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Abstract 

In the paper we consider a new variant of the genet ie algori thm for 

finding the location and size of small holes in the domain, in which the 

coupled linear and non-linear boundary value problems are defined. 

The linear and non-linear parts are connected by the transmission 

condition on on the common boundary. The expansion of the shape 

functional for non-linear part and the expansion of Steklov-Poincare 

operator for linear part are provided in order to determine the form of 

topological derivative for the coupled model. The value of topological 

derivative is then used for computing the probability density applied 

later in generating location of holes by the genetic algorithm. 
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1 Introduction 

In the paper we investigate the design problems for a coupled model, where 

one part is a structure modelled by a linear equation or system of equa­

tions, and the remaining part is a structure which is modelled by non-linear 

equations e.g. of the Navier-Stokes type. As an example we can consider 

a fluid-structure or a gas-structure interaction, another example constitutes 

the identification of inclusions in coupled models. It means that the com­

putational domain is divided into two or more parts with some interface 

conditions (interaction conditions) on the common boundaries. The problem 

under investigations is the optima! design of the elastic or linear part. We 

employ the domain decomposition technique in order to split the coupled 

model into separate parts. The interaction of these parts in both domains is 

modelled by the appropriate Steklov-Poincare non-loca! boundary operator, 

which can be defined for the linear part and includes the information about 

the design in its interior. It means that we can apply the asymptotic analy­

sis for decoupled elliptic boundary value problems and determine topological 

derivatives for shape functionals of interest. 

The Steklov-Poincare operators appear in boundary conditions of the fluid 

or gas (non-linear) models in the second sub-domain. This transmission of 

3 



the behavior of the linear part to the non-linear part allows us to apply the 

tools of shape and topology design to the coupled models. For example, if 

the non- linear part represents the compressible Navier-Stokes equation, we 

may use recent results concerning its shape optimization, see [25]. 

We start with a simple scalar model, for which the topological derivative 

is determined and numerically tested. The test consists in using the values 

of these derivative in order to accelerate the convergence of the genetic algo­

rithm, which is used for finding the location of one or two holes inside the part 

of the domain described by the linear model , but on the basis of measure­

ments conducted in the surrounding non-linear medium. Such combination 

of genetic algorithm and topological derivative seems to be new. 

2 Problem formulation 

Let D and w be two bounded domains in IR2 with the smooth boundaries 8w 

and r = 8D. We suppose that D = nu w has a geometry presented in Fig.l, 

where n = D \ w, such that an = r u 8w. In the domain D we consider the 
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following non-linear boundary value problem for a fixed function cp: 

-6.U(x) = F(x, U(x)), x E D, 

U(x) = o, XE r, 

U(x) = cp(x), OnU(x) = Oncp(x), x E 8w. 

The function F(x, U(x)) is defined as follows 

{
-U3(x) + f(x), 

F(x, U(x)) = 
O, 

XE !1, 

XE w, 

(1) 

(2) 

where f is a constant or linear function. The boundary condition on the 

common boundary ow constitutes the so-called transmission condition. 

n 
C) 

r 

Figure 1: Domain !1 U w. 

Next we introduce a small perturbation in the domain w by creating a 

small hole Be at the point O, chosen, without loss of generality, at the origin, 
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see Fig.2. 

We denote 

n 
r 

n 

Figure 2: Domain l1 and w,= w\ Ii,. 

w, 

aw, 

w\Ii, 

awUaB, 

(3) 

( 4) 

The problem (1) can then be defined in the perturbed domain as follows: 

-6.U,(x) = F(x, U,(x)), x E D \ B,, 

U,(x)=0, xEI', 

U,(x) = cp(x), OnU,(x) = Oncp(x), XE aw, 

OnU,(x) = o, x E 8B, 
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where <pis a fixed function, F(x, U,(x)) is defined by: 

{
-U;(x) + J(x), 

F(x, U,(x)) = 
o, 

and f is the same as in (6). 

XE !1, 

XE w,. 

