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1 Introduction 

1.1 Domain decomposition with Steklov-Poincare op­

erators for linear problems 

We start with a sim ple model problem on applications of the Steklov-Poincare 

operators to the topological sensitivity analysis of linear variational problems. 

The shape functional is given by the associated energy functional to the 

boundary value problem. Given domains n, fl(c) =n\ im, c JRd, d 2: 2, with 

a small hole llR, = {x E JRd I llxll < c of radius c --t O, the associated energy 

functional to the elliptic boundary value problem under considerations is 

introduced for the singularly perturbed equation : 

Find u,= u(fl(c)) such that 

-b.u, = J in fl(c) , 

u,= o on r =an, 

au,= o 
on on r, = 8llR,, 

(1) 

(2) 

(3) 

where f E L2(JR.d) is a given element which vanishes in the vicinity of the 

origin OE w. 

The boundary value problem corresponds to the minimization of the 
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quadratic functional 

I,(ip) = ½ r iv1<p12 - r h 
Jn(,) Jn(,) 

( 4) 

over the linear subspace VC H 1 (D.(c:)) of the form 

V= {<p E H 1(D.(c:)) I <p = o on r} (5) 

The shape functional 

J(n(c:)) := ½ / lv'u,1 2 - f fu,=-½ f fu, . (6) 
lnc,) Jn(,) Jn(,) 

defined by the equality 

J(D.(c:)) = I,(u,) (7) 

is the energy for the singularly perturbed domain n(c:). We know already 

that the energy admits the expansion with respect to the small parameter 

E • O of the following form 

(8) 

where eu(O) is the bulk energy density at the origin O, in generał the bulk 

energy density at a point a point x0, x0 = (x1,0 , • • • , xd,o) E JRd is given by 

the formula 
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1.2 Two spatial dimensions 

The results for the Laplacian in two spatial dimensions are obtained explic-

itly. We have 

(9) 

where e.,(O) is the bulk energy density at the origin O, in generał the bulk 

energy density at a point a point x0, x0 = (x1,0, x 2,0) E JR2 is given by the 

formula 

e.,(xo) = 11Vu(xo)ll2 . 

If the function u is harmonie in a bali JE n C JR2, of radius R > O and the centre 

x 0 then the expressions for the first order derivatives of u in the following 

form 

Uj1 (xo) = ~3 r U · (x1 - Xi,o) ds, 
7r lrR (xo) 

(10) 

are exact. 

Here we use the notation 

au 
u1;(xo) =-;,- , i= 1, · · · , d. 

UXi 
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In view of this, expansion (9) can be rewritten in the equivalent form 

J(D(€)) = J(D) - 2::6 [ (iR UnX1 ds) 2 + (iR unx2 ds) 2
] + 0(€2) , 

(11) 

which is interesting on its own, as it is observed in [2], [3], since (11) can be 

rewritten as follows 

(12) 

with a certain integral boundary operator B. The operator B is selfadjoint 

since it is defined by the symmetric an positive bilinear form 

(Bu, u) = b(r Ri u, u) = - 27f~6 [ (JR ux1 ds) 2 + (JR ux2 ds) 2
] (13) 

From the above representation, since the line integrals on r R are well 

defined for functions in L2(rR), or even in L1 (rR), it follows that the operator 

B can be extended to the bounded operator on L2 (rn), 

(14) 

since the symmetric bilinear form of the operator, given by the equality 

(Bu,v) = b(rR;u,v) = (15) 

-Z1r~ [ (JR ux1 ds) (JR vx1 ds) + (JR ux2 ds) (LR vx2 ds)] 
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is continuous for all u, v E L2(rn)- In fact, the bilinear form 

L2(rn) x L2(rn) 3 (u,v) >-t b(rn;u,v) E JR 

is continuous with respect to the weak convergence since it has the simple 

structure 

with two linear forms v --+ L;(v), i = 1, 2, given by the line integrals on 

r R· This gives us an additional regularity for approximation of the singular 

perturbation of geometrical domain by the regular non-loca! perturbation 

B of the pseudo-differentia! Steklov-Poincare boundary operator A,. The 

Steklov-Poincare boundary operator A, is defined in the following way. For 

given element v E H 112 (rn) solve the boundary value problem 

- /:::,.w= O in C(R, c), ćlw = 0 r av on ,, W= V On r R, (16) 

and set 

aw 
A,v = ćlv on rn , (17) 

where v is the unit exterior norma! vector on BC(R, €), note that the unit 

exterior norma! vector n on rn c ann is n= -v. We denote by C(R, e) the 

annulus Bn \ i„ in our application we also introduce the truncated domain 
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Dn= n \in and use the domain decomposition technique with the Steklov-

Poincare operator. 

