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Viscoelastic flow between two rotating cylinders: 
application to rolling or calendering processes 

S. ZAHORSKI (WARSZAWA) 

THE PREVIOUSLY developed concept of plane flows with dominating extensions [11] is applied 
to the nip region of viscoelastic flow between two rotating cylinders. Some approximate solutions 
are derived for incompressible viscoelastic fluids with an arbitrary extensional viscosity function. 
Under the assumption of small variability of this function, possible distributions of thrusts, 
total loads, friction forces and coefficients, etc, are discussed in greater detail. Some compari­
sons with experimental data are also presented. 

Poprzednio rozwini~t<l koncepcj~ plaskich przeplyw6w z dominuj~cym rozci(lganiem [11] za­
stosowano do przeplywu lepkospr~zystego w obszarze bezposrednio mi~dzy dwoma obracaj(\­
cymi si~ walcami. Pewne przyblizone rozwi<lzania wyprowadzono dla nie5cisliwych cieczy lepk.o­
spr~iystych z dowolnymi funkcjami lepkosci przy rozci(lganiu. W zalozeniu malej zmienno5ci 
tych funkcji, przedyskutowano bardziej szczeg6lowo mozliwe rozklady nacisk6w, calkowitych 
obci(\:len, sil tarcia i wsp61czynnik6w tarcia, itp. Przedstawiono r6wniez pewne por6wnania 
z danymi doswiadczalnymi. 

PaHhiiie pa3sepH)'TaH KoHQem.{HH nnocKHX Te"lleHIDi c JJ:OMHHHpyiOI.I.{HM paCTH>KeHHeM [ 11] 
npHMeHeHa K BH3KOynpyroMy Tel.IeHHIO B o6JIRCTH Henocpe,n:CTBeHHO Me>K]l;y ABYMJ'I Bpa• 
l..l.\8IOI.I.{HMHCH QHmrn,n:paMH. HeKo.Topbie npu6nHmeHHhie peiiieHwH BbiBeAeHhi JJ:JIH Hecmu,. 
MaeMhiX BH3KOynpyrHX )f<HJJ:KOCTeH C npoH3BOJlbHhiMH {pyHKI.{HHMH BH3KOCTH npH paCTH:_ 
meHHH. B npe.n:nonomeHHH .~aJioM: nepeMeHHoCTH 3THX <i>YHKI.{HH o6cy»<,n;eHhi 6onee no,llpo6Ho 
B03MO)f{Hbie pacnpe,lleJieHHH Ha)f{HJ'\\OB, ITOJIHbiX HarpymeHHH, CHJI TpeHIUI H K03¢<l>HQHeH­
TOB TpeHHH H T. n. Tipe,n:cTasneHo Tome HeKoTopoe cpasHeHHe c :mcnepHMeHTaJibHhiMH 
,llaHHhiMH. 

1. Introduction 

STARTING from the early contributions of G. B. Jeffrey, Th. von Karman, G. I. Taylor 
and others, the problem stated under the title has been extensively studied, mainly for 
Newtonian and simple inelastic fluids (cf. [1, 2, 3, 4]). Only very few analytical solutions 
have been obtained for viscoelastic or elastic models and compared with ,available experi­
mental data (cf. [5, 6, 7, 8, 9]). The importance of flows between rotating cylinders con­
sidered with appropriate kinematic and dynamic boundary conditions results from many 
practical applications to various _lubricating systems as well as to milling, rolling, calen­
dering and even printing processes. Although at present there is no doubt about the role . 
played by essentially very large extensional gradients in the geometry considered, there 
still exist some controversies concerned with the possible effects of viscoelastic properties 
(cf. [5, 9, 10]). 
• In the present paper the problem of viscoelastic flow between two rotating cylinders 

is treated as a thin-layer ,flow with dominating extensions" (FDE), the concept of which, 
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474 S. ZAHORSKI 

developed in our previous paper [II], was inspired by A. B. METZNER's idea of extensional 
primary field approximations [I2,5]. To this end, we briefly discuss the corresponding 
governing equations for plane steady flows with dominating extensions. As a next step, 
some approximate solutions valid in the nip region between two rotating cylinders are 
presented for viscous Newtonian as well as for incompressible viscoelastic fluids with 
an arbitrary dependence of the extensional viscosity function on the extension rate. More 
detailed results are also derived for relatively small variability of the extensional viscosity 
function. The resulting distributions of thrusts, total loads, friction forces and coefficients 
are considered in greater detail and the effects of various forms of the extensional viscosity 
functions discussed. Few words are also devoted to flows in the so-called rolling bank 
region, and to possible effects of viscoelastic properties. 

