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Nonaxisymmetric Stokes flow past a torus in the presence of a wall 

A. KUCABA-PI:eTAL (RZESZOW) 

THIS PAPER presents the exact solutions for the creeping motion of an open torus of arbitrary 
size in the presence of a wall for the following conditions: asymmetrical translation of a torus 
in the parallel direction to a stationary wall, rotation about the axis perpendicular to the axis 
symmetry of the torus, shear flow past a rigidly held torus. The boundary collocation technique 
was applied to solve these problems. The associated resisting force, torque and wall correction 
factor are computed for a torus and compared with the exact solutions for the same problems 
for the sphere and with the approximation theory for a particle of an arbitrary shape [3]. 

W pracy przedstawiono rozwicgania scisle dotycl(!Ce oplywu otwartego torusa W przeplywie 
Stokesa w obecnosci scianki dla nast~puj(lcych warunk6w zadania: a) asymetryczne przemie­
szczenie torusa w kierunku r6wnoleglym do stacjonarnej scianki, b) obr6t wok6l osi prosto­
padlej do osi symetrii torusa, c) przeplyw scinaj(lcy wok61 torusa sztywno zamocowanego. 
Do rozwi(lzania zastosowano metodC( kollokacji brzegowej. Obliczono siiC( oporu, moment 
obrotowy i wsp6lczynnik oddzialywania scianki oraz por6wnano rezultaty z wynikami scislymi 
dotyczqcymi podobnego zagadnienia dla sfery jak r6wniez z przyblizonymi rozwiqzaniami 
dla CZ'lsteczki o dowolnym ksztalcie [3]. 

B pa6oTe npe~CTaBJieHbi Tolffibie pemeHHR:, KacaroLIU~eCR: o6TeKaHHR: oTKpbiToro Topa ~JIH 
TeqeHHH GroKca B npHCYTCTBHH CTeHKH AJIR: CJie~yro~ yCJioBIDi 3a~a~: a) acHMMeTpH 
nepeMe~eHHR: Topa B aanpaaJieHHH napaJIJiem.HoM K cra~oaapaoii creaKe, 6) apa~eHHe 
BOKpyr OCH nepneH~K)'JIHpHOH K OCH CHMMeTpHH Topa, B) TeqeHHe CO C~BHrOM BOKpyr 
:>KeCTKO 3aKpenJieHHoro Topa. .I(mi pemeHHR: npHMeHeH MeTO~ rpaH~HOH KOJIOI<ai.UiH. 
Bbi~TJieHbi cHJia conpoTHBJieHHR:, KPYTH~ MoMeHT H nonpaaoqabiH Ko3qm~HeHT CTeHKH, 
a TaK:>Ke cpaBHeHbl pe3ym.TaTbl C TOqabiMH pe3yJIDTaTaMH, KacaiO~HMHCR: aHaJIO~OH 
3a~a~ AJIR: c<t>epbi, KaK Tome c npH6JIH>KeHHbiMH pemeHHR:MH AJIR: qa~bi npoH3BOJibHOH 
<l>opMbi [3]. 

1. Introduction 

THE LOW REYNOLDS number flow past a body in the presence of a wall has been investi­
gated for many years: LoRENTZ (1907) [12], BRENNER (1964) [3], Ho i LEAL (1977) [9], 
but the sphere has been the main object of research. 

The method of reflection was generally used to solve these problems. It requires such 
a natural coordinate system in which one could simultaneously satisfy the no-slip boundary 
conditions on the surface of the body and along the wall. The point - force approximation 
has been used for treating slow flow problems, too. 

The combined analytical-numerical solution procedure used in this study is the colloca­
tion technique first developed by GLUCKMAN, PFEFFER and WEINBAUM [6] for the unbounded 
multispherical flows and then by GANATOS, PFEFFER and WEINBAUM [5] for the motion 
of a sphere between plane parallel boundaries. 

This method is based on the concept that for the Stokes flow, disturbances from all 
boundaries may be treated simultaneously. A cardinal rule for the successful application 
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648 A. KUCAB.A-PI.~TAL 

of the collocation technique is that the velocity disturbances produced by each coordinate 
boundary may be represented by an ordered sequence of fundamental solutions appro­
priate to the constant orthogonal coordinate sur.faces. 