(6) 

According to [7 , 6) we can rewrite the condition in (5) using the Steklov-

Poincare operator A, defined below in the domain w,. The operator A, 

is a mapping of H 112(8w) • H- 112(8w). It means that for each function 

cp E H 112(8w) we have 

The problem (5) can then be rewritten as fellows: 

-LW,(x) = F(x, U,(x)), x E D \ B,, 

U,(x)=0, xEf, 

onU,(x) = A,(U,(x)), x E ow, 

OnU,(x) = o, x E 8B, 

with the function F defined as in (6). 
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3 Expansion of the Steklov-Poincare opera-

tor 

In order to find the form of the topological derivative, we have to determine 

the approximation of the operator 

A,: H112(aw) • H- 1!2(aw) on aw. 

To this goal we consider both linear and non-linear problems separately. In 

the domain n we have the following non-linear problem 

-6.v,(x) + v:(x) = J(x), x En, 

v,(x) = 0, XE f, (9) 

Bnv,(x) = A,(v,(x)) , XE aw. 

The Steklov-Poincare operator is defined using the linear boundary value 

problem. If in the domain w, we have 

-6.u,(x) = O, x Ew, 

u,(x) = rp(x), XE 8w (10) 

then A,(rp) = Bnu,. 
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From (10) we may immediately compute the corresponding energy func-

tional 

O= -16.u, · u,dx = 1 f'vu,[ 2 dx- ( Bnu, · u,dx 
~ ~ ~ 

=1 f'vu,[ 2 dx- ( A,(cp)·cpdx. 
w, law 

(11) 

Thus the Steklov-Poincare operator on the common boundary 8w allows us 

to compute the energy functional in the domain w,. 

J f'vu,[ 2 dx = J A,(cp) · cpdx (12) 

w, 8w 

for each function cp E H-112(8w). Since the operator A, is symmetric, we 

can also write the energy as: 

(13) 
w, 

The topological asymptotic expansion for the energy functional can be writ­

ten in the following way [8, 26]: 

J f'vu,[ 2 dx = J f'vu[ 2 dx - 27rt:2 ['vu(O)f 2 + o(c:2) (14) 

where u is the solution to the linear problem (10) for c: = O defined in the 

unperturbed domain w. Thus, according to [7, 3] we have the following 

expansion of the Steklov-Poincare operator: 

(15) 
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in the operator norm .C(H112(8w); H- 112(8w)), and, by the symmetry of the 

operator this expansion can also be written in the following way: 

(A(cp), ą,) = (A(cp), ą,) + c:2 (B(cp), <t,) + o(c:2) . (16) 

As a result, the first term in the asymptotic expansion of the energy func­

tional has the form 

(B(cp),ą,) = -21rv'u(O) · 'vu(O) 

in the domain w. 

4 Topological Derivative 

Let us consider the following shape functional 

J(v,) = ~ j (v, - zd)2dx, 

!1 

(17) 

(18) 

with v, the solution to the semi-linear problem (9) and Zd a fixed target 

function defined in the domain n. Let us introduce also the adjoint state, 

which is used usually in order to simplify the form of topological derivative: 

-f:::.p + 3v2p = (v - Zd), in n, 

-f:::.p = O, in w (19) 

p = o, on r, 
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where v is solution to (9) for c: = O. 

Theorem 4.1 The topological derivative of the functional J has the follow­

ing form: 

Tn(O) = -(B(v),p) = 21r'vv(O) · Vp(O). (20) 

Proof. Let us assume that the solution to the nonlinear problem (9) has the 

following expansion 

v,(x) = v(x) + c: 2w(x) + ii,(x) • o(c:2). (21) 

Then from (9) we get 

- L'.(v + c: 2w) + (v + c: 2w) 3 = J, in n, 

V+ c:2w = 0, on f, (22) 

Ćln(v + c:2w) = A(v + c:2w) + c:2B(v + c: 2w) + ... , on 8w 

Since 

(23) 

we get two non-linear boundary value problems. The first one comes from 

(22) taking into account the terms without c:: 

-L'.v + v3 = J, in n, 

V= 0, on f, (24) 

On V= A(v), on 8w. 
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where v is solution to (9) for c = O. The second one corresponds to the terms 

-Ll.w + 3v2w = o, in n, 

w= o, on r, (25) 

Bnw = A(w) + B(v), on Bw. 

