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ON SPECIES-AREA RELATIONSHIPS Ill: THE INTERCEPT 
OF 'IHE POWER FUNCTION AND 'I'HE EXPONEN'I1AI, MODEL 

ABSTRACT: Using model assemblages the 
dependence of the intercept of the power func­
tion and the exponential model of species- area 
relationships on slope and factor value were stu­
died. It is shown that the quotient of intercept 
and total species number in the assemblage 
(SunitiSa) can be interpreted as a relation between 
local and regional diversity and linked with spe­
cies- area relations . Two general relations are 
derived and tested combining both concepts: 

z= a In Sumt , and S,~'1 1 = S"n;12 with z being
ln(area) s f\ ~ n•l nl 

o ep efi 

the slope of the power function model , H the 

Shannon diversity, J3, J3tand J32 constants, and a 
the constant of the relation between SunitiSa and z. 
It is concluded that with the above functions spe­
cies- area relationships can be used to infer the re­
lation between local and regional species num­
bers and to compute regional diversities. 

KEY WORDS: species- area relationship, 
model species assemblages, diversity, evenness, 
relative abundance distributions, random samp­
ling, local and regional diversity 

1. INTRODUCTION 

The intercept of the power function and 
the exponential model of species-area rela­
tionships (SPAR) has gained the least interest 
of all model parameters (Preston 1962, 
White and Gould 1965, Connor and 
McCoy 1979, Gould 1979, Rosenzweig 

1995). This surely because the intercept is not 
independent ofunits ofmeasurement and be­
cause of lack of theoretical underpinning. 
Many authors considered the intercept only 
as a fitted constant, the scaling coefficient 
(MacArthur and Wilson 1967, Connor 
and McCoy 1979, LaBarbera 1985). The 
few examples trying to relate the intercept 
with other variables contain John son and 
Raven's (1970) hypothesis that the inter­
cept will decrease with increasing latitude 
and Heatwole's (1975) suggestion, that 
negative intercept values indicate a minimal 
area [not to confuse with the minimal area 
concept ofplant ecologists (Hopkins 1955, 
Moravec 1973)], necessary to sustain spe­
cies ofthe studied community, and Gould' s 
(1979) interpretation as a size independent 
invariant for curves with similar slopes. The 
simplest interpretation of the intercept is of 
course the view that it gives the mean number 
of species per unit of area. 

It had long been noticed that in the power 
function model of SPAR intercept and slope 
are not independent. White and Go u 1 d 
(1965) deduced that in allometric relations 
there may be either a positive or a negative re­
lation between slope and intercept depending 
on the units of measurement and concluded 
that simple relations between slope and inter-
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Fig. 1. Slope of the power function model of species- area relationships in dependence on relative species 
density (A) and species density (= number of species per unit area) (B) of 28 (A) and 100 s~eci es-area 

relationships from Connor and McCoy (1979). The species densities are log-transformed. R : variance 
explanation, p(t) < 0.05) 

cept have no biological significance. A simi­
lar switch can also be seen in species- area 
curves (Fig. lB). Plotted are intercept and 
slope of 100 species- area relationships given 
by Connor and McCoy (1979). At In (in­
tercept) < 1, there is an inverse relation, at 
values above 1 a direct relation. Therefore, 
changing the unit of measurement also 
changed the relation between intercept and 
slope. This phenomenon may also be a cause 
why the intercept has gained so few attention. 
(Note that the relation of the Connor and 
M cC o y ( 1979) data is exactly the inverse of 
the Gould and White (1965) pattern. The 
reason is that the data are given as logarithms 
of intercept). 

However, in part II of this paper (U 1-
r i c h 2000a) I argued that the slope of the 
power function model is more dependent on 
relative measures. In this case we may ex­
press the relation between intercept and slope 
in tertns of the relative species density, the 
quotient between species number per unit 

area (the species density Sunt1) and the total 
number ofspecies in the assemblage (Sa). Af­
ter such a transformation the intercept be­
comes dimensionless, the above ambiguity 
vanishes, and a clear inverse relationship 
comes up (Figs lA and 3). Such a relation can 
then be interpreted ecologically. 