This paper presents the exact solutions for the three-dimensional creeping motions 
of a torus in the presence of a wall with the application of the collocation technique. 
The quasi-steady flow with planar symmetry is considered. 

The associated resisting force, torque and wall correction factor are computed and 
compared with the exact solutions for the same problems for the sphere [3]. 

This study is an extension of [10], in which the axisymmetrical motion of a torus in the 
presence of a wall is considered. 

2. Mathematical formulation 

A rigid, open torus of the geometrical ratio k = Rfa (R- a being the smallest radius 
of the open hole and R +a being the radius to the outermost rim of the torus) (Fig. 1) 
moves in the presence of the wall in a homogeneous incompressible fluid of density e and 
viscosity JL which, being far removed from the torus, has a shear velocity profile. 

z 
R a 

FIG. 1. Torus. 

The torus moves with a constant velocity W in a direction parallel to the infinity plane; 
moreover, it rotates about an axis perpendicular to its axis of symmetry with a cons.ant 
velocity .n (Fig. 2). 

In a system of Cartesian coordinates (x, y, z) in which z is the axis of symmetry and the 
plane z = 0 is the plane of symmetry of the body, not decreasing the generality of the 

z 

X 

FIG. 2. Geometry for the asymmetric flow configuration. 
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NONAXISYMMETRIC STOKES FLOW PAST A TORUS 649 

problem, it is supposed that the torus translates with the velocity W along the x-axis and 
rotates with the velocity n about the y-axis. 

The shear flow velocity profile may be written v = S(z+b)ix. 
We assume that the Reynolds numbers 

TWe 

ft 
and where T= (R+a)·2 

are sufficiently small to allow us to neglect the nonlinear inertia terms in the Navier-Stokes 
equations of the fluid motion 

Accordingly, the equations governing the flow are the quasi-stationary Stokes creeping­
flow equations 

(2.1) 

and the equation of continuity 

(2.2) Vv = 0, 

where v and p are, respectively, the fluid velocity and the pressure fields. 
The velocity satisfies the following conditions: 
Boundary condition on the surface of the torus 

(2.3) 

Condition at infinity 
(2.4) 

v = W+(S2xr). 

V = S(z+b)ix. 

Boundary condition on the wall 

v = 0. 

For the geometry of the problem at hand, owing to the linearity of the Stokes equation, 
the velocity field is linearly composed of three parts: 

(2.5) 

where Ww denotes the fundamental solution (2.1) in halfspace, u, represents the fundamental 
solution (2.1) outside the torus, in space, V 00 is the velocity far removed from the torus, 
V oo = S(z+b)ix. 

In this paper we solve the problem at the moment t0 , when the axis of symmetry of the 
torus is perpendicular to the wall. In this case, the boundary conditions and solution have 
the simplest form following from the planar symmetry of the motion. 

The boundary conditions on the surface of the torus (2.3) and at infinity are conveniently 
expressed in terms of the cylindrical polar coordinates (r, (}, z) with corresponding veloe­
ities (v, vt, v.7:) which are related to the Cartesian values in the ordinary way. 

For this case, the no-slip boundary condition (2.3) has the form 

Vr = (W+.Qz)cosO, 

(2.6) vt = -(W+.Qz)sint7, 

Vz = - .Qrcos tJ 
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650 

and condition at infinity (2.4) 

(2.7) 

Vr = S(z+b)cosO, 

Vr = - S(z+b)sinO, 

Vz = 0. 

