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An analytical and numerical investigation of heat transport 
in superfluid helium<*> 

D. GENTILE (PALAISEAU) and J. PAKLEZA (ORSAY) 

ONE PARTICULAR feature of superfluid helium is the propagation of temperature waves as an 
efficient mechanism of heat transport. Nevertheless, this phenomenon can be attenuated due 
to the formation of superfluid turbulence [1]. Thus the thermal behaviour seems to be similar 
to the classical heat diffusion, as in a normal fluid. 

Szczeg6ln~ wlasnosci~ nadcieklego helu jest zdolnosc przenoszenia fal temperaturowych sta­
nowi~ca wydajny mechanizm transportu ciepla. Zjawisko to moze bye jednak tlumione dzi~ki 
tworzeniu si~ turbulencji [1]. W ten spos6b przebieg zjawisk cieplnych wydaje si~ podobny 
do klasycznego procesu przeplywu ciepla w zwyklym plynie. 

Oco6eHHhiM CBOHCTBOM cBepxTei<}"'ero reJIHH HBJI.fleTC.fl cnoco6HoCTh nepeHoca TeMnepa­
TYPHhiX BOJIH, cocraBJimomaH 3<f><f>ei<THBHhiH MeXaHH3M TerumnepeHoca. 3To HBJieHHe o.n;­
Hai<o Mo>l<eT 3aT)'xaTb H3-3a o6pa3oBaHHH T)'p6yJieHTHoCTH [1]. Tai<HM o6pa3oM xo.n; TenJio­
BhiX HBJieHHH I<a>l<eTC.fl 6biTb aHanorH't!HhiM I<JiaccJNeci<oMy npo~eccy TenJionepeHoca B o6hii<­
HoBeHHoii >I<H,D;I<OCTH. 

Nomenclature 

A 0 equivalent viscosity, 
A(T) Gorter-Mellink constant, 

C~' specific heat, 
/, VJ• ¥, E dissipative terms, 

K thermal conductivity, 
P intrinsic momentum, 
Q heat flux, 
s entropy, 
T temperature, 
U internal energy, 
V, normal fluid velocity, 
(X mutual friction constant, 
y intrinsic velocity, 
n pressure, 

(! density, 
(!, normal density, 

(!s superfluid density. 

THIS PAPER is concerned with the influence of propagation on heat transport efficiency 
especially in the presence of a vapour-liquid transition. A numerical simulation is presented, 
based on the resolution of the energy and internal momentum conservation equations, 

(*) Paper given at XVII Symposium on Advanced Problems and Methods in Fluid Mechanics, Sobie­
szewo, 2-6 September 1985. 
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according to the KHALATNIKov's theory [2]. The dimensionless form of these coupled, 

nonlinear equations introduces three characteristic times related to the transport, propaga­

tion and diffusion of the temperature. The relative importance of the three modes of energy 
transport is discussed in accordance with the amplitude and duration of the energy to 

evacuate. The influence of the propagative properties is particularly important in the 

presence of a liquid-vapour transition. 

1. Conservation equations and different processes of transport 

1.1. Equations and model 

The equations describing the thermal behaviour of helium are the conservation of 

internal momentum and of energy. Their general shape can be written as follows, in accord­

ance with [3]: 

(1.1) 
oP = = - . 
7ft+V(PV+P+f)+PJV(V+y)1+SVT-eVtp-Px (V x Vs) = J, 

(1.2) 
au = - =-= 
7ft+V[(U+p)V+TSy+(V+y)(yP+:r)+TS-e'PY] = 0. 

The meaning of different terms have been discussed in [4]. For the numerical resolution, 

the following assumptions have been made: i) heat transport without net mass flow (J = 
= eV = 0), ii) one-dimensional heat transport. Thus the previous set of equations becomes 

(1.3) ar = __£ o2
T _ v ar _ _!_ avN T+ _ex_ V 2 + _'Ao ( avN )

2 

ot eCp ox2 N ax cp ax ecp N cp ax ' 

(1.4) 

These equations are able to describe completely the temperature and normal fluid velocity 

component evolution in superfluid helium, when a temperature or heat flux perturbation 

is generated at the origin of the coordinates (x = 0 in our case). Note that the V, space 

and time evolution is equivalent to the heat flux transport because of the relation Q = 

= esTV, meaning that entropy is transported at the V, velocity by the norm:ll fluid compo­
nent [5]. 

1.2. Dimensional analysis 

The numerical treatment of Eqs. (1.3) and (1.4) is easier if dimensionless parameters 

are introduced: 

x = xjA, t-= tf-r:, t1n = V,/v0 , T-= (T-T0 )/fJT. 

