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Bubble flow considered as a continuous medium 
with a spherical microstructure<*> 

J. S. DARROZES and G. MICHELET (PALAISEAU) 

THE CLASSICAL micromorphic media theory is used to descnbe a bubbly flow without both 
phase change and slip velocity. In order to take into account the bubble growth only, a spherical 
microdeformation tensor is introduced. The virtual powers principle leads to the macro- and 
micro-momentum equations and the first principle is used to write down the energy equation 
when mean gas and liquid temperatures are assumed to be equal. The constitutive Jaws are de­
rived from the second principle of thermodynamics and physical considerations give an equation 
of state which allows to close the full set of equations for such media. 

KlasycZn'l teori~ mikromorficzn'l zastosowano do opisu plynu z p~cherzykami przy zalozeniu 
braku przemian fazowych. Dla uwzgl~dnienia wzrostu p~cherzyk6w wprowadzono tensor 
sferycznej mikrodeformacji. Zasada mocy wirtualnych prowadzi do r6wnan makro- i mikro~ 
d6w, a pierwsza zasada pozwala wyprowadzic r6wnanie energii przy zaloreniu r6wno5ci srednich 
temperatur gazu i cieczy. Prawa konstytutywne otrzymuje si~ z drugiej zasady termodynamiki, 
a rozwafania fizyczne prowadZ'l do r6wnania stanu, kt6re pozwala zamkn'lc pelny uklad r6w­
nan rozpatrywanych osrodk6w. 

KJiaCCWieCI<a.fl MHI<poMop<i>HlleCI<a.fl TeopHH npHMeHeHa I< OnHCaHHlO >I<H,lU<OCTH C ny3blpLI<a­
MH, npH npeAIIOJIO>I<eHHH OTcyTCTBH.fl <Pa30BbiX npeBpameHHif. ,Il.rm yqeTa poCTa ny3blpLI<OB 
BBeAeH TeH30p c<l>epWieCI<OH MHI<POAe<l>opMaiUW. IlpHHIUUI BH:pTYaJILHbiX .MOIIUIOCTeH 
npHBOAJ{T I< ypaBHeHHHM Mai<po- H MHI<POHMnYJILCOB, a nepBoe Hal.laJIO ll03BOJI.fleT BbiBe­
CTH ypaBHeHHe :meprHH, npH npeAIIoJio>l<eHHH paBeHCTBa cpe,mmx TeMnepaTYp rasa H ~­
I<OCTH. OnpeAeJIHIOmHe sai:<oHhl noJiyllaroTCH H3 BToporo HallaJia TepMO)J;BHaMHI<H, a <l>HSH­
qeci<He paccy>I<AeHH.fl npHBOMT I< ypaBHeHHIO COCTOHHH.fl, I<OTopoe ll03BOJI.fleT 3aMI<HyTL 
nOJIHYJO CHCTeMy ypaBHeHHH paCCMaTpHBaeMbiX cpeA. 

1. Introduction 

RESEARCH work on bubbly flows until 1972 has been reviewed in the Annual Review 
of fluid mechanics by VAN WIJNGAARDEN [1]. It appears fhat micromorphic media theory, 
first . introduced by C. ERIN'GEN [2] and later formalized using the virtual powers principle 
by P. GERMAIN [3], is a powerful tool which has not been used as yet to achieve a descrip­
tion of these flows. 

This paper is the first step of a tentative marriage of bubbly flows with micromorphic 
media. In this theory, the fluid containing the bubbles is replaced by a macroscopic continu­
ous medium and the microstructures, taken into account through a refined kinematic 
description of the mean flow, lead to non-Newtonian properties of the continuum. It is 
assumed that there is no slip velocity and that no phase change occurs. The constitutive 

(*) Paper given at XVII Symposium on Advanced Problems and Methods in Fluid Mechanics, Sobie­
szewo, 2-6 September 1985. 
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566 J. S. DARROZES AND G. MlCHELET 

laws are obtained, as usual, from the Clausius-Duhem inequality, without assuming that 
the entropy flux is equal to . the heat flux divided by the temperature. Physical considera­
tions on the microscopic scale of fluid properties lead to the expression of an equation of state 
when the liquid compressibility is neglected and when gas and liquid are supposed to have 
the same mean temperature (). 