A. KucABA-PIJ;;TAL 

The part Ww represents a double integral of all separable solutions of Eq. (2.1 ) [5] in 
rectangular coordinates which produced finite velocities everywhere in the flow field a.nd is 
given by the double Fourier integral 

(2.8) 

where 

(2.9) 

Ww = (wx, Wy, Wz) 
0000 

wxex, y, z) = J I wx(tt, (J, z)cosaxcos{Jy dad(J, 
00 

00 00 

wy(x, y, z) = J J wy(a, (J, z)sinaxsin{Jy dttd{J, 
0 0 

0000 

Wz(x, y, z) = J J wz(IX, (J, z)sincxxcos(Jy dcxd(J, 
0 0 

00 00 

p(x, y , z) = J J p(a, (J , z)sincxxcos(Jy dcxd{J, 
0 0 

W,(a, {J, z) =(A ( 1- ~ z) + lt!B z-acz)e-", 

Wy(a,{J,z) = { t ·Az+B(I-~2 z)+Cz{J)e-'', 

wz(a, {J, z) = (ttAz-(JBz+C(l +kz))e-kz, 

p(a, (J, z) = ( -aA +fJB-kC). 

Here the A, C, B coefficients are unknown functions of the separation variable a and {J. 
By proper choice of these functions, Ww is capable of exactly cancelling disturbances 
produced by the torus along the plane boundary. 

The Ur is conveniently expressed in terms of toroidal coordinates ('YJ, 0 , ~) (Fig. 3) 
which are related to the cylindrical coordinates (r, 0, z) by the formula 

(2.10) 
. Sh'Y} 

r - c ----.,---
- ChrJ-COS~' 

sin~ 
Z=C . 

ChrJ-COS~ 

The factor c is a constant with the dimension of length whose significance will be apparent. 
Guided by the dependence of the velocity components on 0 by the boundary conditions 

(2.6), by the work of MAJUMDAR, O'NEILL [13] for the axisymmetric translation of the 
torus and by the analysis of GOREN, O'NEILL [7] for the asymmetric transla'tion and rota­
tion of the torus, ~e obtain the solution Ur in the following form: in cylindrical coordinates. 
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NoNAXISYMMETRIC STOKES FLOW PAST A TORUS 651 

~=2rr r 

Fro. 3. Toroidal coordinates. 

1 
Ur = l(U+ V +rQ/c)cosO, 

(2.11) 
ut = - ~ (U- V)sinO, 

1 
Uz = 2 (2W+zQ/c)cosO, 

where 

00 

U = (chn-cos~) 1 ' 2 }; (A~cosn~+Ansinn~)P;_ 1 ;2(chn), 
n=O 

00 

(2.12) 
Q = (chn-cos~) 1 '2 l, (B~cosn~+Bnsinn~)P~-I/2(chn), 

n=O 

00 

V = (chn-cos~) 1 '2 .}; (D~cosn~+Dnsinn~)Pn-lf2(chn), 
n=O 

00 

W = (chn-cos~)1 ' 2 }; (C~cosn~+Cnsinn~)P!- 112(chn), 
n=O 

P:_ 112 denotes the associated Legendre function of the first kind of order n -1/2 and 
degree m. 
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652 A. KUCABA·P~AL 

The coefficients An, A~, Bn, B~, ... , D~ are independent of r;, ~and the continuity equa 
tion provides a relationship between them. 

~(n-}) B~-• ~5B;+ (n+3/2)B;.,-(n~4)(n~3/2)A;_, 
+2(n-9/4)A~- -(n+3/2)(n+5/2)A~+ 1 -(2n-1)Cn-t +4nC" 

+(2n-l)Cn+t- ~ D~+t +D~- -~D~+t = 0 , 

(2.13) (n- ~) B,_, +5B,~(n+ ~) B,., + (n-4)(n~3/2)A,_ 1 
-2(n-9/4)An+ (n+3/2)(n+5/2)An+l- (2n-1)C~_ 1 + 4nC~ 

- I I I 
+(2n-1)Cn+l +yDn-l -Dn+yDn+t = 0. 

n~l 

Each of the fundamental solution Ww (2.8), Ut (2.11) already satisfies the governing 
equation (2.1) at each point :in the field, the proper boundless conditions at infinity 
and the requirements of the planar symmetry. 