2. Governing equations for plane flows with dominating extensions (FD E) 

Consider plane steady flows, the Cartesian velocity components of which can be 
presented in the following form (cf. [11]): 

(2.1) 
u* = qx+u(x, y), 

v* = -qy+v(x, y), 

where q = Uf ho is some constant extension gradient, and u and v denote additional velocity 
components directed along the axes x and y, respectively. If, moreover, one of the 
characteristic dimensions L (in the x-direction) is much greater than the other h0 (in the 
y-direction, respectively), we can use all simplifications resulting from the so-called 
lubrication approximation for small e = h0 /L ~ I. 

Under the above assumptions, the velocity gradient and vorticity components can be 
expressed as 

;:=q(l+e~). a;;=q~~· 

(2.2) ~: = qez ~: , ~; = q (- I +• ~; ), 
* _ 1 (au 2 av) 

w - 2 q a-y - e ax ' 

where U denotes a characteristic velocity and the overbars refer to the dimensionless 
quantities introduced as follows: 

(2.3) x = Lx, y = hoy, u = Uu, v = eUv, 

For flows with relatively small vorticity components · (or ·relatively high Deborah 
numbers, [II, 12]), it may happen that the first terms in the diagonal components described 
by Eq. (2.2) are essentially greater than the remaining terms. To this end, it is sufficient 
to assume that the dimensionless components of additional velocity gradients are, at tHe 
most, of order 0(1 ). 
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VISCOELASTIC FLOW BETWEEN TWO ROTATING CYLINDERS 475 

In our paper [11] we defined the plane "flows with dominating extensions" (FDE) 
as such thin-layer flows for which the constitutive equations, exact for purely extensional 
flows of an incompressible simple fluid (cf. [11, 14]), can be used in -a linear form perturbed 
with respect to the extension rate q. This assumption leads to the following constitutive 
equations: 

(2.4) 

where p is a scalar pressure term, A1 denotes the first Rivlin-Ericksen kinematic tensor 
(cf. [14]), and the primes denote the corresponding linear increments, i.e. A~ = At -A1 , 

q' = q*-q', etc., resulting from Eqs. (2.1). 
It is noteworthy that the material function {J(q), hereafter called the extensional visco­

sity function, is simply related to the planar extensional (elongational) viscosity, viz. 

(2.5) 

After introducing Eqs. (2.1) and (2.4) into the corresponding equations of equilibrium 
with inertia terms disregarded(!), we obtain the set of two equations involving terms 
of different orders of magnitude with respect to small parameter e = h0 / L. Expressing 
these equations in a dimensionless form, by means of Eqs. (2.3) and 

(2.6) P = ~~L Ji, fJ(q) = rJP(q), 

where 'YJ is a viscosity constant, and retaining only terms of the highest order of magnitude 
with respect to e, i.e. the terms of order 0(1 ), we arrive at the following equations (in 
dimensional forms): 

(2.7) 

where 

(2.8) 

dp* 1 d{J a ou o2u 
( )

2 

dx = 2 dq ax ay- + fJ ay2 , 

op* 
- =0 oy , 

* *22 1 d{J ou 
( )

2 

P =p-TE =p+2{Jq+ - --
4 dq ay 

denotes a modified pressure (thrust). Eliminating the pressure terms from Eqs. (2. 7), 
we have alternatively.: ··· 

(2.9) ~ [_!_ !!_{J_ ~(~)2 + ~] = 0 oy 2 dq ax ay fJ oy2 • 

It is also noteworthy that the following simplified constitutive equations: 

(2.10) T*tt = -p+2f:Jq+_!_ d{J_(~)2 
4 dq ay ' 

(1) The inertia effects can be taken into account in an approximate way by means of the total balance 
of mass (cf. [11, 13]). 
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(2.10) 
[cont.] 

T*22 = - p- 2{:Jq- -~ d{:J (!_!!___)2 
4 dq oy ' 

T*t2 = fJ S_!!_ oy 
directly lead to Eqs. (2. 7) or (2.9). 

S. ZAHORSKI 

Equation (2.9) is a third-order nonlinear partial -differential equation, the solution 
of which, even for entirely specified boundary conditions, is not kno:wn. In the paper 
[11] we looked for an approximate solution in a form· linearly depending on the x coordi­
nate, viz. 

