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Modelisation of glass spinning 

J. R. CLERMONT, J. M. PIERRARD and C. GODET (GRENOBLE) 

Two THEORETICAL models have been considered for the upper jet region of the molten glass 
during the fibre spinning process. The first model uses the experimental data of temperature 
and velocity measurements at the surface in the Navier-Stokes equations in order to determine 
the temperature field in the upper jet region. The second model is introduced to determine 
the approximate, physically reasonable values of the radiative flux vector as well as the con­
vective transfer coefficient between the glass and its surroundings. These quantities may be 
used in a more advanced study of the problem 

Rozwai:ono dwa teoretyczne modele dla g6rnej cz~sci strugi stopionego szkla w procesie p~­
dzenia wl6kna. Pierwszy model wykorzystuje doswiadczalne pomiary temperatuty i pr~dkosci 
na powierzchni w r6wnaniach Naviera-Stokesa w celu okreslenia pola temperatury w g6rnej 
cz~sci strugi. Drugi model wprowadzono w celu okreslenia przyblizonych, fizycznie uzasadnio­
nych, wartoki strumienia radiacyjnego jak r6wniez wsp61czynnika konwekcyjnego przenoszc­
nia mi~dzy szklem i jego otoczeniem. Wielkosci te mog(l bye wykorzystane w bardziej zaawan­
sowanych badaniach. 

PaccMoTpeHbi gBe TeopeTWiecKHe MogeJIH ,AJIH BepXHeii 'tlaCTH CTpyH cnJiaBJiemmro creKJia 
B IIpOI..leCce IIpHgeim:H BOJIOI<Ha. IJepBaH MO,AeJIL HCITOJIL3yeT 3KCIIepHMeHTaJILHbie H3MepeHHH 
TeMrrepaTyphi H CKOpOCTH Ha IIOBepXHOCTH B ypaBHeHHHX HaBLe-CTOKCa C I..leJihlO orrpege­
JieHHH IIOJIH TeMrrepaTyphi B BepXHeH 'tlaCTH crpyH. BTOpaH MO,AeJIL BBe,AeHa C I..leJiblO onpege­
JICHHH npH6JIH)I{CHHhiX, <l>H3WieCKH o60CHOBaHHhiX, 3Ha'tleHHH pa,AHaJILHOrO IIOTOKa, KaK 
TO)I{e K03<l><l>HI..lHeHT8 KOHBeKI..lHOHHOro nepeHoca Me>Kgy CTeKJIOM H OKpy>KBIOI.UeH ero Cpe,AOH. 
3TH BeJIH'tiHHbl MoryT 6hiTL HCIIOJib30BaHbl B 6oJiee pa3BHTbiX HCCJIC,AOBaHHHX. 

1. Introduction 

THE PROCESSING of glass fiber which is involved particularly in textile and composite in­
dustry is related to strong temperature-dependent properties. In the present paper we 
analyze the formation of glass fiber in liquid state starting at high temperature (between 
1300°C-1500°C) from a nozzle of approximately 0.2 em in diameter. In Fig. 1 we give 
a schematic view of the flow domain from the orifice at z = z0 = 0 to the solid flow 

D 

FIG. 1. Schematic diagram of the glass jet. 
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at z = z2 • The glass fiber has generally a diameter of 10-50 microns and is wounded up 
at a constant speed between 5 mfs to 60 mfs. In the industrial process, the fiber glass 
is obtained from draw plates of more than a thousand nozzles. We restrict ourselves to 
the case of one filament, which can provide an interesting and comprehensive stand-point 
for the study of the multi-filament process. 

As shown in Fig. 1, three regions can be considered in the drawing flow field: 
The upper region D1 , where the slope of the jet is large, and the radiative heat transfer 

is important due to the high temperature and physical properties of glass. 
The central jet region D2 is characterized by a uniform distribution of the axial vel­

<>city and a small slope of the free surface. 
The constant radius jet region D 3 , downstream from region D 2 • The importance of 

the upper jet region and the central jet region is about fifteen to twenty radii of the nozzle, 
i.e. approximately 2 em, what is much less than the fiber flow domain for polymer extru­
sion which is about 60 em. 

The process of glass fiber formation is, in some aspects, different from the polymer 
spinning, the drawing rates being of the same order. 