2. Interpretation of a bubble flow as a micromorphic medium 

In order to define mean quantities for the gas-liquid mixtures considered in this paper, 
it is required that the microscopic scale, denoted by eL, is much smaller than a characteristic 
length L of the macroscopic evolution (for instance a throat diameter or a profile chord). 
The mean quantities are then defined on an intermediate scale p,(e)L with: 

e = p,(e) ~ 1, 

when c goes to zero. So, a volume D* of the liquid-gas mixture with a finite size when 
measured with the scale p,(e)L is a vanishing volume element dv when measured with the 
macroscopic scale L, but contains an infinitely large number of bubbles of order {p,/e)3

• 

For instance, the following mean quantities are involved in this paper: 
a) void fraction: a 

rtdv = r 1 *d'l.J* • g 
D• 

with 1; = 1 in the gas and 0 in the liquid; 
b) density: e 

edv = I e*dv* = rae.+(l-«)eJ; 
D* 

where in dice g and L apply to gas and liquid, respectively; 
c) micro inertia tensor: I 

eldv = I e*x*x*dv*, 
D* 

where x* denotes the local position of a point M* with respect to the center M of the 
domain D*. 

The kinematic description of the medium is given by: i) the mean macroscopic velocity 
U(M, t) ii) a l-ocal deformation tensor x(M, t) defined by U(M*) = U(M)+x(M)x*. 

In such a description, the exact microscopic motion does not appear. It is replaced 
by a mean local motion which is convected with the mean global velocity of D*. 

We restrict our attention to spherical micromorphic media for which, by definition, 
the microdeformation tensor is spherical, and involves only one scalar x: x = xt. In that 
case, only the voluminal evolution due to bubble growth can be taken into account, and 
it is easily shown that the non-compressibility of the liquid phase leads to the following 
result: 

[d(dv;)fdt]fdv* = [d(dv*)fdt]fdv* and 3x = (d«fdt)f(l -a) with dv; = a.dv. 
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BUBBLE FLOW CONSIDERED AS A CONTINUOUS MEDIUM 561 

Furthermore, assuming that the macroscopic compressibility is due only to ,the microscopic 
one, then: 

DivU = 3x = (da/dt)/(1- a.). 

3. Momentum equations 

They are derived from the virtual power principle. Denoting by U and x the virtual 
velocity and the microdeformation scalar, the virtual power of internal forces inside 
a domain D is written as a linear form of the virtual elements of the kinematic description. 
The simplest frame-indifferent form is: 

(3.1) A f A A Pi= - (E:D+sx)dv, 
D 

where Dis the symmetric part of VU, E is the global stress tensor, and sis the microscopic 
stress scalar. Integrating (3.1) by parts, one can write: 

(3.2) Pi= J CVDivE-sx)dv- J (En)Uda, 
D oD 

where n is the unit vector normal to an. 
The virtual power of external forces is written in a similar form: 

(3.3) Pe = j (f· iJ)dv+ J (T · iJ)da, 
D aD 

where f is the force per unit volume acting on D and T is the force per unit area on the 
domain boundary aD, due to the complementary part of the medium located outside D. 
The virtual power of inertia forces requires the definition of a local specific density Pa: 

(3.4) 

with 

f!Padv = f e*(dv* /dt)V*dv. 
D* 

In this expression, the local velocities v* and v* on the intermediate scale p,(e)L are related 
to the kinematic description through the relations: 

(3.5) v* = U+xx* and v* = U+xx*. 
Inserting (3.5) in (3.4), and because of the definition of the volume center M: 

J x*dv* = 0, 
D* 

one obtains the following expression: 

(3.6) P" = J [eyU+ei(x2 + x)x]dv, 
D 
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568 J. S. DARROZES AND G. MICHELET 

where I is the trace of the microinertia tensor I, and y = dU fdt is the mean acceleration 
of the liquid-gas mixture. 