(2.11) u = (x+a) (w(y)+b), 

where a and b are 'constants and w denotesa function of y only. Introducing Eq. (2.11) 
into Eq. (2.9), we arrive at 

(2.12) (x +a) ({:Jw"(y) + d{:J w'2 (y)) = dp* , 
dq dx 

where the primes denote derivatives with respect to y. It can easily be observed that any 
solution w of the simplified equation 

(2.13) {:Jw"(y) + d; w' 2 (y) = C = const 

also satisfies Eq. (2.12) if dp* jdx = C(x+ a), i.e. for a parabolic dependence of p* on x. 
Other distributions of thrusts can be described reasonably, assuming that C = C(x), 

where x is treated as a parameter involved in the solution of Eq. (2.13). 
Equation (2.13) is a special Riccati equation for w'(y), and its general solution sym­

metrical with respect toy (w'(O) = 0) can be presented as 

1 
w(y) = A lncos y -ABy2 +C1 for AB < 0, 

(2.14) 
1 , _ _ 

w(y) = A -Inch v ABy2 + cl for AB > 0 , 

where C 1 is an integration constant and 

(2.15) c 1 dp* 
B= - = - - -- --

{:J (x+a){:J dx · 

The values of A > 0 correspond to increasing extensional viscosity functions {:J(q), 

while those of A < 0- to decreasing {:J(q ). The sign of the product AB depends, therefore, 
on the sign of C, i.e. on whether the thrust p* is an increasing or decreasing function of x. 

3. Solutions in the nip region between two rotating cylinders 

In the present section the solutions derived for plane FDE are used in the case of flow 
between two rotating cylinders, i.e. in the situation typical for rolling or calendering 
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VISCOELASTIC FLOW BETWEEN TWO ROTATING CYLINDERS . 477 

processes (Fig. 1). We assume, moreover, that the rollers of the same radii R rotate with 
constant tangential velocity V, and the smallest distance between them at the nip cross­
section is 2h0 • 

,.-f......._ 
/ I " 

I I ' 

/ 

I * ", * I I Pmax -f 
It y I " 

R // · I ..._ ·-r·-·-1 ·-· 
. v I 

FIG. 1. 

Being interested in approximate solutions valid only in the nip region, we assume as 
usuall that (cf. [2, 4]) 

(3.1) L = {2iz0 R, e = h0 /L, h = h0 (l+~~), 
where the last relation introduces a parabolic dependence of the distance between cylinder 
surfaces h on x, valid for small ratios xI L. 

The problem considered can be solved for various modified boundary conditions, 
especially those prescribed at the entry or exit cross-sections (cf. [1, 2, 3, 4]). 

3.1. Boundary conditions 

When a fluid fully adheres to the surfaces of rollers, it is usually assumed that (cf. 
(1, 2, 4]) 

(3.2) u* = - V for y = ± h, 

where the minus sign indicates that the cylinders rotate from right to left as in Fig. 1. 
At the exit cross-section, where the fluid leaves the rollers, a uniform velocity distribution 
with respect to y requires that 

(3.3) u* = - V = const for x = - Xe; 
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478 S. ZAHORSKI 

what is equivalent (cf. Eq. (2.10)3) to 

(3.4) T*12 = 0 for x = -Xe. 

We assume, moreover, that the modified pressure {thrust) distributions satisfy the 
Reynolds-type boundary conditions ( cf. [2, 4]), viz. 

p* = 0 (or const), 
dp* -- = 0 for 
dx 

for x-+ oo. 

X= -Xe, 

(3.5) 
p* = 0 (or const) 

Other kinds of boundary conditions, e.g. those describing the existence of a cavitation 
pocket at the exit area (cf. [9, 15]), can also be taken into account. 

A position Xs of the stagnation point indicating presence of the reversed flow region 
results from the requirement 

(3.6) u* = 0 for x = Xs, y = 0. 

In what follows, we shall use the following dimensionless coordinates: 

(3.7) 

thus 

(3.8) 

X 

~= L' A=~ L' 

According to Eqs. (2.1) 1 and (2.14), the x-component of the velocity field can bt! 
written as 

(3.9) 

and, after introducing q = Vfxe and taking into account Eq. (3.2), as 

(3.10) u* = - V+ ~ (x-xe) (lncos y-=-..ABy2 -lncos V -ABh2) 

for AB < 0. If AB > 0, the cosine terms must be replaced by their hyperbolic counter­
parts. 

By way of illustration of the method used in this paper, we begin with the case of 
purely viscous Newtonian fluids for which the corresponding solutions have been obtained 
elsewhere ( cf. [I, 2, 3, 4]). 

3.2. Newtonian case 

In the Newtonian case ({:J = {:J0 = const, d{:Jfdq = 0) a solution can be obtained either 
directly from the simplified Eq. (2.13) or by expanding the logarithmic terms in Eq. (3.1 0) 
into series for small values of A and retaining first linear terms. Both procedures lead to 
the same result: 

(3.11) u~ = -V+(x-xe) CN (y 2 -h2 ) = -V+-
1
-(dp*). (y2 -h2), 

2f:Jo 2f:Jo dx N 

where the subscript N indicates Newtonian quantities. 
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Assuming that the volumetric rate Q per unit length of a cylinder (volume discharge) 
is conserved during steady-state flow, viz. 