Owing to the linearity of Stokes equations, we separately seek the solution for 
translation without rotation of the torus in the direction parallel to the wall, 

rotation without any translation of the torus, 
shear flow past a rigidly held torus. 
Now we solve the problem for the translational motion. 
An application of the boundary conditions v = 0 along the wall z = - b permits to 

express the disturbance produced at the wall by a disturbance produced by the torus 

(2.14) 

00 00 

J J wx(a, {3, -b)cosa.xcos{Jydrxd{J = -ux(x, y, -b), 
0 0 

00 00 

f J wy{rx, {3, -b)sinq.xsin{Jydad{J = -uy(x, y, -b), 
0 0 

00 00 

J J Wz(a., {3, -b)sinrxxcos{Jydrxd{J = -uz(x, y, -b). 
0 0 

These equations may be inverted, and integration may be performed analytically using 
the results for the Hankel transforms found in [I] and based on expressing the associated 
toroidal Legendre function by its polynomial representation. The results are given in 
Appendix A and we now may write 

00 

wx(a, {3, -b)= 2; BnB:+B~B!'+DnD!+D~D!'+CnC:+c~c:', 
n=O 

00 

(2.I5) wv(rx, {J, -b)= 2; BnB:*+B~B!*' +DnD:*+D~D!*', 
~t=O 
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NONAXISYMMETRIC STOKES FLOW PAST A TORUS 653 

00 

( {3 -b)- \1 B B***+B' B***'+A A*+A' A*' Wz IX, , - L.J n n n n 11 n n n • 
n=O 

The coefficients A,, A~ ... D11 , D~ satisfy Eq. (2.13). 
Equations (2.15) give the Wx, W.v, Wz functions evaluated at z = -bin terms of the still 

unknown coefficients An, A~, Cn, ... ,Dn. 

To obtain the wx, w.v, Wz at any value of z, one must determine the unknown functions 
A, B, C, in Eqs. (2.9). 

Using Eqs. (2.8), (2.9) and (2.15) as the final result, we have in the cylindrical coordi-

nates Ww = (wr, Wt, Wz) 

Wr(r,O,z) = ~ (B11 BRn+B;.BR~+AnAR11 +A~AR~+CnCRn+C~CR~ 
n=O 

+ D11 DR11 + D~ DR~)cos 0, 

(2.16) Wr(r, 0, z) = ~ (BnBTn+B~BT~+AnATn+A~AT~+CnST" 
n=O 

Wz(r, O, z) = ~ (B11 BZn+B~BZ~+AnAZn+A~AZ~+CnCZ,+C~CZ~)cosO. 
n = O 

The functions BRn, ... , CZn are listed in Appendix C: 

We have now expressions for the solution v = ur+ww, which are still in terms of the 
unknown toroidal coefficients An, A~ ... Dn, D~ . In this manner the infinite domain bound­
ary value problem has been reduced to a much simpler finite domain problem in which 
the infinite array of the unknown coefficients describing the toroidal disturbance need to be 
determined so as to satisfy the appropriate boundary conditions on the surface of the 
torus. 

To satisfy the boundary conditions 

(2.17) v = w 
exactly on the surface of the torus for the translational motion, one would require the 
solution of the entire infinite array of some unknown coefficients. 

The collocation technique satisfies the boundary conditions at a finite number of discrete 
points of the torus generating arc and reduces the infinite series to a finite one. If 
the no-slip conditions are to be satisfied at M points, the infinite series are truncated after 
M terms. Together with the continuity equation, there is a set,of 4M simultaneous linear 
algebraic equations for the 4M: A,, B11 , C~ ... D~ unknown coefficients of the truncated 
solution, which may be solved by any standard matrix reduction technique. Once these 
constants are determined, the solution for the velocity field is completely known. 

In the same way the solutions for rotational motion of the torus and for the shear flow 
were obtained. In these cases the boundary conditions (2.17) were replaced by 

(2.18) 
V = S} X f for rotational motion, 

v = 0 for shear flow, 

respectively. 
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3. Forces and torque acting on the torus 

The force F acting on the torus is given by 

(3.1) 

where Rn is the stress vector associated with the direction n of the outward normal at any 
point on the surface of the torus. 