1) The distance z2 -z0 is more important for the polymer fiber drawing and is about 
50 em. 

2) The temperature in the drawing field between z0 and z2 is 1500°C-700oC for the 
glass and 300°C- 50°C for polymers. 

3) The broad range of temperature for the glass should be considered together with 
the strong viscosity variation (of the exponential type). 

The strong dependence of glass properties on temperature in the relatively small do­
main lead to particular care when considering the glass spinning problem. The viscosity 
depends strongly on temperature (many authors consider it to be exponential), the radia­
tive transfer is preponderant in the first millimeters of the jet (the upper region D 1 ), the 
velocity gradients are important and convective exchange is to be taken into account be­
tween the glass and it surroundings. The complete treatment of the glass fiber drawing 
problem in the liquid state must involve the conservative laws of mass, momentum and 
energy assorted with appropriate boundary conditions (in particular, the free surface is 
unknown) and realistic models for the rheological equation of glass and the radiative 
transfer. 

2. Thermal problem 

Approaching the thermal problem for glass, the material can be considered as a semi­
transparent medium. The conduction can be characterized by the conduction vector: 

(2.1) 

Tis the temperature, kc is the conduction coefficient. 
For the radiation problem, the glass absorption coefficient versus the wavelength dis­

tribution is generally used, which leads to the definition of global quantities as the Rosse­
Jand's averaged absorption KR given by the following equation: 
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(2.2) 

00 0 f _1_ dl). dA. 
0 K, dT 

00 d 0 f _!3_ dA. 
0 dT 
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where /f is the Planck's function, A. the wavelength and the radiative conductivity coeffi­
cient k, which is defined as follows: 

(2.3) 

where(] is the Stefan-Boltzmann coefficient, n is the relative index of the medium. 
This coefficient enables to introduce the optical thickness concept which characterizes 

the nature of the radiative heat transfer in an absorbing medium of dimension L. The 
optical thickness T is given by the equation 

(2.4) 

The medium under consideration is optically thick (optically thick medium) if we 
have: 

(2.5) t' ~ 1. 

This means that significant radiation occurs in short distances. The radiative heat 
flux vector can be written as 

(2.6) q, = - k,grad T , 

and the total heat flux (conduction and radiation) can be written as: 

{2.7) 

This case is similar to that of pure conduction. 
When the optical thickness is 

(2.8) t' ~ 1, 

the medium is called optically thin and in that case the relevant heat transfer equation 
is not simple [1]. 

The textile glass generally used in fiber processing is E-glass which, according to re­
cent studies at the Saint Gobain Company [2], is neither optically thin nor optically thick 
under the conditions of glass spinning process. 

3. Previous work 

In the literature several studies have been devoted to the glass spinning problem and, 
practically, all the papers refer to experimental data of GLICKMAN's study, [3, 4, 5] which 
can be considered as the first important work to be pointed out. In his experiments, Glick­
sman measured the glass temperature by using an optical pyrometer which is subjected 
to radiation from the glass. These experimental data of temperature are actually the only 
ones to be used as control values for the numerical simulations proposed in the litera-
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ture. In the following it will be shown that this method of temperature measurement 
is more affected by the radiation than a technique based on the use of a small-size thermo­
couple. Considering again Glickman's work, the author also investigated the glass 
fiber problem from the theoretical point of view. The analysis was particularly devoted 
to the central region D 2 of the jet which was assumed to begin at the value z1 where the 
slope of the free surface is one-tenth or less, in absolute value. The study of glass in the 
central jet region gives more simplicity to the analysis because the velocity and tempera­
ture fields can be considered as being one-dimensional. Moreover, in this region, the radi­
ation is less important in the upper region D1 because of the lower temperature range. 
In Glicksman's work, the glass is assumed to be Newtonian, with a strongly temperature­
dependent viscosity; for the radiation, GLICKSMAN used a step model [3]. 