These new variables lead to the following set of equations, equivalent to Eqs. (1.3) and 

(1.4) 

(15) oVN =(AoT:f!s) o2 VN -[3 (Vo-r) oVN (Ae 3 -r:v:2)v-2]v -(Soes-r(dT}) oT 
' ~- 12 ~-2 'l ~- + 2 0 N N V: 1 ~- ' 

ut f!NA uX A uX f!s of!NA uX 
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(1.6) ar = (~} a2
r _ ( V0 i) v af _ ( iSo Vo} r avN 

ai ecp A2 ax2 
;. N ax ;.cp ax 

. (A:eNVgi)- 2 ( AoiV5 (aVN)
2 

+ e: C.(bT) VN+ c,A2(~TJ) -ax · 
Taking into account the very small values of K (heat conductivity) and A0 (equivalent 
viscosity), the associated terms can be neglected, what has been numerically verified [4]. 
Thus Eqs. (1.5) and (1.6) can be written in the following form 

(1.7) 

(1.8) 

with 

a~ +~Vn a~=-~ a~ T+~V~, 
at it ax tip ax ia 

av~ _ +3~vN a~=-~ a~ -~v; 
ot it ax ip ax ia 

it = J.fVo, 

ip = ).CP/So Vo = J.eN Vo/Soes ~T, 

id = e~cp ~T/Ae3eN v~ = e;/Ae3 V5. 

This writing shows the existence of three distinct but coupled heat transport mechanisms 
that could be called: i) transport of r ·at Vn ("convection"), ii) propagation of T, iii) 
diffusion of T, according to VINEN [6] at GENTILE [7]. This mathematical presentation 
is formal and allows for a numerical separation of the different modes; if the duration i 

of the heat flux disturbance is smaller than id (and it), the main process of transport will 
be propagative. On the contrary, i being larger than it~, the main process will be diffusive. 

As it has been demonstrated in [4], since it~ is strongly dependent of V0 , it is numeri­
cally equivalent to maintain i constant and change the value of the perturbation Q. In 
particular, it~ varies with Q- 2

• At i constant and according to the value of Q, i 4 can be 
smaller or greater than i. The diffusive character can be more or less pronounced, depen­
ding on the value of the heat flux at x = 0 on the heater. 

2. Numerical solution 

The physical conclusions have been demonstrated through a numerical solution 
of the coupled equations (1.5) and (1.6). The numerical algorithm has been explained 
in [4]. As to the boundary conditions, a heat flux perturbation Q, of duration i, has been 
applied at x = 0. Q is converted into a condition on T and Vn · 1(x=O> is determined from 
an energy balance on a small slice of fluid (between the first two nodes) and Vn<x=O> from 
the relation QfesT<x=O>· At the free extremity, x = L, the temperature is maintained 
,constant and equal to the initial temperature T0 , and the velocity gradient (dVnfdx)cx=L> 
is equal to zero. 

Three values of Q have been assumed, for a duration of i = 3 mS, corresponding 
to Figs. la, 1 b, and lc. 
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a 
tJT(mX) 

0 2.0 

Q= 15 W/cm 2 

0.45 

Intermediate case 
0.28 

0.11 

0 2.0 4.0 

i) Q = 0.05 W fcm 2 , 

ii) Q = 1.5 W fcm2 , 

iii) Q = 7 W fcm2
• 

4.0 

Flo. 1. 

Q=0.05 W/cm 2 

Propagation 
(+transport) 

6.0 8.0 

c 
tJT(mX)! 

5.34 

3.35 
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10.0 

X(cm) 

DiFFusion(+ transporn 

According to the wave concept in the theory of heat, developed by V. A. BUBNOV [8} 
and based on the analysis of temperature field isotherms, calculation of the "diffusion 
velocity" Kr has been done for the intermediate case which corresponds to the velocity 
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of an isothermal line L1 T = const, progressing through the fluid, where L1 T = T(x, t)­
- T0 • gT is defined as 

gr = -(dL1Tjdt)xf(dt1T/dx),. 

LlT(mK)l 

0.45 

0.28 

0.11 

FIG. 2. 

Figure 2 gives the values of g for different t1 T. The dashed lines correspond in fact to 
different velocities, every line indicates the points of temperature which move at constant 
speed. It is remarkable that in the intermediate case the points of the temperature profile 
move at velocities between small values ( < 4 m/S) up to the second sound velocity (20 m/S 
at the equilibrium temperature 1.8 K). A temperature front propagates at low values 
of L1 T, and even some points of very low temperature move at velocities greater than the 
second sound one. The coupling between the different modes can certainly explain this 
point [9]. 

3. Simulation of film boiling of helium ll 

Numerical simulation was extended to the case of a liquid-vapour transition. Before 
describing the numerical algorithm and discussing the obtained results, it seems necessary 
to review briefly the main conclusions of film boiling of helium II that one can find in the 
literature. 

