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Nonaxisymmetric Stokes flow past a torus in the presence of a wall

A. KUCABA-PIETAL (RZESZOW)

THis PAPER presents the exact solutions for the creeping motion of an open torus of arbitrary
size in the presence of a wall for the following conditions: asymmetrical translation of a torus
in the parallel direction to a stationary wall, rotation about the axis perpendicular to the axis
symmetry of the torus, shear flow past a rigidly held torus. The boundary collocation technique
was applied to solve these problems. The associated resisting force, torque and wall correction
factor are computed for a torus and compared with the exact solutions for the same problems
for the sphere and with the approximation theory for a particle of an arbitrary shape [3].

W pracy przedstawiono rozwigzania $ciste dotyczace oplywu otwartego torusa w przeplywie
Stokesa w obecnodci $cianki dla nastgpujacych warunkoéw zadania: a) asymetryczne przemie-
szczenie torusaw kierunku réwnoleglym do stacjonarnej §cianki, b) obrot wokél osi prosto-
padlej do osi symetrii torusa, ¢) przeplyw $cinajacy wokoél torusa sztywno zamocowanego.
Do rozwiazania zastosowano metod¢ kollokacji brzegowej. Obliczono sile oporu, moment
obrotowy i wspoétczynnik oddzialywania écianki oraz poréwnano rezultaty z wynikami $cistymi
dotyczacymi podobnego zagadnienia dla sfery jak réwniez z przyblizonymi rozwigzaniami
dla czasteczki o dowolnym ksztalcie [3].

B paGorte npejcraBiieHbl TOYHbIE pEIUIEHHS, Kacaroupecs: o0TeKdHHs OTKPBITOro Topa A
Teyenur CTOKCA B MPHUCYTCTBHH CTEHKH IS CIEAYIOIIMX YCIOBMH 3a/laud: a) ACHMMETDH
MepeMellieHNA Topa B HANPABJICHHH MNapajUIeIBHOM K CTallMOHApHON cTeHKe, G) BpamneHwe
BOKPYT OCH MEPMEHIUKYIAPHON K OCH CHMMETDHM TOPa, B) TEUEHWE CO C/IBUIOM BOKpYT
JKECTKO 3aKpeIUIeHHoro Topa. [ pellleHNA IIpHMEHEH METoJ TPAaHWYHOM KOJIOKAILHH.
BbIUKUTIIEHBI CHJIa CONIPOTHBICHHUA, KPYTALIHHA MOMEHT M MONPABOUHbIH KO3(HUIMEHT CTCHKH,
a TaK)XKE CpaBHEHBI pE3YJIbTATBI C TOYHBIMH pe3yJIbTaTaMH, KacaIOUUMHMCA aHaJOTHYHOH
3a7auM 1A cdepbl, KaK ToXKE C NMPUOIMIKEHHBIMYE DEIIeHHAMH IJIsT YaCTHILbI IIPOU3BOJIBHOM
dopmer [3].

1. Introduction

THE Low REYNOLDS number flow past a body in the presence of a wall has been investi-
gated for many years: LoRENTZ (1907) [12], BRENNER (1964) [3], Ho i LeaL (1977) [9],
but the sphere has been the main object of research.

The method of reflection was generally used to solve these problems. It requires such
a natural coordinate system in which one could simultaneously satisfy the no-slip boundary
conditions on the surface of the body and along the wall. The point — force approximation
has been used for treating slow flow problems, too.

The combined analytical-numerical solution procedure used in this study is the colloca-
tion technique first developed by GLUCKMAN, PFEFFER and WEINBAUM [6] for the unbounded
multispherical flows and then by Ganatos, PFeFFER and WEINBAUM [5] for the motion
of a sphere between plane parallel boundaries.

This method is based on the concept that for the Stokes flow, disturbances from all
boundaries may be treated simultaneously. A cardinal rule for the successful application
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of the collocation technique is that the velocity disturbances produced by each coordinate
boundary may be represented by an ordered sequence of fundamental solutions appro-
priate to the constant orthogonal coordinate surfaces.