As a result the shape functional depending on the solu tion v. can be written 

in the following way: 

( 1 r 2 1 r 2 )2 Jv.)=75.Jn(v.-zd) dx= 2Jn(v+cw-zd dx 
(26) 

=l(v)+c2 fn w(v-zd)dx+. 
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Next we apply the adjoint state to replace the last integral and obtain: 

In w(v - zd) dx = 1 w(-6p + 3v2p) dx 

= 1p(-6w+3v2w)dx+ fr(anw·p-Bnp·wdx 

- law (Bnw · p - BnP · w) dx 

= ( (BnP · w - Bnw · p) dx 
law 

=16p-wdx+1'vw·'vpdx- ( Bnw·pdx 
w w law 

= 1 'vw · 'vp dx - ( (A(w) + B(v))pdx 
w law 

=1'vw·'vpdx - ( A(w)pdx- ( B(v)pdx 
w law Jaw 

= -(B(v),p) = 21r'vv(O) · 'vp(O). 

5 Numerical Approach 

(27) 

The shape optimization problem considered in this section consists in finding 

locations and size of finite number of ball-shaped !10les in the domain which 

minimize a certain integral functional. The standard approach would use the 

values of topological derivative for initial location of these holes, and then 

shape derivative would be applied for fine tuning their sizes and positions. 

Such a method is fast, but there is a danger of landing in a !ocal optimum. 

The nrnin idea of the approach proposed in this paper is to combine the 
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genetic algorithm (in order to avoid !ocal optima) and continuous method 

using topological derivative for speeding up computations. This is illustrated 

by the examples based on boundary value problem described in preceding 

sections and cases of: 

• one hole of fixed size; 

• two holes of fixed sizes; 

The topological derivative is used here for constructing the probability den­

sity defined on the domain in which the holes are allowed to appear. Then 

this density is used in the random selection of Iocations for the initial popula­

tion of single holes or their pairs. The same probability is used to supplement 

the population in consecutive generations. 

The approach exploiting the information supplied by topological deriva­

tive is compared to the method using exactly the same genetic algorithm, but 

with uniform distribution of holes Iocations. The performance is measured 

in both cases statistically over several runs. 
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5.1 Algorithm 

5.1.1 Definition of the domain. 

We define the domain D as a square (-1, 1) x (-1, 1) in lR2 • In D we define a 

sub-domain w as a circle of the center at the point O = (O, O) and the radius 

r = 0.5. Thus D consists of two open sub-domains w and n = D \ w, see 

Fig.3, with the boundaries r = 8D and 8w. 

1---------~ 

r 

o~-------~1 

Figure 3: Domain D = n u w. 

In the interior domain we define a linear elliptic boundary value problem 

as follows: 

-6u(x) = O, x Ew 

u(x) = v(x), x E 8w 
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Outside the circle w, in the domain n, we define the following semi-linear 

boundary value problem with the Dirichlet condition on the exterior bound­

ary r of the square and the transmission condition on the common boundary 

fJw of the circle: 

-b.v(x) + v3(x) = J(x), x En, 

v(x) = 0, XE f, 

8nv(x) = A(v(x)), x E 8w. 

(29) 

The operator A is the Steklov-Poincare operator and the function J(x) are 

given. 

5.1.2 Solution to the non-linear and linear problems. 

In order to solve numerically the coupled problem described in (28) and (29), 

we introduce a characteristic function x defined as follows: 

{ 
1 XE fl, 

x(n) = 
0 XE W. 

(30) 

Thus, the coupled problem under consideration can be rewritten in the fol-

lowing way: 

-b.w(x) + x(rl)w3(x) = x(rl)J(x), x E D, 

w(x) = 0, XE f. 
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Let V(D) = {v E HJ(D) : v = O on r}. Multiplying (31) by a function 

<p E V and integrating by parts we get the following weak formulation: 

j v'w(x)v'<p(x)dx - j 0;~;) <p(x)dS + j v'w(x)v'<p(x)dx 
!1 8w 

- j 0;~:) <p(x)dS + j w3(x)<p(x)dx = j f(x)<p(x)dx, \/<p E V(D). 
8w !1 !1 

(32) 

Here we denote by n 1 the outward norma! vector to w, and by n 2 the outward 

norma! vector to f!. If we suppose that win = v, wlw = u, then we get the 

following variational formulations of the nonlinear problem in the domain f!: 