Since the energy functional in D(c:) takes the form 

provided the source term f vanishes in the small ball lIBn around the origin, 

and the Steklov-Poincare operator admits the expansion 

A, = A + c:2 B + R, , (19) 

where the remainder R, is of order o(c:2) in the operator norm C(11,112(r n) >-+ 

11,-112 (I'n)). We obtain another approach to the evaluation of the topological 

derivative for the energy type functional. The approach is based on the rep­

resentation of the energy functional in the form of a minimization procedure 

for regularly perturbed quadratic functional in view of (18), 

where Hł,(Dn) is a subset of H 1 (Dn) with the functions which vanish on r. 

This approach is of some importance for the variational inequalities since 

allow us to derive the formulae for the topological derivatives which coin­

cide with the formulae obtained for the corresponding liner boundary value 

problems. 
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2 Energy functionals and Steklov-Poincare op-

erators for variational inequalities 

Let us assume that n c JRd is a given domain. If lll\e denotes the sphere with 

the centre at the origin 

then we consider the domain n(c) =n\ JIB, and the truncated domain nn = 

n \lIBn. 

The same mathematical model (20) can serve us in order to derive the 

topological derivatives of the energy shape functional for variational inequal­

ities. It means that we replace in (20) the linear space Hł-(nn) by the convex 

and closed subset Kc Ht(nn), and consider 

The assumption we need now is simple, that the minimizer uf in (21) coin­

cides with the restriction to nn of the minimizer u, := u(n(c)) of the cor­

responding quadratic functional defined in the whole singularly perturbed 

domain n(c) , 

J(n(c)) = mf - IVrpl 2 - frp. . 11 1 
,pEKCH~(O(<)) 2 0(<) O(<) 

(22) 
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In this way the equality 

J(n(c)) = ½ r lv'u,12 - r fu,= If(u:) = {23) 
Jn(,) ln(,) 

= ½ r lv'u,1 2 - r fu,+ ½(A,u„ u,)rR 
lnn lnn 

holds for c • O and we can determine the topological derivative of J(n) 

by using the expansion of If(u:) . The assumption we need to perform the 

derivation of If(u:) with respect to the parameter c at c = o+ is the strong 

convergence for R > O, 

(24) 

i.e., there is no need to require any differentiability properties of the mini­

mizer u: E H 1(nR) with respect to c, In fact, we establish the existence of 

the conical differentia! for the mapping 

(25) 

and of the expansion 

(26) 

The element qR E H 1(nR) is uniquely determined by a solution of an as­

sociated variational problem with the constraints defined in function of the 
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solution un and its coincidence set for the unilateral constraints imposed by 

the cone K. 

We describe the framework in details. The abstract model of an energy 

functional for the non-linear boundary value problem in the form of varia­

tional inequality considered in this paper can be described in the following 

way in three spatial dimensions. 

Given a domain D(€) = D \ iIB, C JR3, with a small cavity IIB, C IIBn of ra­

dius € • O, denote by Dn = D \ Bn the domain without the cavity, and 

by C(R, €) = IIBn \ iIB, the annulus with the small cavity. It means that the 

domain D(E) is decomposed into two subdomains, the truncated domain Dn 

and the annulus C(R, €) . The main idea which is employed here is to restrict 

the asymptotic analysis to the annulus C(R, €), and apply the obtained result 

to the variational inequality considered only in the truncated domain On. In 

this way the singular domain perturbation in the annulus influences the vari­

ational inequality by a pseudodifferential operator of Steklov-Poincare type, 

which is localised on the exterior boundary rn of the annulus, since at the 

same time rn is the interior boundary of the truncated domain Dn. In other 

words, the variational inequality in the truncated domain takes the following 

form: 
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• 
Find Ue E K C vn which is the unique minimizer of the quadratic energy 

functional defined in the Sobolev space vn = 1-l1(r!n), 

where Ae stands for the Steklov-Poincare operator for the ring G(R, c) . The 

linear mapping ,n : 1i1(r!n) H 11,1/ 2 (rn) denotes the trace operator on the 

interface r n created by the domain decomposition, and ( ·, •) R is the duali ty 

pairing defined for the fractional Sobolev spaces 1-l-1/ 2 (r n) x 11, 1/ 2 (r n) on the 

interface rn, associated with the corresponding Steklov-Poincare operator 

Ae : 11,1l2(rn) r-+ 1-l-1/ 2(rn). The Steklov-Poincare operator is evaluated 

in the ring G(R, c) for€ 2: O, € small enough, and it admits the expansion 

(28) 

where the remainder Re is of order o(c3 ) in the operator norm C(Ji112 (rn) H 

We want to replace the original variational inequality defined in the do­

main r!(c) by the variational inequality defined in the truncated domain r!n, 

i.e. we want to replace for the purposes of asymptotic analysis the original 

quadratic functional defined in the domain of integration r!(c) 

(29) 
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by the functional 1{1(,p) defined in the truncated domain without any hole. 