(3.12) 

we have either 

(3.13) 

or 

(3.14) 

h 

Q = 2Vhe = -2 J u*dy = const, 
0 

( 
dp* ) 3/30 V e- .F 
dx N = (x-xe)CN = -T (1+~2)3' 

where Eqs. (3. 7) and (3.8) have been taken into account. Substituting Eq. (3.13) into 
Eq. (3.11), we arrive at the well-known velocity distribution 

(3.15) * [ 3 e _ ;. 2 ( y2 )] 
UN = - V 1-2 1 + ~2 1-/i2 

satisfying the kinematic boundary conditions (3.2) a.nd (3.3). 
For the Newtonian volumetric rate, we obtain from Eq. (3.12) 

(3.16) 

The stagnation point dimensionless coordinate ~sN results directly from Eq. (3.15) 
if the condition (3.6) is used. Thus we arrive at 

(3.17) 

In agreement with the boundary conditions valid for modified pressures (3.5), we can 
write 

(3.18) 

Integration of the expression described by Eq. (3.14) leads to the following transcendental 
equation for the dimensionless quantity ). : 

(3.19) A(l+3A2)+(3A2 -l) (arctgA+ ~)(I+ A2
) ~ 0, 

the numerical ,solution of which gives ). = 0.6798e). 
The thrust distribution in the Newtonian case can be presented as 

<2> It is amazing that for exactly the sameformofEq. (3.19), J. R. A. PEARSON [4],obtained A = 0.475 (!); 
thus other numerical results are entirely different. 
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where C2 is a new integration constant. If we assume, moreover, that p*(- A) = p*( co) = 0, 
we arrive at 

(3.21) 
A(1+3A2

) ' 2 n 2 
C = - + (3 A - 1) arctg A = - - (3 A - 1) 

2 1 + A2 2 . 

Hence the maximum thrust (for ~ = A) is expressed as 

(3.22) (3A 2
- I) ( ~ - arctgA)] 

= 3~: -v ~o- n(l - 3A'). 

It is noteworthy that the value of thrust at the nip cross-section, i.e. for x = ~ = 0, is 
equal to half of the maximum value, viz. p*(O)N = !(P!ax)N. 

We can easily verify that 'the results obtained so far for the Newtonian case are, apart 
from certain numerical differences, in satisfactory agreement with those known from 
references ( cf. [2, 4]). 

3.3. General viscoelastic case 

In the case of general viscoelastic fluid ({J = {J(q), d{Jjdq i= 0), we introduce the follow­
ing new quantities: 

(3 23) K - A V - V d{J KH ~ + A . - --L - {JL dq , y = AHq = 1 + ~2 ' 

where H, by analogy to Eq. (3.13), is defined · as the corresponding coefficient in the rela­
tionship 

(3.24) 

H itself may depend on ~ or y, and for the Newtonian case ({J = {10 ), we have H = 3. 
Bearing in mind that according to our new notations 

(3.25) 

Eq. (3.1 0) leads to the following velocity distribution: 

(3.26) [ ~- }, ( -. ~- 7 . F - )] u* = - V 1- -~ In cos 1/ y 712-- -lncos v y , 

for y > 0 (K > 0), and to a similar expression with cosine terms replaced by hyperbolic 
cosine terms, for y < 0 (K < 0). 

Performing integration shown in Eq. (3.12), we also arrive at the conditions 

(3.27) L = - [tncos J/ y + ~ L(y'Y)l for y > 0, 
H ~y . 

(3.28) _r__ = [Inch v -y- -
1 

[ (JI -y)] for y < 0, 
H y-y 
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where 

(3. 29) 

X 

L(x) = - J lncoszdz, 
0 

X 

L(x) = J lnchzdz 
0 

481 

denote the ordinary and modified Lobachevsky functions (cf. [16]), respectively, the 
diagrams of which have been presented in the _ paper [11]. Equations (3.27) and (3.28) 
express implicit relations between the quantities H and y; they also depend on the visco­
elastici ty coefficient K defined in Eq. (3.23)b the parameter ). and the distance~. 

It can easily be observed that y = 0 either for K = 0 (the Newtonian case) or for 
~ = -). (at the exit); otherwise the values of y essentially depend on K =fi 0. The exact 
dependence of H on positive and negative y is shown with bold solid lines in Fig. 2. 

t...s...--------------""-------, 
H(y } 

L..O 

3.5 

N 
3.0 --· --------

2.5 

2.0 

1. 5+----r----,.----.---.---.---.----.--'----r-----r-__3o.-1 
0 0.4 0.8 1.2 1.6 2.0 

lVI 
FIG. 2. 

-1 
H=3(1•11sv) 
H=3(1-1,s y) 

H=3(1-1/s v} 

EXACT 

In a similar way, it can be proved that the volumetric rate per unit length of a cylind~r 
can be expr essed as 

(3.30) Q = 2Vh+ 
1
- ~[In cos Vi'+ l/~ L(Ji'Y)]} for y > 0, 

I 

(3.31) Q = 2Vh0 { 1- ~ [lnchj!'=.y- Ji'~y L(t/ -y) ]} for y < 0. 