Formulae (3.2), (3.3) and (3.6) are used to give an explicit form of the virtual powers 
principle: 

The volume integrals lead to: 
a macromomentum equation 

(3.7) 

a micromomentum equation 

(3.8) 

ey = f+DivE, 

and the surface terms give the usual natural boundary condition T = E · n. 
In order to complete the set of equations it is necessary to add: 
a macroscopic continuity equation 

(3.9) defdt+DivU = o, 
a microinertia balance equation 

(3.10) di/dt = 2xi, 

an equation for the absence of phase change, which means that the quality x is a constant 

(3.11) dxfdt = 0, 

and an energy equation derived, as usual, from the expression of the first principle of 
thermodynamics 

(3.12) d(E+K)fdt = Pe+Q, 

where K is the kinetic energy, Pe the power of external forces, and Q is the rate of heat 
supply brought to the medium per unit of time. Combining (3.12) with the kinetic energy 
theorem, 

(3.13) 

it is easily found that dE/dt = Q- P1• Using the expression of the internal energy E for 
a domain D of the mixture, 

E = · f eedv 
D 

and the expression relating Q to the heat supply r within the volumeD and the heat flux q 
through the boundary oD, 

Q = J rdv- J q · nda 
D oD 

one gets, without difficulties, the energy equation: 

(3.14) edefdt = -Divq+ E:D+sx+r. 
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BUBBLE FLOW CONSJDERED AS A CONTINUOUS MEDIUM 569 

The proof of (3.9) and (3.10) is not given here, but these well-known results can be found 
in P. GERMAIN [2]. The expressions of E, s, q in (3.7), (3.8), and (3.14) are given in the 
following paragraph devoted to the medium rheology. The expression of the specific 
internal energy e (Eq. (3.14)) is obtained from the equation of state introduced in Sect. 5. 

4. Constitutive laws 

The rheological properties of the medium are deduced from the second principle of 
thermodynamics written as a balance equation for the entropy 'YJ: 

(4.1) ed'YJ/dt = - Div(h/0) + (r/0) + ea, 

where the entropy production a is a non-negative quantity. The entropy flux h/0 is not 
supposed to be the heat flux q divided by the mean temperature 0 (which is assumed to be 
the same for both the liquid and gas). In the following, the Coleman and Noll procedure 
is used as it has been done by I. MULLER [3] for gas mixtures. 

First, the voluminal heat supply r is eliminated in a combination of equation (3.14) 
and (4.1). Letting tp = e-O'Yj the free energy, and k, the vector h-q, one gets the so-called 
"full Clausius-Duhem inequality": 

(4.2) -e(dtp/dt+'Y}dO/dt)+E:D+sx+Divk -bVO JO $; 0. 

Then, we define a "first order Stokesian spherically micromorphic fluid" as a fluid for 
which all rheological and thermodynamical properties depend on all the objective unknowns 
found in equations (3.9), (3.10), (3.11), (3.7), (3.8), (3.14), and on their first gradients 
(first order fluid). 

Next, the free energy 'I' is written in a "a-priori" form of an equation of state which 
involves 23 scalar variables X1, I = I , ... , 23: 

'P(e, o, I, x, Ve, vo, VI, vx, D, x), 
and all other unknown functions, related to the 

dynamic behaviour: E(X1), s(X1) 

thermal properties: q(X1), k(X1) 

are supposed to depend on the same 23 arguments X1 • 

In order to be consistent with the level of this simplest kinematic description, V x 
is not listed in the (X1) because it is the gradient of a rate deformation tensor xt, and it 
should be on the same level as VD which is not present in this first gradient theory. 

The technique used can be summarized as follows 
a) In (4.2), d1pjdt is expressed in the form 

(4.3) dtp/dt = (o'Pfax.)(dX./dt). 

b) Among all the dXJ/dt, defdt; dVefdt; dxfdt; dVxfdt; dlfdt; dV/fdt can be expressed 
in terms of X1, using equations (3.9), (3.11) and (3.10): 

(4.4) 

from (4.9) 

(4.5) 
de.Jdt = -e.i~IJDIJ-euk,ki- uj,ie.j; 

dx/dt = 0 
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570 

from (4.11) 