To this end, we require the following property for the minimizers u, and uf 

of I,('lj;) and 1{1(,p), respectively. For c > O small enough the minimizer 

uf in the truncated domain is given the restriction to the truncated 

domain nn of the minimizer u, in the singularly perturbed domain 

n(c). If it is the case, we can determine the topological derivative of the 

energy functional 

1 
J(n(c)) = 2a,(u,, u,) - L,(u,) (30) 

from the expansion of the energy functional in the truncated domain 

which takes the form 

(32) 

where uR = u(nn) stands for the restriction to the truncated domain of the 

solution u = u(D,) of the original variational inequality in the unperturbed 

domain n. 

This result is based on the equality 

J(n(c)) = If(uf), (33) 
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and the following characterisation of the energy functional for the specific 

case 

The domain decomposition method can be applied under the assumption 

that the quadratic term E >-+ (A,(,nu,),,nu,)n is a regular perturbation of 

the bilinear form. 

Proposition 2.1 Assume that (28) holds in the operator norm and that the 

strong convergence takes place 

in the energy norm for the functional (34). Then we have 

where o(t::3 )/t::3 -+ O with t:: 3 -+ O in the same energy norm. 

The proof of Proposition 2.1 is based on the evident inequalities 

J,R(uf) - JR(uf) < I{1(uf) - JR(uR) < J,R(uR) - JR(uR) 
~ - ~ - ~ ' 

which imply the existence of the limit 
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In the subsequent sections the explicit form of the bilinear form which 

gives rise to the operator B is presented for the laplacian and for the linear 

elasticity in three spatial dimensions. 

3 Case of Laplace equation m IR-3 

Let us consider the equation 

ilu= O in D C IR3 (39) 

with some, unspecified for the moment, boundary conditions. We assume 

also that O E int n, so that we may surround it with the sphere of some 

radius R, S(R) C int n. Our goal is to express grad u = ( u11 , u12, u13f in 

terms of integrals of u on S(R). As it is known, the solution to (39) is analytic 

in the interior of domain, so we may use for this derivation the format series 

method, as mentioned already in [2] for the 2D case. 

To this end we shall assume that in the neighbourhood of O the solution 

has the form 

where k1 , k2 , k3 are positive integers. In spherical coordinate system around 
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O we have also 

x1(<p,0) = Rcos0cos<p, x2 (<p,0) = Rcos0sin<p, x3 (<p,0) = Rsin0 

and we may define A( <p, 0) = R2 cos 0, where <p E (-1r, 1r], 0 E [-1r /2, 1r /2] . 

We shall define also functions 

(41) 

For example, 

( 4 4 4 4 
l 2,0,0) = 31rR, 1(4,0,0) = 51rR6 , 1(2,2,0) =1(2,0,2) = 151rR6 • 

(42) 

From representation of the solution ( 40) results the following expression for 

the surface integral 

r UX1 ds =1(2, o, O)a100+ 
ls(R) 

1 1 1 
fi1(4, O, O)a300 + i(2, 2, O)a120 + i(2, O, 2)a102+ 

30 10 10 
1201(2, 2, 2)a122 + 120 1(4, 2, O)a320 + 1201(4, O, 2)a302+ 

5 5 1 
1201(2,4,O)a140 + 120 1(2,O,4)a104 + 1201(6,O,O)asoo+ 

terms corresponding to c, = 7, 9, . .. 

(43) 
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The terms corresponding to even values of a disappear for antisymmetry 

reasons. 

Exploiting once more the representation (40), we may explicitly compute 

that 

(44) 

what means, in view of (42), that 

1 1 1 
61(4, O, O)a300 + i(2, 2, O)a120 + 21(2, O, 2)a102 = O. 

