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Chapter 1 

Introduction 

We consider a coupled model described by the domain bounded in IR2 and decom­
posed into two sub-domains D and w in such way that the interior sub-domain w is 
surrounded by the exterior sub-domain 0. In the interior sub-domain the physical 
phenomenon are described by the linear partial differential equation (PDE), and in 
the exterior domain the processes are governed by nonlinear PD Es subject to some 
external function . An example of such a system constitutes a gravity flow around 
an elastic obstacle. Here the Navier-Stokes equation, which is nonlinear, is cou­
pled through transmission conditions with the linear static or dynamic elasticity 
system. Such situations have numerous physical interpretations. Let us mention 
here only two: the water flow around submarine or gas flow inside the jet engine. 
For real life models the coupling conditions are still a subject of research [6] . Jn 
the paper we assume that the number and the radii of hollow voids are given, and 
we determine only the locations. The topological derivative, introduced in [9], 
and developed in the papers [2, 3, 8, 10, 11, 12, 13], was created specifically in 
order to asses the influence of voids or inclusions on the solutions of PDE's. 

Our goal in this paper consists in proposing the combination of neural network 
and information given by the topological derivative for solving such difficult prob­
lems or at least providing the initial approximation of the solutions. For a fixed 
number of holes we consider the differential equation and then we solve them. 
We use the solution of the differential equation on ow to generate Fourier series. 
We take fixed number of coefficients of Fourier series. After that we define new 
mapping f . The arguments of mapping f is a vector of locations of holes. The 
values of mapping f is a vector of coefficients of Fourier series. Next we consider 
the inverse mapping, which for a vector of coefficients of Fourier series calculates 
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Figure 1.1: Domain O U w. 

a vector of locations of holes. We approximate this mapping by artificial neural 
network. 

1.1 Problem formulation 

Let D and w be two bounded domains in IR2 with the smooth boundaries ow and 
r = 8D. We suppose that D = 0 Uw has a geometry presented in Fig.1.1 , where 
0 = D \ w, such that 8 0 = r U ow. In the domain D we consider the following 
nonlinear boundary value problem : 

- llU(x ) = F (x, U(x)) , x E D , 

U(x) = O, xE f , 

The function F(x , U(x )) is defined as follows 

F (x , U(x)) = { ~ U3 (x) + f (x), X E 0 , 
X E w, 

(1.1) 

(1.2) 

where f is a constant or linear function. The boundary condition on the common 
boundary ow constitutes the so-called transmission condition. 

Next we introduce a small perturbation in the domain w by creating a small 
hole B, at the point O , chosen, without loss of generality, at the origin, see Fig.1.2. 

We denote 

(1.3) 

( 1.4) 



I. I. PROBLEM FORMULATION 

n 
r 

Figure 1.2: Domain n and w, = w \ B,. 

The problem (1.1) can then be redefined in the perturbed domain as follows: 

-.6.U,(x) = F (x, U,(x)), x E D \ B,, 
U,(x) = 0, xE f , 

OnU,(x) = 0, x E aB, 

where again cp is a fixed function and F(x, U,(x )) is defined by: 

F (x, U,(x)) = { -U;(x) + f (x ), ~En, 
0, X E w,. 

with f the same as in (1.2). 
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(1.5) 

(l.6) 

According to [11, 12] we can rewrite the condition in (1.5) using the Steklov­
Poincare operator A, defined below in the domain w,. The operator A, is a map­
ping of H 112 (aw)-+ H - 1!2 (aw). It means that for each function cp E H 112(8w) 
we have 

(1.7) 

The expantion of the Stieklov-Poincare operator was described in details in [14] 
The problem (l.5) can then be rewritten as follows: 

- .6.U,(x ) = F(x, U0 (x) ), x E D \ B,, 
U,(x) = 0, .-:c E r , 

8nU,(x ) = A, (U,(x) ), x E ow, 
OnUe(x) = 0, x E aB, 

with the function F defined as in (1 .6). 

(1.8) 
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Figure 1.3: Domain D = nu w. 

The shape optimization problem considered in this section consists in find­
ing locations of a finite number of ball-shaped holes in the domain which mini­
mize a certain integral functional. The standard approach would use the values of 
topological derivative for initial location of these holes, and then shape derivative 
would be applied for fine tuning their sizes and positions [l, 7]. Such a method 
is fast, but there is a danger of landing in a local optimum, especially when the 
number of holes is bigger than one. 