A complete method for the solution of glass spinning problem was given by CASWELL 
and SAYLES [6]. These authors, using a finite element technique, have developed a theor­
etical model for the radiation inside the jet and a method for taking into account the 
convective transfer between the glass jet and the surrounding air. However, it is to be 
pointed out that the results of the model were compared with Glicksman's data of tem­
perature. STEHLE and BRUCKNER [7, 8] presented an experimental and theoretical work 
on the glass-spinning problem, but the dynamical equations used in their model were 
related to the one-dimensional case and for the energy equation simplified relations were 
proposed. HUYNH and TANNER [9] have presented in a recent paper a computational analy­
sis in the two-dimensional case with a finite element method, but it should be noticed 
that in the energy equations the radiative transfer was assumed to be governed only by 
the thermal exchange at the free surface. These equations involve an emissivity coefficient 
which was computed to match the Glicksman's data of the filament radius. 

The points developed in the literature on the glass spinning problem can be summar­
ized as follows: 

1) The rediative heat transfer equation under the conditions of glass spinning is 
unknown and, as precised in Sect. 2, cannot be represented by a classical radiation model. 

2) Measurements of temperature are obtained by optical techniques. Data from an 
optical pyrometer are subjected to radiation from the glass. Up to the present analysis, 
we are not aware of measurements of velocities in the glass jet, except for the drawing 
rate v2. 

3) The estimate of parameters involving the convective and radiative heat transfer 
between the glass and its surroundings should be considered with great care when using 
the boundary condition [6]. 

From these conclusions, it results that actually a realistic solution of the glass spinning 
problem cannot be obtained by considering the global conservation equations of state, 
mass and energy. The considerations previously made lead us to present a theoretical 
model which is based on some experimental and theoretical results. These data enable to 
set up a numerical model which uses only the conservation of mass and momentum equa­
tions, and avoids the difficulty of involving the radiation problem in the equations of 
energy and the delicate estimate of parameters in the boundary conditions. In this method, 
we use data of the filament radius, temperature and velocity at the jet surface, concerning 
the upper and central regions of the flow beyond the nozzle. The temperature data are 
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MODELISATION OF GLASS SPINNING 325 

obtained with a termocouple of small size and short response time and the kinematics 
is measured with a laser velocimeter. The glass is an incompressible material which can 
be considered as a Newtonian fluid of viscosity which highly depends on temperature. 
In this paper we show that it is possible to determine in the glass jet, with the aid of experi­
mental kinematic data and additional assumptions concerning the jet surface, the stream­
lines and the velocities in an analytical form. This is performed with the aid of a stream­
function H(e, z). Then, when considering the Navier-Stokes equations, the kinematic 
terms are known and the experimental data of temperature at the free surface are used 
as the boundary conditions. The dynamical equations involve the isotropic pressure and 
the viscosity as unknowns. The numerical technique is carried out in the upper jet region 
and the temperature field in this region is calculated from the viscosity equation . 

. Experimental 

The flow of molten glass is performed by using a resistance-heated rhodium-platinum 
reservoir. The schematic picture of the fiber drawing is shown in Fig. 2. No pressure is 
applied in the reservoir. The jet diameter decreases very rapidly, and, apart from measure-

x-z table/ 

FIG. 2. Experimental set-up. 
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ments for the jet shape with a camera (and the control of the final radius R2 of the 
fiber by using a microscope), we measure the drawing rate V2 , the reservoir temperature, 
the temperature at the free surface with a thermocouple and the velocities of points of 
the free surface by means of a laser velocimeter. 

4.1. Velocity measurements 

It was impossible to measure the velocities inside the bulb because of the high radia­
tion in the upper jet region, the small size of the filament and the rapid decrease of the 
jet radius. We measured only the axial component vat the free surface of the upper zone 
with the aid of an Argon laser using a retrodiffusion method which avoided the crossing 
of the medium. The point of measurement was localized by optical means. 