This paper presents the exact solutions for the three-dimensional creeping motions
of a torus in the presence of a wall with the application of the collocation technique.
The quasi-steady flow with planar symmetry is considered.

The associated resisting force, torque and wall correction factor are computed and
compared with the exact solutions for the same problems for the sphere [3].

This study is an extension of [10], in which the axisymmetrical motion of a torus in the
presence of a wall is considered.

2. Mathematical formulation

A rigid, open torus of the geometrical ratio kK = R/a (R —a being the smallest radius
of the open hole and R+ a being the radius to the outermost rim of the torus) (Fig. 1)
moves in the presence of the wall in a homogeneous incompressible fluid of density ¢ and
viscosity x4 which, being far removed from the torus, has a shear velocity profile.

zﬂ .
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F1G. 1. Torus.

The torus moves with a constant velocity W in a direction parallel to the infinity plzne;
moreover, it rotates about an axis perpendicular to its axis of symmetry with a cons:ant
velocity € (Fig. 2).

In a system of Cartesian coordinates (x, y, z) in which z is the axis of symmetry and the
plane z = 0 is the plane of symmetry of the body, not decreasing the generality of the

z )

FiG. 2. Geometry for the asymmetric flow configuration.
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problem, it is supposed that the torus translates with the velocity W along the x-axis and
rotates with the velocity § about the y-axis.

The shear flow velocity profile may be written v = S(z+b)i,.

We assume that the Reynolds numbers

2 2
AW i 2L SFT“’ where T = (R+a)-2

M M
are sufficiently small to allow us to neglect the nonlinear inertia terms in the Navier-Stokes
equations of the fluid motion
Accordingly, the equations governing the flow are the quasi-stationary Stokes creeping-
flow equations

@.1) U3y = Vp,

and the equation of continuity
2.2) Vv =0,

where v and p are, respectively, the fluid velocity and the pressure fields.
The velocity satisfies the following conditions:
Boundary condition on the surface of the torus

(2.3) v=W+(xr).
Condition at infinity
2.4) v=S(z+b)i,.
Boundary condition on the wall
v=0.

For the geometry of the problem at hand, owing to the linearity of the Stokes equation,
the velocity field is linearly composed of three parts:

(2.5) V=wW,+0+Vg,

where w,, denotes the fundamental solution (2.1) in halfspace, u, represents the fundamental
solution (2.1) outside the torus, in space, V, is the velocity far removed from the torus,
Vo = S(z+b)i,.

In this paper we solve the problem at the moment #,, when the axis of symmetry of the
torus is perpendicular to the wall. In this case, the boundary conditions and solution have
the simplest form following from the planar symmetry of the motion.

The boundary conditions on the surface of the torus (2.3) and at infinity are conveniently
expressed in terms of the cylindrical polar coordinates (r, 6, z) with corresponding veloe-
ities (v,, v,, v,) which are related to the Cartesian values in the ordinary way.

For this case, the no-slip boundary condition (2.3) has the form

v, = (W+82z)cosh,
(2.6) v, = — (W+02)sin0,

v, = —8rcosh
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and condition at infinity (2.4)
v, = S(z+b)cosb,
2.7 v, = —S(z+b)sinb,
v, = 0.

The part w,, represents a double integral of all separable solutions of Eq. (2.1) [5] in
rectangular coordinates which produced finite velocities everywhere in the flow field and is
given by the double Fourier integral

Wy = (W.x’ Wy, W,)

€0 00

we(X, y, 2) = fj wi(et, 8, z)cosaxcosfy dodp,
00

(2.8) w0, 3, 2) = [ [ W,(e, B, D)sinaxsinfy dudp,
00

w,(x,»,2) = ff we(a, B, z)sinaxcos By dodp,
00

p(x, y,2) = ff p(a, B, 2)sinaxcosfy dadp,
00
where

Woa, B, 2) = ( (1—Tz)+“ﬁ z— och)e"”,

wy(x, B, 2) = (ocﬁ Az +B(1—Tz)+Czﬁ)

w,(2, B, 2) = (adz—pBBz+C(1+kz))e™ ",
p(a: :8’ Z) = (—dA+ﬁB—kC)

2.9

Here the A, C, B coefficients are unknown functions of the separation variable « and f.
By proper choice of these functions, w, is capable of exactly cancelling disturbances
produced by the torus along the plane boundary.

