47.

A DEMONSTRATION OF THE THEOREM THAT EVERY HOMO-
GENEOUS QUADRATIC POLYNOMIAL IS REDUCIBLE BY
REAL ORTHOGONAL SUBSTITUTIONS TO THE FORM OF
A SUM OF POSITIVE AND NEGATIVE SQUARES.

[ Philosophical Magazine, 1v. (1852), pp. 138—142.]

It is well known that the reduction of any quadratic polynomial
1L, 1Da+2(, 2)ay+(2, 2)y*+... +(n, n) ¢

to the form a,&*+ a.n*+ ... + a,6*, where ¢ 7 ... 0 are linear functions of
@,y ...t, such that 2*+ 3>+ ... + # remains identical with §*+2*+...+ ¢*
(which identity is the characteristic test of orthogonal transformation),
depends upon the solution of the equation

" M R, R 7 P (1, n) -0.
2, 1), (2,2)+1...(2,n)

.............................................

(n, 1), {7, 2) ievipeine (n, n)+ A

The roots of this equation give a,, @, ... a,; and if they are real, it is easily
shown that the connexions between z, v ...t; & 7... 0, are also real
M. Cauchy has somewhere given a proof of the theorem®*, that the roots of A
in the above equation must necessarily always be real; but the annexed
demonstration is, I believe, new; and being very simple, and reposing upon
a theorem of interest in itself, and capable no doubt of many other applica-
tions, will, I think, be interesting to the mathematical readers of this
Magazine.

* Jacobi and M. Borchardt have also given demonstrations; that of the latter consists in
showing that Sturm’s functions for ascertaining the total number of real roots expressed by my
formule (many years ago given in this Magazine) are all, in the case of f(\), representable as the
sums of squares, and are therefore essentially positive.
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Let
ARy ECL L A, Bl e oty (1, n) :

(2, 1), A KRRl -(2,7)

3, 1), (3, 2)’, (3,3)+N...(3,n)

(n, 1), (0, 2 e R (n, n) + 2

it is easily proved that /(M) X f(—2A)
=1 [L eI O o, [1, n] i

(2, 1], [2, 2] =A% ...[2, n]
[m, 1], A I el [n, n] =22

where [e, ]=(, 1) x (1, €)+ (¢, 2) X (2, € + ... + (¢, n) X (7, €).
If, now, for all values of » and s, (r, s) = (s, 7), that is, if #(0) becomes the
complete determinant to a symmetrical matrix, then every term [r, s] in

the derived matrix becomes a sum of squares, and is essentially positive,
and (= 1)* f(\) x f(—\) assumes the form

M =F QA+ @A)+ ... L,
where F, @, ... L will evidently be all positive; for it may be shown that ¥
will be the sum of the squares of the separate terms, that is, of the last
minor determinants of the given matrix, G the sum of the squares of the
last but one minors, and so on, L being the square of the complete deter-
minant. For instance, if

JN)=|a+r, vy, B

Y b+, «a

B, a, c+ A |
—fA) X f(=A)=A—F\N+ G\ - H,
where F=a4b+c®+ 2a* + 28° + 2%,

G = (ab — y*)* + (be — a®)* + (ac — B*)
+2(aa—By)*+2 (b3 —va)y +2 (cy — 2B)’,
His L o 208,
g o B
/o WIRY gl

Hence it follows immediately that f(A\)=0 cannot have imaginary roots ;
for, if possible, let X = p + ¢ 4/(— 1), and write
at+p=da, b+p=b, c+p=c, A+p=N\,
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J (\) becomes ad+N, 9, - e
Vs b 4+ X, a
B, a, O+

or say ¢ (\'), and the equation ¢ (\') x ¢ (—A’) =0 will be of the form

N —F'\N+G\N*—H =0,
where F’, G', H' are all essentially positive. Hence, by Descartes’ rule, no
value of A can be negative, that is, (A — p)* cannot be of the form —¢*;
that is to say, it is impossible for any of the roots of f(A)=0 to be imaginary,
or, as was to be demonstrated, all the roots are real.