4.2. Temperature measurements 

The use of a small-size thermocouple (total diameter 0.25 mm) for the temperature 
measurements in the liquid part of the jet was motivated by the reduction of radiation 
emitted from the glass to the sensor and the minimization of the flow perturbation at the 
vicinity of the surface point of measurement. Moreover, the response time was about 5 
milliseconds. The positioning of the thermocouple was performed with a micrometric 

o Pyrometer 

• Thermocouple 

1250 

1200 

1100 

0 Z,mm 

FIG. 3. Temperature at the free surface. 

table and temperature measurements were obtained up to 6 mm (6 radii) downstream 
the exit section of the glass jet. The experiments permitted to define an optimal position 
of the axis of the thermocouple (normal to the jet axis). In Fig. 3, we give the tempera­
ture variations at the free surface versus z obtained by an optical pyrometer and the small 
size thermocouple. The local peak of the curves, for z v 1.5 R0 is more important in the 
case of the optical pyrometer and, consequently, indicates that the smoothed curve de­
duced from the thermocouple measurement - the peak is due to radiation from the 
glass- is closer to the real temperature than that given by the optical pyrometer. 
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5. Theoretical model 

According to the flow domain D shown in Fig. 1, we obtain the velocity field as 

(5.1) V = u(e, z) · e~+v(e, z)e~, 

(e~, e~, e;) is the orthonormal frame associated with the cylindrical coordinates e = 1,. 
() = 2, z = 3. 

From the decomposition of domain D into three elementary zones D 1 , D2 and D3,. 
we assume that: 

1) The domain D1 corresponds to the upper part of the glass jet for zo = 0 ~ z ~ z 1 . 

The flow is fully two-dimensional in the meridian plane Eq. (5.1). 
2) The domain D2 is the one-dimensional region investigated by Glicksman et aL 

The axial velocity component is 

(5.2) v = w(z). 

3) The domain D3 is the solid flow region corresponding to the constant diameter 
of the fiber: 

(5.3) 

v2 is the drawing rate. 
For the determination of the section zh at which the one-dimensional region D2 begins,. 

we use GLICKSMAN's hypothesis [3] according to which z1 is the section where the abso-· 
lute value of the slope of the free surface is less than one-tenth. For the glass jet, the· 
section z 1 was found to be between 2R0 and 5R0 , where R0 denotes the radius of the· 
nozzle. The section z2 was found to be, according to our experiments, between 15R0 and 
20R0 • 

5.1. General assumptions 

In our theoretical study of the glass flow problems, we made the following assumptions~ 
1) The glass is considered as a Newtonian liquid of temperature-dependent viscosity 

p,(T). This viscosity can be approximated by piecewise polynomial functions of T. 
2) The jet surface can be represented by the following equation: 

{5.4) R(z) = R0 exp(Qz2 +bz], 

where a and b are constants calculated from the experimental data of the free surface­
by a least-squares technique. The agreement of experimental and theoretical data is ob­
tained within 3%. 

3) From the incompressibility of glass, we can use, in the axisymmetric case, a stream 
function H(e, z) such that: 

(5.5). 
1 an 

U=---
(! oz 

and 

(5.5h 
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The streamlines are assumed to have the same analytical expression as the free surface: 

(5.6) (! = eoexp[az2 +bz], 

where a and b are parameters depending on the streamline. (!o is the radial coordinate at 
the exit section z = z0 = 0 . 

.5.2. Kinematics 

Let z3 be a section of region D2 where the velocity is known, and V3 the constant vel­
ocity at the cross-section (Fig. 4). We can express the stream function H(e, z) with the 
parameter r3 , the radial coordinate at section z3 • R3 is the fiber radius at z = z3 • 

FIG. 4. 

According to the stream function description, we have 

(5.7) V(e, z) E !l', H(e, z) = G(r3) = constant, 

V3 is konwn and, for every point M(e, z) such that z < z3 , there exists a unique value 
r3 E [0, R3 ] such that 

(5.8) 

where Q(r3 ) denotes the volume flow rate related to the section z3 of radius r3 (Fig. 4). 
A particular case is given by z3 = z2 • Then V3 is the drawing rate. 
Now, using r3 as a parameter for the streamlines, Eq. (5.6) becomes 

(5.9) e = r 3 exp[a,,(z2 -zn+b,,(z-z3)]. 

The symbols a,
3 

and b,, indicate the dependence on parameter r 3 • 

We assume that the coefficient b is in the form 

(5.10) b,
3 

= k(r3) 2 • 

Since 

(5.11) 
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k is known by Eqs. (5.10) and (5.11). 
We also have 

Then the kinematics can be completely determined under the assumption of Eq. (5.10). 
Let V1 be the axial velocity for z = z1. The conservation of the volume flow rate Q 

gives us 

(5.12) 

For every r3, r3 E [0, R3]~ there exists a unique value r1 E [0, Rd such that 

(5.13) (r1)2V1 = (r3)2 V3. 