The u, is conveniently expressed in terms of toroidal coordinates (n, 0, &) (Fig. 3)
which are related to the cylindrical coordinates (r, 0, z) by the formula

shy _ siné

2.1 gl e
(2.10) chfq cosé’ cchn—cosf

The factor ¢ is a constant with the dimension of length whose significance will be apparent.

Guided by the dependence of the velocity components on 6 by the boundary conditions
(2.6), by the work of MAJUMDAR, O’NEILL [13] for the axisymmetric translation of the
torus and by the analysis of Goren, O’NEILL [7] for the asymmetric translation and rota-
tion of the torus, we obtain the solution u, in the following form: in cylindrical coordinates.
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zd

Fi1G. 3. Toroidal coordinates.

u, = (U, e, ),

U, = -1—(U+ V+rQ/c)cost,

)
2.11
(211) u, = — %(U—V)sin@,
1
u, = 5(2W+zQ/c)cosﬂ,
where
U = (chn—cos&)"/> ¥ (Acosné+ 4,sinné) P2_,x(chy),
n=0
001 ) '
Q = (chn—cosé)!/? Z (Bncosné +B,sinné) P, _,,,(chn),
(2.12) =4
o0
y .
V = (chnp—cos&)!/? Z (Dpcosné + Dysinné) P,_y2(chy),
n=0
W = (chn—cos&)2 ¥ (Ccosné+C,sinné) Pi_y;(chy),
n=0

Py, denotes the associated Legendre function of the first kind of order n—1/2 and
degree m.
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The coefficients 4,, 4,, B,, B}, ..., D, are independent of 7, & and the continuity equa
tion provides a relationship between them.

= (ﬂ— ;) B,y —3B,+(n+3/2) By, —(n—4)(n—3/2) 4.,

+2(n—9/4) A — (n+3/2) (n+5/2) Apy . — @n—1)C,_, +4nC,
1 1

+(2n—1)Cpyy _"f)‘D::H + Ly~ Z_D;H =0,

(2.13) (n—;)B,,_,+SB,,—(H+;‘)Bn+1+(”—4)("—3/2)/4n—1

—2(n—-9/H A, +(n+3/2)(n+5/2) Apyy— (2n—1)Cp_, +4nC,
+(2n—1)C,’,+1+—1——D,,,1—D,,+--»1~Dn+, = 0.
2 2 s
Each of the fundamental solution w, (2.8), w, (2.11) already satisfies the governing
equation (2.1) at each point in the field, the proper boundless conditions at infinity
and the requirements of the planar symmetry.
Owing to the linearity of Stokes equations, we separately seek the solution for
translation without rotation of the torus in the direction parallel to the wall,
rotation without any translation of the torus,
shear flow past a rigidly held torus.
Now we solve the problem for the translational motion.
An application of the boundary conditions v = 0 along the wall z = — & permits to
express the disturbance produced at the wall by a disturbance produced by the torus

u = (”x’ Uy, uz)a Wy = (wxa Wy, Wz)a

o 0

f f wy(a, B, —b)cosaxcosBydadf = —u.(x,y, —b),
0 0

(2.14) [ [ ¥y, B, —b)sinaxsinfydadf = —u,(x,y, —b),
0 0

W W
f f w,(a, B, —b)sinaxcosfydudf = —u,(x,y, —b).
0 0

These equations may be inverted, and integration may be performed analytically using
the results for the Hankel transforms found in [1] and based on expressing the asscciated
toroidal Legendre function by its polynomial representation. The results are given in
Appendix A and we now may write

Wi, B, —b) = Y B,B¥+B,Bt'+D,Dt +D,D¥ +C,CH+CiC¥',
n=0

o]
@15)  w,(«, B, —b) = > B,Bf*+B,B* +D,D}*+D,Di*,
n=0



NONAXIS YMMETRIC STOKES FLOW PAST A TORUS

W, B, =) = D) BuBE** + BiBI 4 A A+ A AT
n=0

The coefficients 4,, 4, ... D,, D, satisfy Eq. (2.13).