As far as I know the relationship between 
intercept and factor value of the exponential 
SPAR model has not been studied. The aim 
of the present study will therefore be to clar­
ify the relations between intercept and pa­
rameter values and to clarify what 
environmental factors influence the intercept. 
In doing so I will largely use the same model 
assemblages as in part I and II (U 1 rich 
2000a, b). 

2. MATERIAL AND METHODS 

The assemblages used in this study are 
the same as in part I (Ulrich 2000a), the 
generation procedure, the properties of these 
assemblages, and the generating variables are 
listed in Tab. 1 of part I (Assemblages 1 to 
10). For each of these 768 assemblages spe­
cies area curves of the exponential and the 
power function type were computed and the 
slope value z (power function) and the factor 
b (exponential function) recorded (Fortnulas 
1 and 2 in part I). Again three different sam­
pling regimes (sequential adding, nested, 
non-nested) will be studied. Additionally (to 
study the behavior of the intercept at similar 
relative abundance distributions but different 
species numbers) 180 further assemblages 
were generated. The properties of these as-



Table 1. Parameter design of Community Model to generate 120 assemblages used in this study. Max. Density: upper density boundary of the smallest species; 
min. density: minimum allowed density per cell; type of density fluctuation: densities set randomly between the max. and min. allowed density either using 
untransformed densities (normal), or log-transformed densities (log-normal), or a random mixture of both (mjxed). The random assessment of densities was 
done with a normal random number generator producing random numbers with a mean = Flucmean and a variance = Aucvariance, or with linear random 
numbers (non). DWD: type of density-weight relationship with a slope of the upper density boundary = DWDslope; SWD: species-weight relationship with 
maximum 16 binary size classes, a mean = SWDmy, and a variance= SWDvar; The degree of aggregation of the species (Aggr) was set to 0 (resulting in a 
value of Lloyd's index around 1) The heterogeneity was either fixed for all species (Hetfix =yes) or different for each species (Hetfix =no). 

No. No. of No. cells Method of No. of Unit of No of Max. Min. Type of FlucMean Flue 
.Assem­ sampled sampling samples area spectes density density density Variance 

blages fluctuation 

1 20 100 seq. adding 100 1 15 to 400 10 0.001 normal 0.5 0.4 
2 20 100 seq. adding 100 1 15 to 400 10 0.001 log-normal 0.5 0.4 

"tj3 20 100 seq. adding 100 1 15 to 400 10 0.001 mixed 0.5 0.4 
t/} 

4 20 ("')100 seq. adding 100 1 15 to 400 10 0.001 mixed 0.5 0.4 
~ -· 
~ 

5 20 100 seq. adding 100 1 15 to 400 10 0.001 mixed 0.5 0.4 tll 
I 

p) 
'"'16 20 100 seq. adding 100 1; 4; 15 to 400 10 0.001 mixed 0.5 0.4 ~ 
p) 

'"'19; .. .1 00 
~-p)7 20 100 seq. adding 100 1. 4· 50 10 0.001 mixed 0.5 0.4 ,.....

' ' 0-· 9;.. .1 00 ::s 
tll::r8 20 100 seq. adding 100 1. 4· 200 10 0.001 mixed 0.5 0.4 "tj -· ' ' 

9;.. .1 00 tll 
~ 

~9 20 100 seq. adding 100 1 15 to 400 10 0.001 normal 0.5 0.4 
~ 

No. DWD SWD Classes SWDmy SWDvar DWDmy Aggr Het Hetfix 
1 power normal 16 8 2 1 0 0 no 
2 power normal 16 8 2 1 0 0 no 
3 power normal 16 8 2 1 0 0 no 
4 power normal 16 8 2 0.5 0 0 no 
5 power normal 16 8 2 0 0 0 no 
6 power normal 16 8 2 1 0 0 no 
7 power normal 16 8 2 1 0 0 no 

•8 power normal 16 8 2 1 0 0 no 
9 power normal 16 8 2 1.5 0 0 no 

!..;.) 

\0 
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semblages are given in Table 1. For all as­
semblages the total number of species (Sa), 
the species density (Sun;1), the rel. species den­
sity (SJSunit), the number of singletons in the 
assemblage, the number ofspecies found (Ss), 
the standard deviation oflog2 (densities), and 
Shannon diversity and evenness (in the latter 
three cases separately for the total assem­
blage and the sample) were computed. 