The stagnation point coordinate ~s results from the equation 

(3.32) cos YY = exp (- ~.~A), 
where, for y < 0 (K < 0), the term cos y.y must be replaced by ch V-- y. 
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An equivalent of Eq. (3.19), leading to the functional dependence A(K), can be achieved 
from 

(3.33) 

bearing in mind that H depends on ~ through y defined in Eq. (3.23)2 . 

Almost all the formulae discussed in the present subsection are too complex for direct 
and successful numerical computations. For the sake of simplicity, we shall apply some 
expansions, using the fact that the viscoelasticity coefficient K, defined by Eq. (3.23)b 
may be very small even for very high velocities V. Such an assumption seems to be valid 
for fluids for which, even at large values of the extensio~al viscosity {J(q), its variability 
with increasing velocities of extension rates is rather weak. 

3.4. Viscoelastic case for a weak variability of tbe extensional viscosity function 

Under the assumption of small K, it is seen from Eq. (3.23) that y is a small quantity, 
especially in the vicinity of the exit (~ = -A) or the nip (~ = 0) cross-sections. Thus all 
the ·relations obtained for the general case can be presented in more explicit forms by 
expanding them into a series in the neighbourhood of K = 0. 

Therefore, retaining only terms linear with respect to K, we have from Eq. (3.26) 

(3.34) J H e-A
2 

[( y
2

) KH ~+A( . y
4 )]l 

u* = - V ) 1 - 2 1 + e 1 - Ji2 + - 6- I+ ~i l - h4 f 

forK > 0 as well as forK < 0. Exactly at the nip cross-section a = 0), we obtain 

(3.35) 

,and 

(3.36) 

Thus the shape of the velocity profile essentially depends on K and H. To decide whether 
it is more prolate or oblate as compared, with the Newtonian case, one should know the 
functional dependence A.(K). 

It is seen that either integration of Eq. (3.34) or expansion of Eqs. (3.27) and (3.28) 
and retaining terms linear with respect to K, lead to 

(3.37) 

Instead of seeking formal solutions of Eq. (3.37), we shall use the following linear expres­
sions: 

(3.38) 

shown in Fig. 2 for y > 0 as well as for y < 0. The broken line (I) gives better fit to the 
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VISCOELASTIC FLOW BETWEEN TWO ROTATING CYLINDERS 483 

exact solution for greater values of y, while the solid line (II) can be used alternatively 
for small y. 

For practical purposes, it is much more useful to introduce a direct dependence of 
HonK. Assuming that for y = 1, H = 2.4 and H = 2.5, respectively for the case (I) and 
(II), we have 

(3.39) ( 5 ~+A) (II) H = 3 1 - T2 K 1 + e , 
if K > 0, and similar expressions with the ratios 18/25 and 6/12 in the parentheses if 
K < 0. It must be emphasized that Eqs. (3.39) ensure even more accurate results than 
the linear approximations described by Eqs. (3.38). 

Introducing Eqs. (3.39) into Eq. (3.34), and disregarding terms of order s 2 , we arrive 
at 

(3.40) u* = -v{1- -~ ~2 -A~[(1-L)-~K ~+~(1-L) 
2 1 + ~2 h2 25 1 + e h2 

+ ~ K ;::2 (1-{;)Jl 
for the case (I), and a similar expression with 5/12 instead of 12/25 for the case (II). 

The volumetric rate per unit length of cylinder amounts to 

(3.41) 

where the ratio 3/25 should be replaced by 11 /60 for the case (II). 
The stagnation point coordinate results from the equation 

~1-A2 
H ( 1 ~s+A) 

(3.42) 1 = I + ~; -2 1 + (, KH 1 + e , 
which, after substituting for H from the approximations (3.39), leads to 

if k = 1/5 K > 0. In the above derivation we used the Newtonian value ~sN defined in 
Eq. (3.17) and retained terms linear with respect to k = K/5. 

The equivalent of Eq. (3.14), viz. 

dp* {J(q) VL e- A2 

(3.44) -dx = (x-xe)C = -H h5 (l+eP , 

after using Eqs. (3.39) and integrating, gives 

{J0 3{JV .. j -R- ( 4 ) [ 2 ( A~ 3 A~ 
(3.45) p* = pP~ + 4ho Jl -2ho 5k (l- 5A) (l+e)2 +2T+e 

+ ~ Aarctg~)- (l+l~2)3 (4A~+4A3~+6~2 -4A2 +2)+C2], 
where the ratio 4/5 should be replaced by 25/36 for the case (II). 