Equations (2.15) give the w,, w,, w, functions evaluated at z = —b in terms of the still
unknown coefficients 4,, 4, Cp, .-.,D,.

To obtain the w,, w,, w, at any value of z, one must determine the unknown functions
A, B, C, in Egs. (2.9).

Using Egs. (2.8), (2.9) and (2.15) as the final result, we have in the cylindrical coordi-
nates w,, = (w,, w,, w;)

wi(r,0.2) = D (B.BR,+B,BR,+ A, AR, + A, AR, + C,CR,+C,CR,
n=0

+D,DR,+ D, DRy)cos0,

0

(216)  wi(r,6,2) = > (B,BT,+ B, BTy + A, AT, + A, AT, + C, ST,

n=0

+C,CTy+ D,DT,+ D, DT,)sinf,

wor,0,2) = ) (B,BZy+ By BZy+ Ay AZ,+ Ay AZy+ C,CZ, + C1 CZ1)cos .
n=0
The functions BR,, ..., CZ, are listed in Appendix C.

We have now expressions for the solution v = u,+w,, which are still in terms of the
unknown toroidal coefficients A,, 4, ... D,, D,. In this manner the infinite domain bound-
ary value problem has been reduced to a much simpler finite domain problem in which
the infinite array of the unknown coefficients describing the toroidal disturbance need to be
determined so as to satisfy the appropriate boundary conditions on the surface of the
torus.

To satisfy the boundary conditions
(2.17) v=W
exactly on the surface of the torus for the translational motion, one would require the
solution of the entire infinite array of some unknown coefficients.

The collocation technique satisfies the boundary conditions at a finite number of discrete
points of the torus generating arc and reduces the infinite series to a finite one. If
the no-slip conditions are to be satisfied at M points, the infinite series are truncated after
M terms. Together with the continuity equation, there is a set-of 4M simultaneous linear
algebraic equations for the 4M: A,, B,, C, ... D, unknown coefficients of the truncated
solution, which may be solved by any standard matrix reduction technique. Once these
constants are determined, the solution for the velocity field is completely known.

In the same way the solutions for rotational motion of the torus and for the shear flow
were obtained. In these cases the boundary conditions (2.17) were replaced by

v = Qxr for rotational motion,

N
(2.18) v=0 for shear flow,

respectively.
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3. Forces and torque acting on the torus
The force F acting on the torus is given by

3.1) F= [R,ds,
S

where R, is the stress vector associated with the direction » of the outward normal at any
point on the surface of the torus.

Substituting the derived expressions for the pressure and velocity gradients evaluated
on the surface 7, of the torus and carrying out the indicated integration, we get the follow-
ing results: F = (F,,0,0)

| B
(3.2) F,= 5 V2 amH,[c]Z (4D5+ (@n*—1)By+nQ,_ 2 Py_y
n=0
+(Bn+ Cn)+Q:l—lj2 A")Sinhno.
The torque M acting on the torus is given by

(3.3) M= [ (rxR,)ds
N

when the moments of the surface stress R, are taken about the origin r = z = 0. The
resisting torque has Cartesian components (0, — M,0) with

(G4 M, =ay2 Hyule Y ((4n*=1)Ch—4nD,+2n0s_ 12 Ph_y 2

n=0
+ (Bat+(n—1) C,,)+nQ,’,_U2P§_1,2A,’.)sinhno.
For translational motion of the torus we put H; = W, H, = W/T, for rotational motion
H; = QT, H, = £, for shear flow past a torus we have H, = §- T, H, = §S.

In the case when the wall tends to infinity (b — o) the formulas (3.2) and (3.3), are
similar to those given by Goren, O’NEILL [7]. In computing and presenting the results,
it is convenient to use the nondimensional physical quantities.

A dimensionless wall drag correction factor is defined as

Fx

Fo

the ratio of F, (3.2) to the force F,, acting on a torus in the same flow in unbounded
flow.