This takes care of the part corresponding to a = 3. For a = 5 we shall 

differentiate (39) more times, obtaining 

Taking into account that 

1(2, 2, 2) = 1~51rR8 , 1(4, 2, O)= 1(4, 0.2) = 1(2, 4, O)= 1(2, O, 4) = 1~
2
51rR8 , 

( ) 60 8 
l 6, O, O = 105 1r R , 

the appropriate part of ( 42) also vanishes 

30 10 10 
1201(2, 2, 2)a122 + 1201(4, 2, O)a320 + 1201(4, O, 2)a302+ 

5 5 1 
1201(2, 4, O)a140 + 1201(2, O, 4)a104 + 1201(6, O, O)a5oo = O. 
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In the same way we may cancel further terms. 

As a result we get 

a100 = u;1(0) = 3R4 r UX1 ds 
411' Js(R) 

or, in generał 

u;1(0) = 4 3R4 r UX1 ds, 
11' Js(R) 

u;2(0) = 3R4 r UX2 ds, 
411' Js(R) 

(46) 

u;3(0) = 4 3R4 r UX3 ds . 
11' ls(R) 

To test the formula, !et us take the function u(x) = 1/jx - pj, where 

p = (2, 2, 2jT, and R = l. Then the exact value of u;1 (O) is v'3/36 

0.04811252243 and numerical integration using Mapie gives 

U/1 (O) = 3R4 r UX1 ds = 0.04811252242. 
411' Js(R) 

Using ( 46) one can easily write down the bilinear form 

bn(u,v)=( 3R4) 2
( r ux1ds· r VX1ds 

411' j S(R) j S(R) 

+ r UX2 ds ' r VX2 ds + r UX3 ds · r VX3 ds) 
Js(R) Js(R) Js(R) Js(R) 

such, that energy density at O is ½bn(u, u). From the computational point of 

view, the effort in comparison to 2D case [2] grows similarly as the difficulty 

of computing integrals over circle versus integrals over sphere. 
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4 Case of elasticity system m JR3 

Let us now consider the same domain as in the last section, but a different 

problem, namely the elasticity system 

(1 - 2v)f:..u + grad div u= O, (47) 

where u= (u1, u2, u3)T, v = >./(2(>. + µ) - Poisson ratio and>.,µ are Lame 

coefficients. Our goal is to express elements of strain tensor c;; at x = O in 

terms of integrals of U; over S(R) . In principle it could be done in the same 

way as in case of Laplace equation in the last section or 2-D elasticity in [2]. 

However, the calculations would be extremely complicated, as we shall see 

later. Therefore we will use the knowledge of the form of the solution for 

Dirichlet problem in the bali, as proposed by Trefftz, 

u= U+ (r2 - R2)grad i[r, (48) 

where U is a harmonie vector, i[r - harmonie scalar and r = ~- In 

the sequel we shall follow partially the derivation from [l], chapter 5. We 

introduce standard polar coordinates 

x1 = rsin0cos<p, x2 = rsin0sin<p, x3 = rcos0. 
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with 0 E [O, 1r], cp E (-1r, 1r]. It is well known that a harmonie vector U has 

the form 

U= f (ir Yn(B, cp), r < R, 
n;;:0 

(49) 

where Yn(B, cp) consists of Laplace spherical vectors 

n 

Yn = anoPn(r) + I)anmCos(mcp) + bnmsin(mcp)]P,:"(r). (50) 
m=l 

The explicit forms of these polynomials for values of n, m which are needed 

in aur calculations are given in Appendix. 

We introduce the scalar product and the corresponding norm on S(R), 

(f,g)n = { fgds, 
ls(R) 

Furthermore we denote 

where 
n 

li/lin= ✓u, J)n. (51) 

(52) 

Yn(x) = ¾OFn(x) + I)anmF,:"•0 (x) + bnm•F,:"•'(x)]. (53) 
m=l 
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The polynomials P are given by identities 

P;:,c(x) = rn P;;'(cos0) cos(mrp), 

F;;'·'(x) = rn P;;'(cos0) sin(mrp). 

(54) 

These are homogeneous polynomials of n-th order in terms of variables 

x1 , x2 , x3 • Their normalized versions are defined as 

The set of functions 

1 • 
d,,(x) = ll?nl/R Pn(x), 

cm(x) - 1 pm,c(x) 
n - 1/.P;'•cl/R n ' 

1 • 
sm(x) = --P.:'•'(x) n 1/?;'•'I/R n . 