10* 
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·The dependence of A on k (or K) can be calculated on the basis of Eq. (3.33). This 
leads- to the following transcendental equation: 

(3.46) (I+ A2f [ A(i+3A2)+ (3A2- I) (; + arctg A) (I+ A2)] 

= ; . k{4A4 +2A2 -2+ (5A 2
- I) [ A2? + A2

) 

+ ~ A 2(1+ A 2)2 + ~ A(i+ A 2)> ( -i +arctg A)]}' 
where again the ratio 25/36 replaces 4/5 in the case (II). The above equation has two 
groups of roots for k varying between 0 and 1. Being exclusively interested in solutions 
valid for sufficiently small positive k, we do not intend to decide at the moment, whether 
the existence of the other group of roots (for k > 0.6) is an artefact or may have any 
physical meaning. Some illustrative values of roots of the first group are shown in Table 1. 

Table 1. Numerical values of A. as function of k. 
--

l I 

_ 0.438 0.500 I 0.563 0.625 ! 0.688 (I) 0 0.063 0.125 0.188 0.250 0.313 0.375 

k - - - ---- --- --- -

I 

i 0.750 

(10 0 0.072 0.144 0.216 0.288 o.36o I o.432 0.504 0.576 1 0.648 . o.no I 0.792 0.854 

l(k) 1 0.6801 0.6731 0.6651 0.6551 0.6431 0.627 1 0.605 1 0.574 10.532 1 0.4731 0.398 1 0.3151 o.;~ 

~s 
2.00 

1.84 
1.75 

1.50 

1.25 

N 
-=~-==----------

h 

o.5ar---...:;==--:;;::;::=:_-

0.50 

0.25 

FIG. 3. 
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The function A(k) for positive k is presented graphically in Fig. 3 where the broken 
line refers to the case (1), while the solid one - to the case (II). In the same Fig. 3, the 
function ~s(k), i.e. the dimensionless coordinate of the stagnation point is plotted versus 
k > 0, according to Eqs. (3.43). Hence, it is seen that the position of maximum thrust 
approaches the nip when the viscoelasticity coefficient increases. Similarly the stagnation 
point for viscoelastic fluids appears closer to the nip as compared with purely viscous 
Newtonian fluids (~sN = 1.84). Graphs of the functions A(k) and ~s(k) for negative k 
are anti-symmetric with respect to the axis k = 0. Therefore, the effect of negative visco­
elasticity coefficients on the behaviour of the maximum thrust' position and the stagnation 
point coordinate is quite opposite to that described previously. 

The above statements concerned with the influence of an increasing or decreasing 
extensional viscosity on the maximum thrust position and the stagnation point coordinate 
are in agreement, at least qualitatively, with certain experimental observations (cf. [6, 8, 9]). 

4. Distributions of maximum thrusts, load and friction forces 

4.1. Effect of extensional viscosity 

If we assume that p*(- A) = p*( oo) = 0, Eq. (3.45) leads to the following expres~ion 
for the maximum thrust: 

flo * JflV -. /R ( 4 k) [ 3 A A2 , ) (4.1) P~ax = T (Pmax)N+ 4ho Jl 2ho 5 4 n (5 -I 

( 
A2 3 A2 3 ) 2A4 +3A2 +1 ~ 

- ( 5 A 
2 

- I) (I + A 2)2 + 2 I + A 2 + 2 A arctg A - 2 (I + A 2) 3 J , 
where the ratio 4/5 should be replaced by 25/36 in the case (II). 

Taking into account Eq. (3.22), we can calculate the ratio of P~ax to {p!ax)N. The 
resulting quantity has the form of a product of two factors: the ratio of the extensional 
viscosity to its Newtonian counterpart fl(q) f flo, and the expression depe~ding exclusively 
on k (A itself is a function of k). The first factor is proportional to the extensional viscosity 
function fl(q ), while the second one, depending also on the boundary conditions applied, 
characterizes variability of the extensional viscosity function with the extension gradient 
q = V/LA(k). The second factor, i.e. f3oP:ax!fl(P'!aJN, is plotted versus kin Fig. 4. This 
quantity is a monotonically decreasing function, and for various increasing extensional 
viscosities fl(q), an overall behaviour of P!axf(P!ax)N may be very different. 

Integration of the thrust from the exit (~ = -A) to infinity (~ = oo ), viz. 

00 

(4.2) F = f p*(~)d~, 
-). 

leads to the total load force (load capacity) in the form 
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(4.3) 
[cont.] 

and a similar expression with 25/36 instead of 4/5 for the case (II). The functional depend­
ence of the ratio {10 F/ {JF N on k > 0 is also shown in Fig. 4. It is noteworthy that for 
small values of k (up to 0.15), the quantity considered is a little greater than unity, and for 
higher values of k decreases monotonically below unity. 
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FIG. 4. 