From Eq. (5.9) we obtain 

(5.14) r1 = r3exp[ar3(zi-zD+br3(Z1 -z3)] 

and combining Eqs. (5.13) and (5.14), we have 

(5.15) 

The derivatives of ar
3 

are expressed as 

(5.16) a;,= -b;,/(z1 +z3), 

(5.17) a;: = -b;:/(z1 +z3), 

(5.18) a;:' = b;:' = 0. 

Next, we consider the transformation which associates the sets of variables (e, z) and 
(r:h C) by the following equations: 

(5.19) 
z = c, 
e = J(r3, C)= r3exp£ar,{C2 -z~)+br,<C-z3)]. 

Using Eqs. (5.8), (5.9) and (5.15), (5.16), (5.17), (5.18) we can compute the velocities 
and their first and second spatial derivatives in the upper region D 1 , in an analytical form. 

For z0 ~ z ~ zh we have for the velocities: 

(5.20) V(e, z) = V3exp[ -ar (z2 -z~)-br (z-z3)] 
0
0
' 3 

3 , e 
with 

(5.21) 

and 

(5.22) 

ar3 exp[ -ar,(z2 -z~)-br3(z-z3)] ae = 1 +r2[a;3(z2-zi)+b;,(z-z3)] 

5.3. Navier-Stokes equations and bonndary conditions in region D 1 

The dynamical equations are written in the upper region, in cylindrical coordinates, 
the body forces being neglected: 

(5.23) op [ 0
2

U 1 au u (Jlu] 2 op, au op, ( av au) 
oe = f' oe2 +eBe-7+ oz2 + oe +ae+ oz ae+az ' 

S Arc:b. Mcch. Stos. 4-5!83 
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~ = [ o
2
v +_!_!!!_+ o

2
v]+ 2 Oft ~+ op, (~+~) 

<5·24) oz "" 0(!2 (! 0(! OZ2 oz 0(! 0(! 0(! oz . 

The boundary conditions at the interface between the glass and the surrounding air 
are obtained by writing the equality of normal and tangential stresses: 

I [ au I ( ou av) 1 2 av] 
(5.25) p(R, z)(l +R:)+2ft(R, z) - oe +R<z> oz + oe -R<z> oz 

= (I +R;) [P.+yT( ~ + ;,, )] 

in the normal direction n (Fig. 4), and 

[( 
OU OV ) ( 1 2 ) 1 ( OU OV )] 12 [ 0'YT ] (5.26) p,(R, z) oz + 0(! 1-R% +Rz 0(! - oz = (I +R%) Ta+az- COSlp 

in the tangential direction -r. 
P, denotes the pressure in the air, T11 is the drag component of the air, p(R, z) is the 

pressure at the glass surface, rand r1 are the radii of curvature of the free surface given 
by 

(5.27) 
I cosrp 

F = R(z) 
and 

-(1 +R?)3f2 
r1 = Rll . 

(%) 

For Eqs. (5.23), (5.24), (5.25) and (5.26), the known quantities are: 
the kinematic quantities; 
the viscosity ft(R, z) calculated from temperature measurements; 
the temperatures T0 and T1, the pressures Po and p 1 at the sections z0 and z, respect­

ively, which are assumed to be a constant. 
Then, 

(5.28) 
p,((!o, Zo) = P,o, 

p(eo. Zo) = Po, eo E [0, Ro], 

p,(r1, Zt) = #1, 
(5.29) 

p(r1, z1) = Pt• r1 e [0, Rtl· 

From these considerations, the quantities to be determined are: 
p(R, z), pressure at the free surface; 
p(e, z), !-"((!, z) pressure and viscosity inside the jet; 
p,(R, z), -r,(R, z). 
The Navier-Stokes equations (5.23) and (5.24) can be written in the following forms: 

(5.30) 
op a, a, 
oe =At#+ oe Bt+ oz Ct, 

(5.31) 
op op, op, 
oz = A2ft+ oz B2+ oe C2. 