The main idea of the approach proposed in this paper is to combine the neu­
ral network and continuous method using topological derivative for speeding up 
computations. 

For the sake of numerical experiments we assume that the domain D is a 
square (-1, 1) x (-1, 1) in IR2 . In D we define a sub-domain w as a circle of the 
center at the point CJ = (0, 0) and the radius r = 0.5. Thus D consists of two 
open sub-domains w and n = D \ w, see Fig.1.3, with the boundaries r = 8D 
and ow. 

In the interior domain we define a linear elliptic boundary value problem as 
follows: 

- .6.u(x) = 0, x E w 

·u(x) = v(x), x E ow (1.9) 

Outside the circle w, in the domain n, we define the following semi-linear bound­
ary value problem with the Dirichlet condition on the exterior boundary r of the 
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square and the transmission condition on the common boundary ow of the circle: 

-llv(x) + v3(x) = f(x) , x En, 
v(x) = 0, xEf, 

O11-u(x) = A(v(x)) , x E ow . 
(1.10) 

The operator A is the Steklov-Poincarc operator and the function f(x) is given. 
In order to solve numerically the coupled problem described in (1.9) and 

(1.10), we introduce a characteristic function x of the domain n, 

(n) = { 1 x En, 
X O x E w. 

(1.11) 

Then the coupled problem under consideration can be rewritten in the following 
way: 

-llw(x) + x(n)w3(x) = x(n)J(x), X ED, 
w(x) = 0, xEf. 

(1.12) 

Let V(D) = {v E HJ(D) : v = 0 on r}. Multiplying ( 1.12) by a function <p E V 
and integrating by parts we get the following weak formulation: 

/'vw(x) '\11.p(x)d.T - / 0;~;) 1.p(x)dS 
n 8w 

j. ;· ow(x) + Vw(x) '\11.p(x)dx - on
2 

1.p(x)dS (1.13) 
w 8w 

+ / w3 (x),p(x)dx = / J(x),p(x)dx, 'c/<p E V(D). 
n n 

Here we denote by n 1 the outward normal vector to w, and by n 2 the outward 
normal vector to n. If we suppose that win = v, wlw = u, then we get the 
following variational formulations of the nonlinear problem in the domain n: 

{ 

Find v(x) such, that 

/ Vv(x)'\11.p(x)dx + / v3(x),p(x)dx 
n n 
= f f(x),p(x)dx 'c/<p E V(D) , 

n 

(1.14) 
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with the transmission condition on the common boundary ensured by: 

) . a~(x ) cp(x)dS + ;· a:(x) cp(x )dS = 0. 
un1 un2 

(1.15) 

8w 8w 

Similarly, for u = 11 on ow we obtain the variational formulation in the domain w: 

{ 
Find u(x) such, that u = 11 on ow and 

/ Vu(x)Vcp(x)dx = 0, Vcp E V(D) . 
w 

( l.l 6) 

1.2 Optimization problem 

In our numerical experiments we use the tracking type shape functional with a 
known element zd, so an optimal value is 0. 

Let us set We = w \ B e( 0) , where Be( 0) is a small hole created in the interior 
circular domain w at certain point O and of fixed radius c. Thus, De = D U we 
and in such domain we define a target function zd as a solution to the following 
boundary value problem : 

- L'>. zd (x) -1- x (D )zJ(x) = x(D)f (x), x E De, 

zd(x) = 0, xE r , 

0Zd= O "'B an , X E u ,. 

(1.17) 

The cost functional that we want to minimize is of the tracking type, as mentioned 
above, and depends on the location O of the hole: 

J (v, ) = ~ /(v,(x) - zd(x ))2dx, (1.18) 

n 

where v, is the solution to the semi-linear problem in perturbed domain 

- L'>.11,(x) -\- v:(x) = f (x ), X E f2 , 

v,(x)= 0, xE r , (1.19) 

Onv,(x ) = A (v,(x)) , x E ow. 
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In order to minimize this shape functional we are looking for the optimal per­
foration of the domain w. For this shape functional, the topological derivative is 
given by the following formula: 

Tn (O) = 21rV11(0 ) · Vp(O ). (1.20) 

where p is the so-called adjoint state being a solution to the linear boundary value 
problem 

- f::,p + 3v2p = (v - Zd) , in !1, 

- 6p = O, in w (1.21) 

p = 0, on r . 
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