I may take this occasion to remark, that by whatever linear substitutions,
orthogonal or otherwise, a given polynomial be reduced to the form =4,¢2,
the number of positive and negative coefficients is invariable : this is easily
proved. If now we proceed to reduce the form (expressed under the umbral
notation) (a,2, + @y, + ... + ayx,)* to the form

A, 824+ 482 + ... + Ay O + 4a 6
by first driving out the mixed terms in which #; enters, then those in which

«, enters, and so forth until eventually only #, of the original variables is
left, it may readily be shown that

4,=() =)+ (@) 4= (o) ()
N =(a1t!=---au)+(a1a,---an_1)
TN \aay ... an/  \ 0y Gy

It follows, therefore, that in whatever order we arrange the umbre a,a, ... a,,
the number of variations and of continuations of sign in the series

L @) () ()
@)’ \ma)) " \aay ... ay
will be invariable, and in fact will be the same as the number of positive
and negative roots in the generating function in A\ above treated of, that is,

since all the roots are real, will be the same as the number of variations
and continuations in the series formed by the coefficients of the several

powers of A, that is
1, 3 (a’l) $6 9 (amaa) = (ala‘l cee an) 3
a, a,a, G0y ... Oy
The first part of this theorem admits of an easy direct demonstration ;
for by my theory of compound determinants, given in this Magazine*, we
know that
g .. a‘l‘—la‘rl Uyl .. ar—-lar-HI
Ay aee Qp gy 40y oo Qpy(pyy
L (alas e ar—l) * (ala‘! e a’r-—:urar-i-l) '
Qg oo Qyy Ay g oo Gy Qyplpyy
[* Cf. pp. 241, 252 above.]
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The first member of this equation is equivalent to

(aqaz ar_lar) @ (alag--. ar_lam) - (axaz--- [t )’
Ay Qg oo Apy Ay, Wy Qg o oo Qpy Apyy Wy Qg oo Qpy Ay

Hence it follows, that if the two factors on the right-hand side of the
equation have the same sign,

(a,a,, a,_,a,\) = (ala2 a,_,a,ﬂ)
A0y gy Op g ... QpyQyyy

have also the same sign inter se, and consequently the two triads

il st a,_l] O Ol o ey Ol [a, el A, R

2

(oA Sty el sl U b ARy @3 D o5 Oy s Qugirs 1

ind [alaZ coe Upy l:alaa cor Qpq (pyy g vvs Qpy Wy A
b

7 A DAL Ll R B ) Pty L TR O o e = Gt B |
will in all cases present the same number of changes and continuations,
which proves that the contiguous umbre, a,, @,.,, may be interchanged
without affecting the number of variations and continuations in the entire
series; but, as is well known, any one order of elements is always convertible
into any other order by means of successive interchanges of contiguous

elements, which demonstrates that, in whatever order the elements a,, a,...a,
be arranged, the number of continuations and variations in

1 (al) (ala,\ (a,a.3 a,,)
i\t alag)"' AT A RMORE R e
is invariable. But that the same thing is true (as we know it to be), for the

relation between any one of these unsymmetrical series and the symmetrical
series (resulting from the method of orthogonal transformation)

LS <al)’ s (a1a2>, <a,a,... am) :
a, a,a, U, X R
is by no means so easily demonstrable in the general case by a direct method,
and the attention of algebraists is invited to supply such direct method of
demonstration. My knowledge of the fact of this equivalence is, as I have
stated, deduced from that remarkable but simple law to which I have
adverted, which affirms the invariability of the number of the positive and
negative signs between all linearly equivalent functions of the form X + ¢,a"
(subject, of course, to the condition that the equivalence is expressible by
means of equations into which only real quantities enter); a law to which
my view of the physical meaning of quantity of matter inclines me, upon the
ground of analogy, to give the name of the Law of Inertia for Quadratic

Forms, as expressing the fact of the existence of an invariable number
inseparably attached to such forms.
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