The quantities A 1 , B 1 , C 1 , A 2 , B 2 , C 2 are known from the kinematics. 
Equation (5.26) gives directly the unknown T4 • Equation (5.25) is used together with 

the Navier-Stokes equations. 

http://rcin.org.pl



MODELISATION OF GLASS SPINNING 331 

5.4. Numerical solution 

Because of the possibility of non-negligible errors in estimating the partial derivatives 
of p, and p on the irregular mesh build on the streamlines (due to the rapid attenuation 
of the glass jet), we transform the physical domain D1 into a rectangular domain D~ by 
using Eqs. (5.19). Then the derivation operators can be written as 

(5.32) 

(5.33) 

The Navier-Stokes equations and the boundary conditions (5.25) are solved in do­
main D~ (Fig. 5) which is discretized with indices i (streamlines) and j (sections on the 
streamlines). On the rectangular mesh, we use classical difference formulae for the deriva­
tives. 

I R 3 
p I 

l 
! 

I 

I 

I 
i 
I 

FIG. 5. Transformation of domain D1 into D~ (rectangular). 

Concerning the balance of equations and unknowns, we define the mesh as 

(I,J)eN, Ie[I,I0], Je[s,Jo], 

I = 1 for the free surface and I = I0 on the centreline, J = 1 for the section z = z0 = 0, 
J = J0 for z = z 1 • 

The sections z0 and z1 are not considered. We have 10 -2 equations for the boundary 
equation (5.25), 2(10 - 2) (10 -I) Navier Stokes equations for IE [I, I0 -1], 10 -2 equa­
tions on the axis (the first Navier-Stokes equation (5.30) vanishes). 

5* 

This leads to the total number of 2(10 - 2)I0 equations 
For the unknowns we obtain 
10 -2 unknowns for Pa, 
I 0 (e - 2) unknowns for p, 

(/0 -1) (J0 - 2) unknowns for 1-'· 
So we get the same number of unknowns and the equations: 210 (10 -2). 
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5.5. Numerical results 

The numerical technique was carried out for different drawing conditions: V2 = 3.2, 
8. 7, 11.3, 15, 18.1 m/s and temperatures at the jet surface. The results of kinematics (Fig. 6) 
are for the drawing rate of 15 mjs. In that case the section z1 was found to be 0.405 em 
(about four radii downstream the exit section) and the section z2 was at 16.5 em (16.5 
radii). 

In Fig. 7, we show the evolution of the streamlines in the jet from the exit section 
z0 = 0, which indicate the rapid attenuation of the fiber diameter. 

p,cmA 

p(cm) 
0.1 

0 

V2=15m/s 

Free surFace 

Z(cm) 

V(cm/s} ~ 

E 

--Theoretical curve 
• Experimental data 

'"' "1,,,,1. .. 
3 5 Z(cm) 

FIG. 6. Kinematic results in the glass jet. 

1.5 Z(cm) 

Flo. 7. Streamlines in the glass jet. 

For V2 = 15 m/s, we give in Fig. 8 the computed values of temperature inside the 
upper region D 1 • The results show that: 

1) Inside the jet, the temperature is higher than at the free surface. This fact is quite 
acceptable from a physical point of view. 

2) Apart from the limit sections z0 and z 1 , the temperature variation in a cross-section 
of the jet is not negligible. 
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FIG. 8. Computed values of temperature in region D1 • 
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The same comments can be made concerning the other drawing conditions. 
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Apart from the computation of the temperature field inside the jet we performed tests 
on stability by slightly changing the boundary conditions for temperature. The tests on 
the sensitivity of the boundary conditions for temperature led to minimization of the 
temperature variation for a cross-seetien when the free surface temperatures of the jet 
TsL were given by 

TsL = TexP+20 C, 

where Texp is the measured tem·perature. This result, which was found for different dra­
wing conditions clearly indicates, the importance of thermal conditions in the glass 
spinning process. 

6. Heat transfer model under drawing conditions 

6.1. Four constants models for the radiative tramfer 

As we pointed out, it is highly difficult to propose a realistic equation for the radiative 
heat transfer inside the glass under the spinning conditions. We propose in the following 
a method for the determination of the radiative :flux vector q,. by using experimental and 
numerical results of our kinematic and dynamical model. Indeed, by considering the 
energy equation 

[ o
2T 1 oT o2T] [ oT oT] 

(6.1) Vq,. = A.c oe2 +e oe + oz2 -eC, u oe +v oz = Ao, 

the right-hand side of this equation contains only known quantities (temperature, kine­
matics); C, denotes the specific heat coefficient, Ac the thermal conductivity coefficient. 