3. RESULTS 

3.1. INTERCEPT AND LOCAL AND 
REGIONAL SPECIES NUMBERS 

If one sets the area in the power function 
and the exponential model to 1, the intercept 
should give the mean number of species per 
unit area because of 

Sunit = b ln(l) + s and (1) 

Sunit = S (J}z (2) 

where b, s, and z are constants by conventio­
nal notation. 

Fig. 2 shows that there is indeed in both 
models a very good linear correlation be­
tween Sunit (the number of species per unit 
area) and the fitted intercept. But least square 
regression yields in a systematic bias in the 
estimation of the intercept (LaB a r be r a 
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1985). And indeed the regression in Figure 2 
has not a factor of one. The fitting process of 
both models constantly overestimated Sunit by 
a factor ofabout 1.5. This result cannot be ex­
plained by the variance in Sunit· Their values 
are means of 20 sampled units (cells, see 
Methods in part I, Ulrich 2000b). When in­
terpreting the intercept value the fitting pro­
cess has therefore to be taken into account 
and appropriate correction factors have to be 
used (Sprugel 1983). 

Westoby (1993) and Srivastava 
(1999) were the first to combine slope of 
SPARs and comparisons of local and re­
gional species numbers. This is possible be­
cause for any given assemblage structure Ss 
will depend in a specific way on the total 
number of species in the assemblage (Sa) and 
therefore in the power function model a rela­
tion between Sun;11Sa (the relative species den­
sity) and the slope z can be derived by 
rearranging the power function. Slope and 
relative species density can be expressed by a 
logarithmic function (Fig. 3 A, B): 

z = - a ln s unit (3) 
ln(area) sa 

with a being a constant and z the slope of 
the power function SPAR. This relation pro­
ofed to be independent of assemblage struc­
ture and sampling method. The constant 
however proofed to be slightly dependent on 
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Fig. 2. Relationship between intercept of the power function (A) and exponential (B) model of species- area 
relationships and real number of species per unit area of 120 model assemblages (assemblages 1 to 6 of Table 1). 
R2

: variance explanation 
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Fig. 3. A: Relationship between slope and - ln(SunitfS3)/ln(area) (assemblages 1 to 8 of Table I in part I, Ulrich 
2000b); B: Relationship between slope and (SunitfSJ (assemblages 1 and 4 to 6). R2

: variance explanation, all 
regressions are significant at p(t) < 0.0001 

the unit of area (Fig. 4). The larger the unit 
of area (given as a fraction of the total area), 
the larger the absolute value of a. The re­
gression has the function a = 76.7 (unit 
area) + 0.5. As expected, if the unit of area 
equals the total area then a becomes the va­
lue of 1. From the outer boundary lines of 
Figure lA and the regression in Figure 4 it 
is concluded that a will generally range be­
tween 0.3 and 1. From the regression we de­
rive a lower limit of a of0.5. 

In the case of the exponential SPAR 
model no simple relationship between rela­
tive species density and factor exist, but be-

0.9 ------------------. 
0.8 ••
0.7 • I 
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0.5 •• • I 

II I • I0.4 
I I • • ••0.3 • • • • • 

0.2 r = 0.34 
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0 +----~-----~------~ 
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Fig. 4. Dependence of the constant a of formulas 3 
and 4 on unit of sampling area. Assemblages 7 and 8 
of Table 1. R2

: variance explanation, p(t) < 0.01 

cause the factor is closely related to regional 
diversity (see part II, Ulrich 2000a), Sunil 
and factor are correlated (r = 0.58, p(t) < 
0.001 ). 

Ofcourse, the above relation (3) depends 
on the fit of the power function model. But 
Figure 5A shows that forrnula 3 even at low 
degrees of variance explanation results in 
good approximations of the slope value. At 
R2-levels below 0.95 forrt1ula 3 generally un­
derestimates the real slope value. If the vari­
ance explanation exceeds 95% no bias could 
be detected. The fit of fort11ula 3 depends 
slightly on the evenness of the assemblage 
(Fig. 5B), the higher the evenness the better 
the model fit. 