In a similar way, the integration of shear stress 

(4.4) 

00 

T = J T* 12 (~) / Y=±hd~, 
- }. 

after substituting from Eqs. (2.10) and (3.10), gives the total friction force in the form 

+ ( ~ k )[! 20- w> (r: 22 +arctgA- ; ) - ~~: ~ ~:m. 
where the ratio 4/5 should be replaced by 25/36 in the case (II). The ratio {10 /T//fJ/TNI 
plotted versus k in Fig. 4 is a weakly increasing function of k > 0, taking values always 
greater . than unity. 
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As a consequence of the relations described by Eqs. (4.3) and (4.5), we can also cal­
culate the corresponding friction coefficient defined as the ratio: 

(4.6) v = ITI/F. 

The plot of v versus k > 0, presented graphically in Fig. 4 (indicated as {Jv I {10 vN), is prac­
tically independent of the extensional viscosity function {J(q). For small values of k (up 
to 0.15) this quantity is a little less than unity, and for higher values of k increases signifi­
cantly. The fact that the friction coefficient in the case of viscoelastic fluids may be less 
than that for Newtonian fluids is known from the experimental data for lubricating sys­
tems ( cf. [8, 9]). 

4.2. Effect of extension rate or velocities 

It happens very frequently that the extensional viscosity function {J(q) is an increasing 
function of the extension rates q. This is the case for solutions of high molecular weight 
or branched polymers, at least in some range of q ( cf. [3, 4, i 4]). 

By way of illustration, we consider the case in which the dependence of fJ on q can be 
modelled by a power-law function, viz. 

(4.7) fJ(q) = flo(l + a"q"), d{J = fJ na"q"-1 
dq 0 ' 

where n denotes a power index. Bearing in mind that, according to Eq. (3.23) 1 

(4.8) 

we obtain, for example, 

(4.9) 

K A na"q" 
k= - =----

5 5 .J+a"q"' 

P!~ 
(P!ax)N 

A 
--- {1+ ... } 

5 
A- - k 

n 

with an expression in the braces exactly the same as that resulting from Eqs. ( 4.1) and 
(3.22). On the other hand, we have 

L v A2k 
(4.10) (V =a 10A-k ' 

since in the case considered: q = V/LA. 
The plots of the ratio P~ax/(P~ax)N versus k > 0 and cx.V/L (for n = 2) for several 

values of n are shown in Fig. 5. It is noteworthy that for higher n (n = 4), the ratio con­
sidered may be even less than unity in some range of k or V. 

In a similar way the plots of the ratios F/FN and T/TN can be constructed; the corre­
sponding graphs are omitted. 

As we mentioned before, overall dependences of P~ax/{p!ax)N, F/FN and T/TN on the 
extension rates q or the velocity of rollers V may be different for different ratios fJ(q)/fJo. 
By way of further illustration, we consider the case in which the extensional viscosity 
function is of the form shown schematically it?- Fig. 6. Such a form corresponds to fluids 
containing either long branched molecules or long rod-like particles highly orientating 
in some range of extension rates (or velocity of rollers). Then the coefficient of viscoelas-
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ticity k is very small for low velocities, next increases significantly, and finally tends to 
zero again. The maximum value of k > 0 refers to some characteristics extension rate 
qc or velocity Vc. 

Bearing in mind the results presented in Fig. 4 as well as the above assumed variability 
of the coefficient k, we can construct qualitative plots of P~ax/(p!ax)N, F/FN, T/TN, l'/vN 
and QfQN as functions of In V. This is shown schematically in Fig. 6 where different scales 
for ordinates are used. 

It is seen that the maximum thrust as well as the total load force may exhibit some 
maxima corresponding to the characteristic velocity Vc. The total friction force is rather 
an increasing function of velocity, while the friction coefficient is usually a decreasing 
function of velocity and may have a minimum. Also the volumetric rate per unit length 
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of a cylinder is less for viscoelastic fluids than that for Newtonian fluids. The above state­
ments are in qualitative agreement with the experimental measurements and numerical 
results obtained by P. DoREMUS and J. M. PIAU [8, 9] for aqueous Polyox solutions in 
a cylinder-plane lubricated contact. The only exception is concerned with the total friction 
force behaviour since in the paper [8] a minimum of that force was observed (the broken 
line in Fig. 6) at the velocity of order 0.1 m/s. This important discrepancy can easily be 
explained, bearing in mind the fact that in our approach based on the notion of flows with 
dominating extensions (FDE), the shear stresses on the rotating surfaces increase with 
higher extension rates. For numerous polymeric fluids the so-called shear-thinning phe­
nomenon may be prevailing close to the walls where shearing effects are dominating over 
extensions, at least in a narrow range of rates. 