Substituting the derived expressions for the pressure and velocity gradients evaluated 
on the surface 'Y/o of the torus and carrying out the indicated integration, we get the follow­
ing results: F = (F:x,O,O) 

00 

(3.2) Fx = ~ y2 nftH1 [c] 2 (4D~+(4n2 -I)B~+nQn-tf2P;_ 112 
n=O 

The torque M acting on the torus is given by 

(3.3) M = J (r x Rn)ds 
s 

when the moments of the surface stress Rn are taken about the origin r = z = 0. The 
resisting torque has Cartesian components (0, -MyO) with 

00 

(3.4) MY= ny2 Hgft[c]3 _}; ((4n2 -l)C~-4nDn+2nQ~-tf2p~-tf2 
n=O 

+ (B~ + (n-1)Cn)+nQ~-l/2p;_l/2A~)sinhrJo· 

For translational motion of the torus we put H1 = W, H 9 = W/T, for rotational motion 
H1 = QT, H 9 = Q, for shear flow past a torus we have H1 = S · T, H 9 = S. 

In the case when the wall tends to infinity (b -+ oo) the formulas (3.2) and (3.3), are 
similar to those given by GOREN, O'NEILL [7]. In computing and presenting the results, 
it is conNenient to use the nondimensional physical quantities. 

A dimensionless wall drag correction factor is defined as 

(3.5) A.J = Fx 
Foo ' 

the ratio of Fx (3.2) to the force F 00 acting on a torus in the same flow in unbounded 
flow. 

Analogically we have defined the wall correction factor for the torque 

(3.6) Ag = Z: . 
The calculation was made for various geometrical ratios of the torus: k E {I, 2, 3, 5~ 10, 
80} and for various dimensionless distances b defined by the formula 

(3.7) 

(3.8) 

- b 
b=­T' 

• T = 2(a+R), 

bE {1.13, 1.54, 2.35, 3.76, 6.13, 10.1 }. 
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NONAXISYMMETRIC STOKES FLOW PAST A TORUS 655 

The calculated values of A.1 and A.9 are given in Figs. 4 and 5 for the translational motion 
of a torus, in Figs. 6 and 7 for the rotational motion of a torus and in Figs. 8 and 9 for 
rigidly immersed torus in shear flow. 

T=2(R+a) 

•------• by Brenner [3] 

~r----•- by Ganatos [8], For a sphere 

• • For torus 

2 ln{b!T) 

FIG. 4. Force acting on a torus in translational, nonaxisymmetrical motion. 

6 

5 

Ts2(R+a) 

o--o-o by Ganafos [8] For a sphere 
3 e-e For torus 

0.3 0.6 ln{b/1) 

FIG. 5. Torque acting on the torus in translational nonaxisymmetrical motion. 
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T=2(R+a) 

o--o by Ganatos [B) For a 
sphere 

•-• For torus 

0.3 0.6 1 

ln(b/T) 

Fro. 6. Force acting on the torus in rotational, nonaxisymmetrical motion, atlthis time 10 , when the 
axis of symmetry of the torus is perpendicular to the plane wall. 

:>.9=My!Moo . 

1.2 

0.3 

z 
a R 

X 

T=2(R+a) 

o--o by Ganatos[8] For a 
.____.For torus sphere 

0.6 /n{b/T) 

Fro. 7. Torque acting on the torus in rotational , nonaxisymmetrical motion, at this time to , when the 
axis of symmetry of the torus is perpendicular to the plane wall . 
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1.0 

0.3 0.6 1 

T=2(R+a) 

o--o by Ganatos [B) For a sphere 

•-.-• For torus 

1.3 1·6 ln(b/T) 

651 

FIG. 8.. Force acting on the torus immersed in shear flow, at the time t0 , when the axis of symmetry 
of the torus is perpendicular to the plane wall. 

1 

0.95 t------t---

0.3 

o---o by Ganatos [B) For a sphere 
o--o For torus 

ln(b/T) 

Fm. 9. Torque acting on the torus immersed in shear flow, at the time t0 , when the axis of symmetry 
of the torus is perpendicular to the plane wall. 

The above results were compared with the ones for the same problems for the sphere 
given by GANATOS [5] and with the approximate theory. 