(55) 

constitutes a system of harmonie polynomials orthonormal on S(R). In these 

terms 

Un = ~[a,,od,,(x) + t(anmc;:'(x) + bnms;:'(x))] . (56) 
m=l 

Now from (48) it follows that 

00 

Ulr=R = Ulr=R = L Unlr=R• 
n=O 

20 
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Using (56) and orthonormality we easily compute constant coefficients for 

n~ O, m = l..n, i= 1, 2,3: 

(58) 

The harmonie scalar W in ( 48) also has a representation 

(59) 

Using (47) one can obtain [l] the relation 

(60) 

After denoting kn(v) = 1/2((3- 2v)n-2(1- v)] the solution of the elasticity 

system in the bali takes on the form 

u= L[Un + (R2 - r 2)kn(v)grad div Un] , (61) 
n = O 

Since we are looking for E;j(O), only the part of u which is linear in x is 

relevant. It contains only two terms: 

(62) 

21 



Since, for any /(x), grad div (a/) = H(f) · a, where H(f) is the Hessian 

matrix of/, we obtain 

u= ½[a10d1(x) + a11ci(x) + b11sf(x))] 

+ R2 k3(v) 13 [ H(d3)(x)a30 + t (H(cf)(x)~m + H(sf)(x)b3m)] 

(63) 

From the above we may single out the coefficients standing at x 1 , x 2 , x 3 in 

u1 , u2 , u3 • In particular, see Appendix, 

cn(0) = u111(0) = 13 /faf1 + 15 k3(v)[- 3/fa;0 - 9/fa}1 

- 3ab~l + 30~a~2 + 90✓ l4;011'a½3 + 90✓ l4;011'b~3], 

c22(0) = u212(0) = ~ 3 /f bf1 + ~5 k3(v) [ - 3/f a;0 - 3/f a}1 

- 9ff b;1 - 30~a~2 - 90✓ 14; 011' a~3 - 90✓ 14: 011' b53], 

€33(0) = u313(0) = 13 lfai0 + 15 k3(v}[6/fa~0 + 12/f a½1 

+12/fb;1], 

Observe that 

for the case of Laplace equation. This should be expected, since tr e: is a 
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harmonie function. 

€12(0) = ½(u112(0) + u211(0)) = ~ 3 ~(b;1 + a~1) 

+ ~5 k3(v)[ - 3{fa;1 -{fb½1 + l5&b~2 

- 9o{J;;; a;3 + 90✓ 14; 01r b½3], 

and similarly for €13(0), €23(0) In order to test these formulas, they were 

applied to one of the fundamental solutions of the elasticity system. Let 

p = (2, 2, 2f, r = lx - pl; then the displacement corresponding to the unit 

concentrated force in the direction x1 has the form 

Hence for R = l and v = 0.25 we have cu(0) = 1/12-/3 = 0.04811252245. 

The value obtained from the above expression, after numerical integration 

for computing a~m• b~m (Mapie), was cu(0) = 0.04811252241. 

Again, as in the case of Laplace equation in the last section, one can 

construct the bilinear form representing the energy density at O. In 2D case 

[2] it was necessary to compute to this goal 8 integrals over circle using 1-st 

(x 1 , x2 ) and 3-rd order (xf, x~) polynomials. Here we must compute 24 such 

integrals over sphere, and polynomials, even if more complicated, are stili 

explicitly given. The computational effort grows only slightly more as in the 

case of Laplace equation 
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5 Appendix 

The Laplace spherical polynomials have the following explicit form. 

For n= 1: 

and for n= 3: 

.( 3 32 32 A x) = x3 - 2x 2x3 - 2x1x3, 

• 1,c ) _ 2 3 3 3 2 P3 (x - 6x1x3 - 2x1 - 2x1x2 , 

·1. 2 3 3 3 2 P3 ' (x) = 6x2x3 - 2x2 - 2x 1x2, 
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The Hessian matrices of d3 , et s; are 

-3x3 ' 
o ' 

-3x1 

1 ff H(d3) = - -R4 41r o ' 
-3X3 ' 

-3x2 

-3X1 ' 
-3x2 ' 

6X3 

-9x1 
' 

-3x2 ' 
12x3 

1) 1 a H(c3 = R4 241r -3x2 ' 
-3x1 ' 

o 

12X3 ' 
o ' 

12x1 

-3x2 ' 
-3x1 ' 

o 

H(s~) = 14 /;f -3x1 ' 
-9x2 ' 

12x3 

o 
' 

12X3 ' 
12x2 

o 

0 , -30X3 , -30X2 

O , 15x3 , 15x2 
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H(~) ~ ;_ ✓ 14;0. [ ~::~, : ~::: : : I 
H(,~) ~ ;_ ✓1~. [ ~:: : ~:~, : : I 
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