Forrnula 3 is independent of unit of 
measurement and combines in a simple way 
two basic ecological concepts: the spe­
cies-area curve and the relation between lo­
cal and regional diversity. Sun;/Sa is the 
expression for the latter and is generally used 
to infer local species saturation by plotting 
Sunir!Sa at various scales (Fig. 6) (Cornell 
1985,Lawton 1990,Cornell1993,Caley 
1997, Caley and S chlu ter 1997, Le ibold 
1998, Srivastava 1999). If Sunit equals Sa 
(local and regional diversity are equal, Case 
A in Fig. 6) z becomes zero, in the case ofun­
saturated local assemblages (Corn e 11 and 
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Fig. 5. Residuals (observed - predicted slopes) of 
formula 3 in dependence of the variance explanation 
of the power function model of SPAR (A) and the 
evenness (B). Assemblages 1 to 8 of Tab. 1 in part I, 
U I rich (2000b) 
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Fig. 6. Four models describing the relationship 
between local and regional number of species. A: all 
species of the regional species pool are found in the 
local scale; B: proportional sampling, there is a 
fixed ration between Sunit and Sa; C and D: local 
communities are saturated with species 

Lawton 1992) - which is the most fre­
quently observed pattern (Caley and 
S c h 1uter 1997 and references therein) -
Sunit is smaller than Sa at a constant factor 
(Case B) and (all other things being equal) the 
slope z will remain constant at different 
scales. If local assemblages become saturated 
the quotient Sun 111Sa decreases and z will in-
crease (cases ' C and D). The use of spe-

1 cies-area curves may therefore be an 
alternative for establishing the relation be­
tween local and regional diversity where it is 
impossible to deterrr1ine the regional number 
of species (Westoby 1993, Srivastava 
1999). 

However, forrnula 3 is strictly valid only 
if the relation between Sumt and Sa is of the 
form Sunrt =facSa with intercept zero. In real­
ity this is seldom met and the intercept (icpt) 
will be either positive or negative (nottnally 

1 there is a lower limit in local species density 
that means b is less than zero). In this case 
formula 3 changes into 

z = a In facS a + icpt ( 4) 

ln(area) sa 
Now the slope z is not a constant but will 

asymptotically reach a constant value at 
higher regional species numbers. If icpt is 
less than zero the initial slope values will be 
higher than the asymptotic value, if b is 
greater than zero this pattern reverses. Figure 
7 exemplifies the pattern. A strict propor­
tional sampling (with a positive intercept, 
Fig. 7 B) results in an asymptotic slope - rel. 
species density plot (Fig. 7 A). This again 
shows that the slope of the power function 
SPAR is by no means a constant even when 
the underlying relative abundance distribu­
tions and the sampling procedures are equal. 
This fact has also be taken into account when 
comparing slopes in local versus regional 
plots. Sumt has to be large enough for z being a 
constant. 

The program used to generate the model 
assemblages of this study and to sample uses 
a random placement algorithm without an up-
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Fig. 7. Relation between slopes of the power function SPARs (A) and local species numbers (B) and regional 
species number. Assemblages 2 of Table 1. R2

: variance explanation 

per limit of species or individuals per unit of 
area (a cell). In this case proportional sam­
pling is expected when comparing assem­
blages of different species numbers but the 
same underlying relative abundance distribu­
tions. Figure 8 shows that this was indeed the 
case. This is not a trivial result as it may seem 
at first glance. Enhancing the number of spe­
cies changes in some relative abundance dis­
tribution the fraction of rare species and 
Caley and Schluter (1997) predicted from 
model assemblages that log-nortnal distrib­
uted assemblages will generally be curvilin­
ear at lower sample sizes (less than 200 times 
the regional species number). The plots in 
Figure 8 do not conform this prediction. Even 
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Fig. 8. Local and regional species numbers for 
log-normal distributed assemblages after random 
placement and sampling (assemblages No. 9 of Table 
I). Sample size: A: 50 times max. regional species 
number (S0 ), B: 20 times Sw C: 4 times Sa 

at sample sizes around 4 times the regional 
species number (Fig. 8C) no curvilinearity 
could be detected. However, local and re­
gional relative abundance distributions are 
not necessary of the same type. There may be 
changes at higher or very low species num­
bers. In this case even under the conditions of 
random placement and sampling the relative 
species density is not a constant and the slope 
may also vary. 