(4.6) 

from (4.10) 

dx,1jdt = - U1, 1x,1 ; 

difdt = 2xi 

J. S. DARROZES AND G. MICHELET 

dl, tfdt = 2Ix., + 2xl.,- I. k Dk,- I. k !Jkl, 

In these expressions, the Einstein summation convention is used, and any symbol A,, 
denotes the xi derivative of A with respect to Cartesian coordinates x 1 , x.!, x 3 • For in­
stance: 

!Jkt = (Ui,k- Uk,,)/2, 

D," = (Ui,k+ Uk,i)/2. 

c) The term Div k = k;.; in ( 4.2) is written 

(4.7) Divk = (oktfoXI)XI, t 

and contains 69 scalar terms. 
d) By inserting (4.4), (4.5), (4.6) into (4.3), a new expression is obtained, which is 

next inserted in (4.2) together with (4.7). One thus obtains the full Clausius-Duhem in­
equality which contains 113 scalar terms to be found in the Annex, and written shortly 
here in the form 

(4.8) CD~ 0. 

Now, the CD expression is reduced as follows: 
i) CD involves dX1/dt except defdt; de.ddt; dxfdt; dx.ddt; dlfdt; df.ddt given by 

(4.4)., (45) and (4.6). Inequality (4.8) must be valid whatever the medium history is, so, 
a term as (see the Annex) 

- e(otpfoO +rJ)dOfdt 

must vanish for any dOjdt and leads to the result: 

'YJ = -otpfoO. 

It is easily shown, using the same argument, that 

otpJBO,, = otp/BI,, = otp/BDIJ = otpfox = o 
so, the free energy 1J' is dependent on the following variables only: 

tp(e, 0, I, x, Ve, VI, Vx). 

ii) The expression of CD (see the Annex) is linear in the higher order derivatives e. ;1; 

O,iJ; 1,;1; D1k,i; X.i· The inequality must be valid for any spatial evolution, so one deduces 
that their coefficient must vanish: 

(4.9) 

as well as many others given in the Appendix. From the dependence of CD. upon D1k,, 

and X.i: 

(4.10) 

(4.11) 

oktfoD1k+e2 otpfoe.ibjk = o, 
oktfax-2elo1J'/oi. t = o. 
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BUBBLE FLOW CONSIDERED AS A CONTINUOUS MEDIUM 571 

iii) The non-objective term QiJ in CD must vanish, and this gives the following relations: 

(a'Piae. i) e ·"- (a'Piae.k)e ·' = o, 
( a'P 1 a I. ,) I."- ( a'P 1 a I. ")I. , = o, 
(otpjax.,)x."-(otpfox.~c),, = o. 

iv) A tedious integration of all these relations leads to the following result: 

e k = h-q = VeA(EtVO+E2VI+E3Vx)+V8A(E4V/+E5 Vx) 

+E6(V/AVx) +(Ft AVe)+ (F2AVO) +(F3AVJ) +F4AVx) +C, 

where the Ei' Fj and c are functions of(!, o; 1, and X only . 

• 
v) Using the principle of frame indifference, the vector k must be equal to zero and 

h = q. 
The existence of 1Vxl 2 in the free energy leads to the great difficulties in the research 

of the equation of state. The mixture is supposed to be a "simple macro-fluid" at the end 
of this paper. This means, with the I. Muller's definition, that 'P does not depend on !Vxl 
([4)], and the reduced Clausius-Duhem inequality is thus obtained: 

(4.12) Di}(e2 otpfaebij+E,1)+ x(s-2eia'Piai)-q,O,JO ~ o. 
At equilibrium, Dii = 0, x = 0, and 0, 1 = 0 must have double roots, so: E<e> = -pl 

where p = -e2 atpfoe is the macroscopic pressure, s<e> = -n where n = 2eloVJia/ is 
called "extra pressure", and q<e> = 0. E and s are split into two parts: the value at equi­
librium and a dissipative term. 

(4.13) E = -pt+T and s = -n+r 

and the Clausius-Duhem inequality involves only dissipations: 

(4.14) T:D+Tx-VOIO ~ 0. 

Using the Onsager principle, and assuming the isotropy of the medium, the constitutive 
laws are obtained through a very classical procedure, shortly reminded below for the viscous 
stress tensor T. 

