noticed that in an exhaustive study of this theorem two sorts of singularities occur separately or in combina­tion, namely, those arising out of the form of the equation, and those imparted to the criteria by giving critical values to the limited arbitrary parameter.

ERRATUM.Theorem 3 is stated erroneously in footnote (*),  p. 508. Correctly stated it furnishes a wider generalization of Newton’s own theorem than can be obtained directly from the theorem 1 or 2 of the text, but not a generalization of those theorems themselves. It should be as follows :Ifand we form the pair of progressions
where v= or >i or else = or < -n, 1 of thethen if i is a positive integer the number of double permanences is a 1 ‘ itive r00t8 in ft.negative roots, and the number of variation permanences to a
Possibly this theorem continues to subsist when i is any positive quan
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