3.2. COMPARING DIFFERENT SPARS 
WITH SIMILAR SLOPES 

Gould (1979) showed that in allometric 
studies the intercept may serve to compare 
curves with similar slopes (at constant unit of 
measurement). This simply because we can 
divide two power functions with equal slope 
an get 

s sunit I I unit I 2 (5)-
S ni l S nl 2 

with Sunitll,2 and Snll ,2 species number at unit 
of area and area n. 

In part II of this study (Ulrich 2000a) it 
was derived that for any given relative abun­
dance distribution the Shannon diversity His 

a logarithmic function of Sn (H = p ln(SnJ· 
Therefore, we can rewrite 5 into 
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4. DISCUSSION adjustment will inevitably change the slope 
value and effect the model fit. 

The intercept has largely been ignored 
by ecologists and is even often not reported in 
species-area studies. This surely due to the 
conventional wisdom that the intercept pa­
rameter is measurement dependent and gives 
only the mean number of species per unit of 
area. Only White and Gould (1965) and 
Go u 1 d ( 1979) treated the intercept of the 
power function in detail and found it usable to 
compare standardized variables used in allo­
metric studies when the slopes are identical. 
However, relations between intercept and 
slope where not studied in detail. 

The present study shows that the inter­
cept of species-area relations deserves more 
attention. Not as a simple fitted constant but 
as a relative measure that combines the inter­
cept and the total number of species of an as­
semblage under study. Such a combination 
(the rei. species density) is independent of 
units of measurement and can unambigu­
ously be linked which the parameter z (the 
slope) of power function species- area rela­
tionship. For the exponential model of 
SPARs no such simple relations exist, a fact 
which favors the use of the power function. 

Ulrich (1999a) studied species- area re­
lationships in Hymenoptera and found that 
the published slope values grossly underesti­
mated the species numbers at unit of area or 
less. This coincides with the finding in Figure 
2 that the fitting process of the model assem­
blages used in this study results in an overes­
timation of sllf1/(• u1rich ( 1999a) proposed to 
fit species area curves by a two step process, 
first establishing the correct intercept value 
by estimating or sampling Su1711 and fitting a 
model which contains then only a single pa­
rameter (slope or factor). In the Hymenoptera 
such a process resulted in much more realistic 
species number estimations over the whole 
range of areas included in the regression. In­
deed, it is known that the intercept value has 
frequently the highest variance (Keating 
1998).The above results show that such an 

Preston (1962) was the first to combine 
intercept and slope of the power function 

model by comparing Suni11Sa and z (when sam­
pling a fixed universe). From a canonical 
log-nottnal distribution he approximated a 
linear relation between the fraction ofspecies 
sampled at unit area and the slope value if 
more than 10% of the species had been sam­
pled. Figure 3 shows that this is not correct, 
the relation is logarithmic over the whole 
range. From Preston's plot we can deduce 
that a z value below 0.3 is reached if more 
than 50% of the species are found per unit 
area. In the model communities used in this 
study such slopes required only about 15%. 
Interestingly, Preston did not discuss the 
point in further detail. 

Recently, Hanski and Gyllenberg 
( 1997) combined the concepts of spe­
cies- area curves and abundance-range size 
relationships. Their model predicts a non­
linear relationship between relative species 
density and slope over the whole range of 
densities and their predicted slope values are 
closely to the empirical ones in Figure 3B. In 
this respect the data presented here sustain 
the model of Hanski and Gyllenberg 
(1997). There model however does not deal 
with different sampling methods and the de­
pendency of the slope on them. 

The data in Connor and McCoy 
(1979) contain 28 assemblages of which the 
total number ofspecies is given. They allow a 
plot similar to Figure 3B (Fig. lA) (that 
means without containing the total area sam­
pled). Indeed, in the real assemblages a simi­
lar picture than in the model communities 
comes up and the slope parameter a is nearly 
identical to the one deduced from Figure 3B. 
That the variance is much larger stems from 
the fact that the Connor and McCoy compila­
tion contains a mix of various sampling de­
signs and that the estimates of total species 
number have also some error tern1. 
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Recently, the relationship between local 
and regional species numbers has gained 
much interest (Lawton 1990, Cornell 
1993, Hugueny and Paugy 1995, Shor­
rocks and Sevenster 1995, Caley 1997, 
Caley and Schluter 1997, Griffiths 
1997, Hugueny et al. 1997, Karlson and 
Cornell 1998, Leibold 1998) although 
only a few researchers combined their results 
with species-area relationships (Cornell 
and Washburn 1979, Aho 1990, Aho and 
Bush 1993, Westoby 1993, Srivastava 
1999). This study shows that it is possible to 
subsume both concepts under a general 
framework. Species- area relations may be 
expressed in tern1s of local and regional spe­
cies numbers and patterns ofthe latter may be 
studied by analyzing species- area relations at 
different geographical scales. 