First, T is written as a linear form of D, x, and VO: 

(4.15) 

Then, the principle of frame indifference is used. Changing the space orientation by 
changing the orientation of each unit vector of a reference frame, it is easily seen that D 
and x are invariant, and that only VO has the opposite sign. This proves that L<3>(v0) == 0. 
Then, using the assumption of isotropy, L< 1> must involve only a multiplicative constant 
or a linear invariant of D, which is Div U, so: 

(4.16) T = ).(DivU)l+2,uD+yx. 

In a similar way, the following laws are obtained: 

(4.17) 

( 4.18) 
T = aDivU+Px, 

q = -kVO. 
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572 J. S. DARROZES AND G. MICHELET 

5. The equation of state 

It is not possible to know the function tp((!, (), I, x) or e(e, 'YJ, I, x) = tp- ()'YJ without 
a physical analysis of the bubbly flow. It is known that, on the microscopic scale eL, only 
the gas pressure p9 inside the bubbles has a thermodynamic meaning: p, = p9 r0, if the gas 
behaves as an ideal gas. The pressure PL inside the liquid phase has no thermodynamical 
meaning because of the non-compressibility of the liquid. On the macroscopic scale L, 
two kinds of pressures have been pointed out: 

the mean total pressure p = e2 atpjae, 
the extra-internal pressure n = - 2el otpjol. 

One of these two pressures has no thermodynamical meaning, so, writing again the expres­
sion of the virtual power of internal forces in a slightly different form than (3.1 ), and taking 
into account ( 4.13) one gets: 

(5.1) P1 = J [(p+n/3)DivU +n(3x-DivU)]dv+dissipative terms. 

From the non-compressibility of the liquid, one deduces, as it has been said in Sect. 1 the 
internal liaison: 

(5.2) DivU = 3x. 
Expression (5.1) shows that n is a Lagrangian multiplier associated with the internal 
liaison (5.2) and its value can be determined only after solving the full set of equation-; 
governing the flow motion. 

From: dtp = (otp/oe)de+ (atpjoO)dO+ (atpjol)dl+ (otpfox)dx, and taking into account 
that no phase change occurs (dx = 0), the total differential of the specific internal energy 
is written: 

(5.3) de = Od'YJ + (p/e2)de- (n/2el)dl. 

This expression can be considered as the addition to: 

a specific reversible heat supply: d' Q = Od'Y); 

a specific reversible work received: d'W = (p/e 2 )de- (n/2el)dl. 
(5.4) 

Using relations (3.2), (3.9), (3.10) and 3x = (da.fdt)/(1- a.), it is easily shown that the den­
sity and the microinertia depend only on the void fraction: 

(5.5) 

(5.6) 

dele = -da./(1- a.), 

dl/1 = 2da./3(1-a,). 

Inserting these expressions into (5.4), the specific reversible work is written: 

(5.7) d' W = - (p+n/3)da./e(l- a.). 

A direct evaluation of d' W can be obtained with a rustic reasoning which is classical in 
thermostatics. Let us consider a tube closed at one end, with a moving piston at the other 
end, filled with a mass M, of gas and a mass M L of liquid occupying the volumes v, and 
VL, respectively. For an infinitesimal piston displacement, only the gas phase is working 
and one can write 

d'W = -p9 d[V9 /(ML +M,)] = -p9 d[V,/e(VL + V9)] = -pgd(rt./(!), 

and d(a.fe) = da./e- (a./e 2 )(defda.)da.. 

http://rcin.org.pl



BUBBLE FLOW CONSIDERED AS A CONTINUOUS MEDIUM 573 

Taking into account Eq. (5.5), per unit of the total mass one obtains a new expression 

of the specific work: 

(5.8) d'W = -pgdrt./e(I-oc). 

By comparison with Eq. (5.7), the gas pressure p 9 is related to the total mean pressure p 

and the extra-pressure n: 

(5.9) pg = p+n/3. 

Assuming the ideal gas behaviour 'for bubbles, p9 = e,rO, and taking into account the 
relation:(! = OC(!g+ (1-oc)(}L where (}LiS a knOWn COnStant quantity for the incompressible 
liquid, one obtains from Eq. (5.8) the definite expression of the equation of state: 

(5.10) 

A relationship involving the extra-pressure n, the local gas pressure p9 and the liquid 
pressure PL is deduced from Eq. (5.9), and from the relation: p = ocp9+ (1- oc)PL· It is 
found that: 

n = 3(1- rt.)(pg-pL). 