Then we make the following assumption: 
The radiative :flux vector q,(e, z) is given by 

(6.2) 
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with 

(6.3) 

(6.4) 

J. R. CLERMONT, J. M. PIERRARD AND C. GonET 

qie,z) = aoe3z3+atez2, 

q =((!' z) = a2 (!2Z2 +a3 (!2Z' 

where a0 , a 1 , a2 , a 3 are four constants to be determined. 
Since 

(6.5) ( ) A 
aq (} aq 'Z q(} 

Vq,(!,Z = o= -a- +-a- +-, 
(! z (! 

we can express the operator V q, in variables {r3 , C) by 

(6.6) 

which gives the following form: 

(6.7) 

The four constants {a0 , a 1 , a2 , a 3 are known) are computed by using a least squares 

technique. We consider the expressions 

1o J 

(6.8) E = }; }; [a 0 CXo<J.n +a 1 (cx 1<1.n +a2 cx2<J.n +a3 cx3(J,n- Ao(J,nP, 
i=2 1=1 

from which the four constants a0 , a 1 , a2 , a 3 are determined by the equations 

(6.9) aaE = o, k = o, 1, 2, 3. 
ak 

These equations are linear in terms of ak. 

The approximation of the radiative flux vector by the four-constant model leads to 
50% accuracy for the quantity 

(6.10) 
Vq,-A0 

Ao 

It is to be pointed out that V q, values from the Rosseland equation given by Eqs. 
(2.3) and (2.6) were found to be by 4 orders of magnitude greater than A 0 • 

6.2. Convective heat transfer coefficient 

When considering thermal exchanges in the glass jet, the exchange between the jet 
surface and the surroundings (air) is to be investigated separately from the interior of 
the jet. 

The energy equation at the jet surface is given by 

(6.11) -Kg ~~ = h(z) · (T-Too)+qq(e,_z)costp+qz((!, z)sintp, 

where K, denotes the thermal conductivity of the glass, h(z) is the convective heat transfer 

coefficient at the jet surface, T 00 a reference temperature, q(} and qz are the components 
of the radiative flux vector, tp is the angle between the normal vector n to the surface and 
the axis(!. 
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For the calculation of h(z), we assume that the radiative flux vector at the jet surface 
is given by the four constants a0 , a1 , a2 and a3 • 

Then qfl((!, z) and qz((!, z) are known at the free surface. 
In Eq. (6.11), the only unknown quantity is h(z). 
The results of the computation of the convective heat transfer coefficient are given 

in Fig. 9. The values of this coefficient are quite acceptable from a physical point of view. 

h(z) w/m 2Ko 

v2=15m/s -- ==•==:::::::::::--
10 3 ~· v2=21m/s 

• 

10 
1 2 3 4 Z(mm) 

FIG. 9. Convective heat transfer coefficient versus the drawing rate. 

7. Conclusion 

In the present paper we have considered the upper jet region of the glass jet during 
the glass spinning process. Two theoretical models have been set up. The first model 
concerns the use of experimental data of temperature and velocities in the Navier-Stokes 
equations in order to determine the temperature field in the upper jet region. This tech­
nique avoids taking into account the complicated radiation problem involved in the glass 
extrusion. The numerical results are consistent with the phenomenology of the fiber pro­
cess and have shown the sensitivity of the thermal conditions around the glass jet. The 
second model is related to the modelization of the radiative transfer using the results of 
the kinematic model. The so-called "four constant model" has given acceptable results 
for the approximation of the radiative flux vector q,. Moreover, this model has permitted 
us to estimate a convective transfer coefficient h between the glass and its surroundings. 
The computed data of the coefficient h have a correct order of magnitude. According to 
these results, the parameters of the radiation heat transfer and the convective transfer 
coefficients can be included in a more complete analysis of the glass spinning problem, 
which would involve simultaneously the conservation laws of mass, momentum and energy. 
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