Analogically we have defined the wall correction factor for the torque
(3.6) .

o0

(3.5) A =

The calculation was made for various geometrical ratios of the torus: ke {1,2,3,5, 10,
80} and for various dimensionless distances b defined by the formula

_
3.7 b=—,
(3.8) ‘T =2(a+R),

be {1.13, 1.54, 2.35, 3.76, 6.13, 10.1}.
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The calculated values of i, and A, are given in Figs. 4 and 5 for the translational motion
of a torus, in Figs. 6 and 7 for the rotational motion of a torus and in Figs. 8 and 9 for
rigidly immersed torus in shear flow.
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Fi1G. 4. Force acting on a torus in translational, nonaxisymmetrical motion.
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F1G. 5. Torque acting on the torus in translational nonaxisymmetrical motion.
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FiG. 6. Force acting on the torus in rotational, nonaxisymmetrical motion, atfthis time r,, when the
axis of symmetry of the torus is perpendicular to the plane wall.
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FIG. 7. Torque acting on the torus in rotational, nonaxisymmetrical motion, at this time r,, when the
axis of symmetry of the torus is perpendicufar to the plane wall.
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FIG. 8. Force acting on the torus immersed in shear flow, at the time 7o, when the axis of symmetry
of the torus is perpendicular to the plane wall.
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Fic. 9. Torque acting on the torus immersed in shear flow, at the time #,, when the axis of symmetry
of the torus is perpendicular to the plane wall.

>V

The above results were compared with the ones for the same problems for the sphere
given by GANATOS [5] and with the approximate theory.
The accuracy and convergence of this method of solution was tested for all the motions

11 Arch. Mech. Stos. nr 5—6/86
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considered in this paper and compared with the published exact solutions for a torus
in the unbounded flow due to the lack of other exact solutions for the torus in the bounded
flow. The scheme for spacing the points on the surface of the torus is based on the papers
[4, 5] in which the corresponding problem for the motion of a sphere in the presence
of a wall is considered.

In the results the calculations of the wall correction factor in this study were made
using the points {0° 22.5° 45° 67.5°,90°, 113°, 135°, 157.5°,178°}. It is noteworthy
that each boundary point represents a ring, owing to the nature of the problem.

Using this collocation scheme, solutions were obtained for various M-numbers of the
points, different values of the torus shape factor k and torus-to-wall spacings b. For
b — oo the solutions were compared with the exact solutions of GOREN and O’NEILL [7].
These results show that the collocation solutions converge monotonically to the exact
solutions. Convergence is very rapid as k increases and becomes slow for kX — 1 (see
Table 1, 2).

Table 1. Comparison of exact and approximate dimensionless force coefficients for translation of a torus
along a transverse axis in unbounded flow.

M ‘ k=10 s; k=25 1 k=12
2 ‘ 0.4182 0.5327 ‘ 0.7243
4 1 0.4537 0.5982 | 0.8945
6 ! 0.4621 0.6011 | 0.9524
8 0.4621 0.6274 | 0.9741
10 0.4621 0.6284 ; 0.9841
12 0.4621 0.6284 [ 0.9841
exact, by [7] 0.4621 0.6284 0.9841

Table 2. Comparison of exact and approximate dimensionless torque coefficients for rotational motion of
a torus in unbounded flow.

M k=10 k=25 k=12

2 0.3994 0.5982 0.8163

4 0.4295 0.6163 0.8274

6 0.4318 0.6111 0.8352

8 0.4318 0.6120 0.8624

10 0.4318 0.6292 0.8763

12 0.4318 0.6243 0.8765

exact, by [7] 0.4318 0.6243 0.8765

Examination of the accuracy and convergence of this method for various b shows that
when the torus is located near the wall (b is small), then the convergence is slow and we
must use a large number of points in order to obtain the solution accurate enough
(Fig. 10),
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FIG. 10. Convergence of a wall correction factor for translational 4, C and rotational B, D motion of a torus

4. Main conclusions

in the presence of a wall; - - - - wall correction factor for a sphere, by [5] (R = T/2).

1. The behaviour of the wall correction factor A for the flows considered in this paper
is similar to that for a sphere and depends on various geometrical ratios of the torus & as
well. When & tends to 1, then the values A, 4, obtained for the torus tend to values 4;, 4,

for the sphere.