The accuracy and convergence of this method of solution was tested for all the motions 

Jl Arch. Mech. Stos. nr 5-6/86 
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considered in this paper and compared with the published exact solutions for a torus 
in the unbounded flow due to the lack of other exact solutions for the torus in the bounded 
flow. The scheme for spacing the points on the surface of the torus is based on the papers 
[4, 5] in which the corresponding problem for the motion of a sphere in the presence 
of a wall is considered. 

In the resl!,lts the calculations of the wall correction factor in this study were made 
using the points {0°, 22.5°, 45°, 67.5°, 90°, 113°, 135°, 157.5°, 178° }. It is noteworthy 
that each boundary point represents a ring, owing to the nature of the problem. 

Using this collocation scheme, solutions were obtained for various M-numbers of the 
points, different values of the torus shape factor k and torus-to-wall spacings b. For 
b -+ oo the solutions were compared with the exact solutions of GOREN and O'NEILL [7] . 
These results show that the collocation solutions converge monotonically to the exact 
solutions. Convergence is very rapid as k increases and becomes slow for k -+ 1 (see 
Table I, 2). · 

Table 1. Comparison of exact and approximate dimensionless force coefficients for translation of a torus 
along a transverse axis in unbounded flow. 

M k = 10 k = 2.5 k = 1.2 

2 0.4182 0.5327 0.7243 
4 0.4537 0.5982 0.8945 
6 0.4621 0.6011 0.9524 
8 0.4621 0.6274 0.9741 

10 0.4621 0.6284 0.9841 
12 0.4621 0.6284 0.9841 

exact, by [7] 0.4621 0.6284 
~---

0.9841 

Table 2. Comparison of exact and approximate dimensionless torque coefficients for rotational motion of 
a torus in unbounded flow. 

M k = 10 k = 2.5 k = 1.2 

2 0.3994 0.5982 0.8163 
4 0.4295 0.6163 0.8274 
6 0.4318 0.6111 0.8352 
8 0.4318 0.6120 0.8624 

10 0.4318 0.6292 0.8763 
12 0.4318 0.6243 0.8765 

xact, by [7] 0.4318 0.6243 0.8765 

Examination of the accuracy and convergence of this method for various b shows that 

when the torus is located near the wall (b is small), then the convergence is slow and we 
must use a large number of points in order to obtain the solution accurate enough 
(Fig. 10). 
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FIG. 10. Convergence of a wall correction factor for translational A, C and rotational B, D motion of a torus 
- - in the presence of a wall; - - - - wall correction factor for a sphere, by [5] (R = T/2). 

4. Main conclusions 

I. The behaviour of the wall correction factor A for the flows considered in this paper 
is similar to that for a sphere and depends on various geometrical ratios of the torus k as 
well. When k tends to I, then the values .A1 , A9 obtained for the torus tend to values .A1 , A9 

for the sphere. 

11* 
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2. For all motions considered in this paper when the value b, distance from the wall, 
is fixed, with the increasing k, A.;; decreases and when the geometrical shape factor of a torus 
k is constant, with decreasing b A.;; increases (ii = f, g). 

3. Solutions for any combinations of the motions described in this paper may be 
obtained by a simple superposition of solutions given above. 
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Appendix A 

This appendix contains a list of functions contained in Eqs. (2.15) 

n:• = ! (IX' ::')3'' ( J...1. '· o. o- (IX' +
2
/1')1'' .r... 1.1. o, o}, 

B* *I - 1 rt.{3 (/, 2 f, ) 
n - Jl (rt.2+f32)3f2 n,1,2,0,1- (rt.2+f32)1/2 n,l,l,O,l ' 

D:* = ~ (IX' :;2)32 (t .. 2,1, o. 0- (IX' +
2
/1')1/2 .r... 2, 0, 1, 0)' 

D:·· = ~ (IX' ::2)3/2 (.r... 2,1, 0,1- (IX' +
2
/1')1/2 .r... 2, 0,1,1)' 

B*** = --1 
---=- rt. __ (-b)f, o 

n n (rt.2+f32) n,l,l,l, '. 