It is interesting to notice that n which has no thermodynamical meaning, as it has been 
seen previously, represents the dynamical effect of bubble growth. In a quasi-static evolu­
tion, the interface equilibrium requires (when surface tension is neglected) pg = PL, and 
n = 0. 

The energy equation (3.14) has a new expression, taking into account the internal 
liaison and the constitutive laws: 

(5.11) edefdt = Div(kVO)-(p+n/3)DivU+T:D+Tx+r. 

From 

de= d'Q+d'W = OdrJ-(p+nf3)fdocfe(1-oc), 

one can write: de = cdO, where cis the specific heat at constant void fraction oc and quality 
X. 

6. Concluding remarks 

The micromorphic .media theory has been applied to describe the bubbly flow motions 
without phase change. The constitutive laws given in Sect. 4 and the equation of state 
obtained in Sect. 5 lead to the full set of equations governing the liquid-gas mixture, con­
sidered as a continuous medium with a spherical microstructure. The entropy production 
can be expressed, by taking into account equation (5.4), (5.7), and (5.10): 

(6.1) eOa = T:D+ Tx-qV0/0. 

For instance, a non-dissipative spherically micromorphic fluid, is governed by the following 
equations: 

mass: 

phase change: 

de/dt+eDiv u = o, 
dxfdt = 0, 
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microinertia: 

macromomentum: 

micromomentum: 

energy: 

equation of state: 

dlfdt-2xi = o, 
edUfdt+ Vp = o, 

ei(dxfdt+ x 2)-n = o, 
ec(dO/dt)+DivU(p+n/3) = 0, 

p+n/3-rO[e-(l-a)eL]fa = 0. 

J. S. DARROZPS AND G. M.ICHELET 

One must add the internal liaison: 

Div U = 3x = (drt./dt)/(1- a) 

and an obvious expression of the specific heat c: 

C = XCg+(l-x)cL. 

Annex 

The full Clausius-Duhem inequality has the following expression: 

- e(dOfdt) ('YJ + otpfoO)- e(dO, ddt) (otp/oO,,)- e(dD,1/dt) (o1JlfoDlj)- e(dx/dt) (otpfox) 

+ (ok,/oe. 1)e, IJ+ (ok,fo0, 1)0, u+ (ok,/ol, 1)l,lJ+ (ok,fox,1)x, 11 + [ok,foD1k) 

+ e2 otp/oe, t1Djk,l + (oktfox) x., + e!Jk, [(otpfoe.,)e.k+ (otp/ol,,)l, k+ (otp/ox,l)x. k] 

+ (oktfoe)e., + (ok,foO)O,, + (oktfol)I, 1 + (ok,Jax)x,,-2e(otp/oi. 1) (Ix,, +xi. ,) 

+ (!DIJ[(!(otp/ oe) li,J+ (!, k(otp/o(!, k) li,J + e.lotp/o(!,t) + l,J(otp/ol,,) + x,lotpfox, 1) 

+Eu]-2eixo'P/ol+sx-k,O.tfO ~ o. 
The linear term dOfdt leads to 'YJ = - otpjoO. 

The linear terms d0, 1fdt; dD11 /dt; dxfdt lead to 

tp = tp((!, 0, I, x, Ve, V/, Vx). 

The linear term (!, 11 leads to the relations okdoe.1+ok1/oe,i = 0, 
The linear term 0, 11 leads to the relations ok1(o0, 1+ok1jo0, 1 = 0. 
The linear term .J. i) leads to the relations okd of, j + ok 1 I of, i = 0. 
The linear term x, 11 leads to the relations ok1fox, 1+ ok1jox, 1 = 0. 
The linear term D1k, 1 leads to the relations 

The linear term x. 1 leads to the relations 

The non-objective term Qki requires the relations: 

(otp/oe.,)e. k- (otp/ ae. k) e ·' = o, 
(otp/ol. ,)I. k- (otp/oi.k)l., = o, 

(otpfox,,)x,k- (otpfox,k)x,, = o. 
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