11*
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2. For all motions considered in this paper when the value b, distance from the wall,
is fixed, with the increasing k, 4; decreases and when the geometrical shape factor of a torus
k is constant, with decreasing » A; increases (b = f, g).

3. Solutions for any combinations of the motions described in this paper may be
obtained by a simple superposition of solutions given above.
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Appendix A

This appendix contains a list of functions contained in Eqs. (2.15)

B8 = = s+ gy )
ot~ 2o +;21)3/2f" ot G o)
% = -%f(—:ﬂ)f“
B fgz)m (s s )
B = gy hoson = s o)
b @ gﬂ/"ﬁf)
B = _%W"‘ﬁz (=B)fn1.1.1, LA
B = e (Bfutit
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2 o
R —
A = — a'2+.52 Sortns
2 o
*
A,, = _7'57 ~{x2+62 ,ﬁr.l,lvho’

where

Jumswr = | 1°P2, 2 (coship) (cos(nE) (coshyj —cos &) /2], (ar)dt,
0

Somswo= | PR a(coshi)sin(n ) (coshrj —cos &)1 21, (ar)dr,
0

R
7 =1In Rj’
COSE . Rf—i—Rﬁ—Zez
B 2R, R, ’

R} = b*+(1—c)?,
R} =b*+(t+0)>

Appendix B

This appendix contains a summary of the formulas used in evaluating the integrals
required by the relations (2.14). These formulas were obtained using the results and
general formulas for Fourier transforms found in ERDELYI [2]:

a2

J cos(gcosy)cos(dsiny)dy = -;Jo(u),

0

af2

T d*—g?
f cos?ycos(gcosy)cos(dsiny)dy = e g2 o)+ — 5 Jyw) ],
0
af2

7 2
] cosysinysin(gcosy)sin(dsiny)dy = —; iiz— (.Io(u)— = I, (u)),
9
a2

. . g
f cosysin(gcosy)cos(dsiny)dy = - % Ji(u),
0

where 1 = J/g?+d?.

Appendix C

This appendix contains a list of the functions contained in Eqs. (2.16) where:

AR, =2 J gz +b) (E.ﬁ,‘,,],,,ox(z+b_)x”2)(!x,

0
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o0
AT, =2 f e X EHDFE(f, 111, 0x(z+b))x 2dx,
0

AZ, = =2 f (l+l(z+b)’€”2)€mx( +b)ﬁ1 11,1, 0Ddx,

o0

BR, = ~ [ e (f(E(l —X)(z+b)+

0

_/;,,,,;,;_0 E)(Z-x(z+b)—|)

+bx2(z+b)+A)d.\-,

o0

BTn:—J» ()—M +b)(f 0()F“—X)(t.‘f-b)-}-f’"l'l'l'ﬂ
0

)(Z(t(gﬁ-b =1}
+bx*(z+b)—A)dx,

00

BZ, = _f —r(7+b)( 2Bfy 1 200X+ +fu 111, 0(|+x(z+b)—(z+b))

0

o

CR, = [ ™4V (£, o 1.0.0(x(z+b)E—A)x"1?)dx,

0
CT, = [ e™*D (£, o.1.0.0(x(z+b) F+ A) x'12) dx,
0

Gy = _f e *CHNxI2DS, 6.1.0,0d%,
0
DR, = _f e—xEthy | -1)2 (E(fa.z.n.o.o— Zﬁ.z.o.l._p_) (2—x)(2+b))
0 X
+(.f;a.2.|.o.0“ 2f"'2':x0‘1'0)/1 dx,

DT, = —f eI (F(fn.z.,,o.o— 2f"'2‘;’"'°4) (2—x(z+b))

0

e X +b)3)2 (ﬂ'-.z-;- Ll —f;l,Z,I.0,0) (z+b)Ddx.
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The symbols A, E, F, D denote respectively

7
A= 2 JO("U-):'
1
D= &) Jy(xr),
T 1
E = £3 Jo(xr) — o Ji(xr),

k4
F = T J(xr).
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