B***' - 1 rt. 
n - -nrx2+f32(-b)J,,l,l,l.l' 
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where 

A*'= n 

A*= n 

2 ct 
- --;;- - (X2 + {i2-/,, , I , I. I, l' 

2 ct - ·--- - - -- ---- f, 
Jl ct2 + (32 n, I , l , I , 0 ' 

00 

J,,,rn ,s,v, t = J t sP~"- 1 1 2 (cosh rj)(cos(n~)(coshij-cos[)) 1 1 2Jv(ctt)dt, 
0 

00 

J, ,, ,,,v,o = J t sP~'- 112 (cosh ij)sin(n~)(coshrj-cos[) 1 1 2Jv{rxt)dt, 
0 

-- _ l R2 
r;- nli;, 

Ri+R~-2c 2 

cos~ = ·----------
2RIR2 

Ri = b2+(t-c)2, 

R~ = b 2+(t+c)2. 

Appendix B 

661 

This appendix contains a summary of the formulas used in evaluating the integrals 

required by the relations (2.14). These formulas were obtained using the results and 

general formulas for Fourier transforms found in ERDELYI [2]: 

rcf2 

J cos(gcosy)cos(dsin y)dy = ; - J0 (u), 
0 

n /2 Jl ( d2-g2 ) f cos2ycos(gcosy)cos(dsiny)dy = 2.ui- g2lo(u)+ u J1(u) , 

r cosysinysin(gcosy)sin(dsiny)dy ~ - -~- -:~ (J.(u)- ~ Jl(u) ), 

n /2 

J cosysin(gcosy)cos(dsiny)dy = n
2

- _g _ 11 (u), 
0 u 

where u = y'g2 -+ Jr . 

Appendix C 

This appendix contains a list of the functions contained in Eqs. (2.16) where: 

00 

AR = 2 J e -x< z +b>(E~' x(z+b)x:1 12 )dx 
n Cfn, 1,1, I, 0 . ' 

0 
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00 

AT = 2 J e-x<z+b>F·(f, x(z+b))x112dx 
11 n, I , I, I, 0 ' 

0 

00 

AZ = -2 J (l +x(z+b)x 112 )e-x<z+b>r Ddx 
II Jn,],l,l.O ' 

0 

BR. ~ -l e-xc,+b> (t .. 1• 1. 0 , 0 ( E(l-x)(z+b) +_L;,~.i'-1. 0 E) (2 · x(z+ b) -I) 
0 

+bx2 (z+b)+A )dx, 

00 

BT. ~ - J e~xc,+bl (t..o. 2 , 0 , 0 F(l- x)(z+b) + !..~.~. ~'-0- F) (2(x(z+b) -I) 
0 

+bx2 (z+b)-A)dx, 

00 

BZ11 =- J e-x<z+b>(x 1 1 2 B/,1 , 1 , 2 . 0 , 0 x(z+b)+f~ ... 1 • 1 , 0 (l +x(z+b)-(z+b))dx, 
0 

00 

CR = j' e-x<z+b> (/, (x(z+b)E-A)x 112 )dx 
II II, 0, I, 0. 0 ' 

0 

00 

CT = J e-x<z+b> (J, (x(z+b)F+A)x 112 )dx 
11 n , 0, I, 0, 0 ' 

0 

00 

CZ = - J e-x(z+b>xl/2 D 1' dx 
n :ln. 0 , J. 0, 0 ' 

0 

DT, ~ -l e~xc,+b>x-' 12 (F(J... 2 • 1 , 0 , 0 -
2J..· 2~o.1.o) (2-x(z+b)) 

0 

+(/, - 2/n~_?__.)A)dx, n,2,1,0,0 X 

DZ. ~ f' e~xc'+b1x31 2 ( /. •• '·;·'-:ll - J... 2 , 1 , 0 , 0 ) (z+b)Ddx. 

0 
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The symbols A, E, F, D denote respectively 

n 
A = 2 -J0 (xr), 

n 
D = TJ1 (xr), 

n 1 
E = -2 10 (xr)- -xr 11 (xr), 
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