4.3. Remarks on the rolling bank region 

In many rolling or calendering processes, the medium does not enter the nip in a straight 
-forward way, but the so-called rolling bank region is formed at some distance from the 
nip. Characteristic features of the rolling bank mechanism are the existence of at least 
two stagnation points, the lack of symmetry with respect to the plane at half-distance 
between rollers, and the apparently three-dimensional character of flow. Because of these 
reasons, the whole problem becomes very complex even for purely viscous fluids (cf. [4]). 

Although the solutions presented are valid exclusively in the nip region, some informa­
tion on the rolling bank flow can be estimated from the present results (cf. [4]). This is 
possible since even in the Newtonian case different terms in the expression fo'r velocity 
are of different orders of magnitude. For instance, Eq. (3.15) implies that for~~ oo 

( 4.11) * a'l' 1 ( y
2

) u = oy ~ -2 v 1 - 3 712 , 

and 

(4.12) 

where '1' denotes the stream function. This function is zero for y = - h, 0 and h, and 

takes a maximum value for y = h/{3. Thus the actual flow through the nip is· negligible 
as compared with the limit flow described by Eqs. (4.11) and (4.12). Although the reversed 
streamlines prevail between 0 and h, there still exists some flow close to the surface of the 
rollers. 

Extending the above reasoning to the case of viscoelastic fluids, we shall apply a slightly 
different approach than above. First, equating Eq. (3.26) to zero, we obtain 

(4.13) 
.. ; - 2 ( K I 

cos V y ~2 = exp . ~ _ A ) cos 1/ y; 

what, after expanding the cosine terms into a series, leads to 

(4.14) 2 1+e 
l- · -- -­H ~2_;_2 • 
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Taking into account Eqs. (3.39) and retaining terms linear with re~pect to k = K/5, we 
arrive at 

(4.15) 

and at a similar expression with 25/18 instead of 8/5 for the case (II). If~-+ oo, we see 
that again y-+ ± hjy'3, but for finite large ~' the value of y fork > 0 will be less and the 
range of reversed flow diminished. Thus we may conclude that an increasing extensional 
viscosity function supresses the rolling bank mechanism at some distance from the nip. 

It was previously shown that in viscoelastic fluids ). as well as ~s decrease for increasing 
k > 0, i.e. the position of maximum thrust as well as the stagnation point approach the 
nip cross-section. Under more severe conditions, it many happen that the rolling bank 
region is situated very close to the nip. Equation ( 4.15) for ~ -+ 0 leads to 

(4.16) 
y 2 1 8 k 
-h2 = j -+51-. 

Then the value of y may be greater than H/{3, leading to a complete stop of flow through 
the nip, i.e. to the case of fully reversed flow. 

5. Conclusions 

The concept pf plane flows with dominating extensions (FDE) applied to the case of 
nip flow between two rotating cylinders enables the formulation of the following conclu­
sions: 

1) Since in the flow considered the extension gradients are re~lly dominating, at least 
in the middle part of the nip region, the procedure developed in the paper can be used 
successfully for viscoelastic flui(js, leading to relatively simple analytical and approximate 
solutions. 

2) In particular, the well-known solutions valid for purely viscous Newtonian fluids 
are rediscovered in a straight-forward way. . 

3) All the results obtained in the case of viscoelastic fluids essentially depend on the 
extensional viscosity function and its variability with increasing extension rates. The 
latter property can be characterized by the viscoelasticity coefficient, defined as the ratio 
of the extensional viscosity derivC:Ltive with respect to the extension gradient to the exten­
sional viscosity itself. · 

4) It was shown that viscoelastic properties of a fluid, in the case of increasing exten­
sional viscosity, reduce significantly the distances from the nip to the exit (the place at 
which the fluid leaves the rollers) and to the place where the thrust distribution reaches 
its maximum. Also the stagnation point situated on the entry side of rollers moves closer 
to the nip. In the case of decreasing extensional viscosity, the above effects are opposite. 

5) For small variability of the extensional viscosity function, such quantities as the 
maximum thrust, the total load force, the total friction force and the friction coefficient 
can be expressed by products of the two factors: the first factor proportional to increasing 
or decreasing extensional viscosity, and the second one depending on the viscoelasticity 
coefficient and the boundary conditions applied. 
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6) In the case of frequently occurring S-shaped variability of the extensional viscosity 
function, the maximum thrust and the total load force increase with increasing velocity 
of rollers, showing the maxima for some characteristic velocity. The total friction force 
also increases monotonica11y with increasing velocity of rollers, on the contrary to some 
experimental observations in which a local reduction of that force ~as noted. The vol­
umetric rate of flow and the friction coefficient usually decrease for higher velocities; the 
latter quantity may have a minimum value. In general, the above qualitative picture of 
the flow considered remains in good agreement with experimental data. 

7) Although the solutions presented are valid only in the nip region, some information 
can be obtained on the so-called rolling bank flow. It seems that the increasing extensional 
viscosity of a fluid suppresses the reversed flows far from the rollers, but enhances them 
close to the nip. 
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