Most of the cited studies found propor­
tional sampling patterns and concluded that 
the local communities were unsaturated. 
Saturation had been found in some vertebrate 
and vertebrate parasite communities (Aho 
1990, Aho and Bush 1993), although the 
methods used to infer a type C dependence 
(Fig. 6) have been criticized (Caley and 
Schluter 1997, Srivastava 1999). In un­
saturated communities the slope of the power 
function at different scales should be constant 
or follow a logarithmic curve (Fig. 7). In satu­
rated communities the slope will change con­
stantly over the whole range of species 
numbers and the pattern of change will fol­
low either a power function or a straight line. 
Species- area relationships are often more 
easy to construct, especially in very species 
rich communities and the change of slope 
value may also be more easy be interpreted 
than deviations of local versus regional spe­
cies number plots from linearity (C al ey and 
Schluter 1997, Griffiths 1997). 

Of course, the above results are derived 
from model assemblages with random place­
ment of individuals (see part I, U lri eh 
2000b) and they have to be tested with real 
communities. However, the wide range ofas­
semblage structures used in this study and the 

nearly identical patterns derived from the 
data in Connor and McCoy (1979) show 
that the derived relations are widely applica­
ble. They also may serve as null models in 
species-area and diversity studies. 

At the end of part Ill of this study we 
may ask again the question which model 
should be applied to study species- area rela­
tions. Surely, a simple model fit cannot an­
swer this question because fit of a model by 
no means tells us whether the underlying 
structuring processes are really described by 
the applied model. The fact that frequently 
the power function and the exponential 
model give similar good fits further compli­
cates the situation. In the past the power func­
tion model has gained by far more attention 
than the exponential model because of a bet­
ter theoretical underpinning and ecological 
explanation of the slope values (Preston 
1962, May 1975, Sugihara 1980, 1981 , 
Wissel and Maier 1992, Harte and Kin­
zig 1997, Harte et al. 1999). The results of 
part I (Ulrich 2000b) indicated that the 
power function model may be better suited 
for random fraction and log-no1n1al distrib­
uted communities, whereas in most other 
types of relative abundance distributions the 
exponential model may be superior. 

Part II of the present study (U1rich 
2000a) gave for the first time an ecological in­
terpretation of the factor value and showed 
that the exponential fottn of the species- area 
relation is closely linked to the common Shan­
non measure of diversity and may be used to 
infer regional diversity. In this respect the ex­
ponential fortn seems to be superior to the 
power function. The connection between fac­
tor value and diversity is worth to be studied in 
detail in real animal and plant communities. 
Both SPAR models can be linked to local and 
regional diversity patterns, although the power 
function may be more easy to interpret. 

From the above arguments it is con­
cluded that the exponential fortn of spe­
cies- area relations has gained too few 
attention and should be studied in more detail. 
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5. SUMMARY 

Using model assemblages {Table I) generated 
by a FORTRAN-program the dependence of the inter­
cept of the power function and exponential model of 
species- area relationships were studied. It is shown 
that the quotient of intercept and total species number 
in the assemblage (Sunu!Sa) can be interpreted as a re­
lation between local and regional diversity (Fig. 6) 
and linked with species- area relations (Figs 1, 2, 3, 
4, 8). 

Two general relations are derived and tested 
(Figs 7, 9, and 1 0) combining both concepts: 

=S 11 2z -- a In S''"'' , and S ,mall "'' ' with z being
ln(area) S " H" ' ~H" ' 2 

0 
e B e B 

the slope of the power function model, H the Shannon 

diversity, p, P1 and P2 constants, and a the constant of 
the relation between SunitiSa and z. It is concluded that 
species- area relationships can be used to infer the re­
lation between local and regional species numbers and 
diversities. 
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