3.1. A review of He II film boiling 

As mentioned by LABUNTSOV [10], despite the increased interest in heat transfer abil­
ities to liquid helium, analytical studies of heat exchange with He II in presence of a phase 
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change lag behind experimental studies. Only one analytical investigation can be cited 

[II] which postulates the existence of a special heat flux Qb removed from the boundary 

of the vapour-liquid interface in the volume of helium. From this heat flux, the existence 

of which has been postulated also in [I2] and correlated to experimental data of IREY 

and al. [I3, I4, I5], LABUNTSOV and al. [I6, I7, IS] have made some analytical attempts 

to explain the process of film boiling in He II. Their analysis is based on the non-equilibrium 

effects taking place on the interface and, through the kinetic theory equations, they could 

give an interpretation of this heat flux Qb. In particular, it appears that in certain conditions 
the vapour film boiling of He II remains invariable in dimension in time, and vapour does 

not accumulate in the film. The film thickness is automatically established for a particular 

value of heat flux, given by the relation between dimensionless fluxes of mass, of heat 

and momentum, directly deduced from the kinetic theory. If the heat flux is different 

from this value, either vaporisation or condensation takes place [IO]. Moreover, this 
analysis shows that a cooling effect occurs with a supply of heat from the vapour to the 

interface. This point bas been observed experimentally by one of the authors [19]. Our 

purpose is not to discuss in detail these results but to show that it is possible to find them by 
solving numerically Eqs. (1.5) and (1.6) modified by the presence of phase-change. 

3.2. Numerical model 

It has been accutately described in a recent paper [20]. We only recall here the 

main assumptions and invite the reader to [20] for numerical details. 
AssUMPTIONS. i) one-dimensional model without movement of liquid, ii) conductive 

heat transfer through the vapour layer (the Rayleigh number corresponding to our numeri­

cal examples being smaller than the critical Rayleigh number, it is conceivable to neglect 
any convective effects) iii) coupling of heat conduction equation in the vapour with Eqs. 

(1.3) and (I .4) through typical boundary conditions on the interface [20]. 
If T(O, t) reaches the saturation temperature, Tsat is imposed on the liquid-vapour 

interface and the necessary amount of heat quantity is calculated to assure this temperature 

condition. This heat flux- called critical heat flux- corresponds to the heat flux Qb 

of the kinetic theory. The process of calculation is iterative [20]. It must be noted that the 

start of film boiling corresponds to a change of the boundary conditions from the Neuman 

type (power Q imposed at x = 0 if T(O, t) < Tsat) to the Dirichlet type (temperature 

T(O, t) imposed equal to Tsat and critical heat flux calculated). 
An energy balance corresponding to a comparison between the imposed heat flux Q 

and the calculated critical flux Qb allows to conclude to either vaporisation or condensation, 
or equilibrium of the thickness of the film. The difference between this approach and the 

kinetic approach is the introduction of heat vaporisation (latent heat) in our model and 

the lack of this notion in the kinetic model. 

3.3. Results and discussion 

Figures 3a, 3b and 3c show the time evolution of the gas film thickness for the following 

cases: 
3a - main process: propagation (no diffusion), 
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FIG. 3. 

3b - coupling between the three modes, 
3c - main process: diffusion or diffusion + transport. 

........ 
......... , 

', 
. '-mFiuence oF g 

2 3 

t(ms) 

It is obvious that the behaviour of the interface and consequently, the mechanisms 
of phase change, is quite different in presence or absence of propagating temperature 
waves. Particularly interesting to note is: 

i) the possible existence of film thickness oscillations (leading to vaporisation and 
recondensation processes) which are attenuated after a few milliseconds; 
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ii) the possible existence of a stable interface or quasi-stable because a small disturbance 
of Q or (equivalent of pressure) leads to either a vaporisation or recondensation process 

(Fig. 4); 

E:{Jl) 1 
200 

150 

100 

50 

a 

Metastase equiliiJrium 

Q 

2.0 T{M5) 

FIG. 4. 

iii) a continuous process of vaporisation if the diffusion mechanism is the main transport 
process. 

Our model is simplified because only thermal considerations at the gas-liquid interface 
have been taken into account. In particular, the gravity effect has been neglected. 

The problem will not be so simple if, experimentally for example, we use a surface 
_ immersed in helium and heated from below. The influence of gravity will contribute to the 
disappearance of the stable interface, as indicated by the dashed line in Fig. 3b. A simple 
calculation can be made to compare thermal and gravity effects in a geometry where the 
liquid would be above the vapour. The liquid will fall and lead to dynamic instabilities 
on the interface in an approximate time rg = yejg, w.here e is the thickness of the film. 
For the case of Fig. 3b, e ~ 100 !.f. leads to a falling-time of 3 mS. In the case of 
Fig. 3c, gravity effects will not influence evaporation before a few tenth of milliseconds 
( r, = 30 mS for e = 9 mm). · 

Under these previous assumptions, the numerical results are easily interpreted through 
the temperature profiles and different heat fluxes time evolution [20]. 

4. Conclusion 

In this work, the thermohydrodynamic equations of supertluid helium have been 
presented in dimensionless forms. This allows to separate easily the different heat 
transport n;todes by this fluid. Through a numerical simulation, the influence of each mode 
has been demonstrated in the case of a single liquid and liquid-vapour transition (film). 
In particular, it seems that the results cited in the literature must be connected to the 
propagative character of this fluid. Moreover, numerical simulation makes it possible 
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to do certain assumptions and allows to follow the dynamics of very fast phenomena which, 
it is not evident, can be assured experime,ntally. Nevertheless, the confirmation of the 
main conclusions now imply future experimental measurements. 
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