{ 
Find v(x) such, that 

j v'v(x)v'<p(x)dx + j v3(x)<p(x)dx = j f(x)<p(x)dx \/<p E V(D) , 
!1 !1 !1 

(33) 

with the transmission condition on the common boundary ensured by: 

j 0;~~) <p(x)dS + j 0;~:) <p(x)dS = o. (34) 

8w 8w 

Similarly, for u = v on ćlw we obtain the variational formulation in the 

domain w: 

{ 
Find u(x) such, that u= v on ćlw and 

j v'u(x)v'<p(x)dx = O, \/<p E V(D). 
w 
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5.1.3 Minimization of the shape functional. 

For numerical experiments we use the tracking type shape functional with a 

known element zd, so an optima! value is O. 

In the first case we consider the instance of the single hole. Let us set 

We= w\Be(x0 ), where B,(x0 ) is a small hole created in the interior circular 

domain w at certain point x0 and of fixed radius c:. Thus, D, = DU w, and 

in such domain we define a target function Zd as a solution to the following 

boundary value problem : 

-t.zd(x) + x(D)zJ(x) = x(D)J(x) , x E D,, 

Zd(x) = 0, X Ef, (36) 

0Zd =0 "'B an , XE u e• 

The cost functional that we want to minimize is of the tracking type, as 

mentioned above, and depends on the location xo of the hole: 

J(v,) = ~ j(v,(x)- zd(x)) 2dx , (37) 
n 

where Ve is the solution to the semi-linear problem in perturbed domain 

-t.v,(x) + v:(x) = J(x), x En, 

ve(x) = 0, XE f, 

Onv,(x) = A,(ve(x)), XE 8w. 
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In order to minimize this shape functional we are looking for the optima! 

perforation of the domain w. To this end, we apply the genetic algorithm, 

which uses the values of topological derivative as the probability density to 

determine the best location of an optima! hole. For this shape functional, 

due to the theorem 4.1, the topological derivative is given by the following 

formula: 

Tn(O) = 21rv'v(O) · v'p(O) . (39) 

where p is the so-called adjoint state being a solution to the following linear 

boundary value problem: 

-f>p(x) + 3v2p(x) = (v(x) - zd(x)), x E D., 

-f>p(x) = 0, x Ew (40) 

p(x) = 0, x EI', 

All numerical computations were performed using Matlab and its PDE tool-

box. In particular, the triangulation of intact and perforated domains was 

clone using the built-in procedures. The domain is divided into M triangles 

represented by the matrix T = [t;1], i = 1, . . . , M, j = l, 2, 3, where t;. de­

note labels of points constituting vertices of the i-th triangle. The number 

of vertices is denoted by N. The boundary value problems were solved using 

linear finite elements. If we suppose that T;. is the value of the topological 
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derivative at the node n, n= l, ... , N, and Vn, Pn are the values of solutions 

to the boundary value problems (38), (39) respectively, then formula (39) 

can be rewritten in the discrete domain as follows 

(41) 

The probability density function associated with the topological deriva­

tive T,.. is defined in the discrete domain in the following way. Let Imax = 

max T,.. and !et Kn = Tmax - T,.., for n= 1, .. . , N. Then the value Pn 
n=l, ... ,N 

of the probability density function at the node n is given by the following 

formula 

(42) 

5.1.4 Application of genetic algorithm. 

Initial population. The initial population consists of circular holes rep­

resented by the coordinates of their cen tres ( the radius of the hole is fixed 

and is the same for each hole). Thus, each element of population represents 

a point in a space for which the dimension is determined by the number 

of coordinates of the holes centers. In case of one hole, the element of the 

population constitutes a vector [x0 , y0] of two coordinates of the center of 
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the circular hole. In ca.se of two holes, the individual is given by a vector 

of four coordinates defining centres [x1 , y1 , x 2, y2] of two holes. The initial 

population is randomly initialized with a constant number S of individuals. 

For the initialization, the probability density function defined in ( 42) is used. 

Since the values of this function are defined only in the nodes of the dis-

cretized domain, we need the following procedure to draw a random point, 

not necessarily the node, in the domain. 

Let t,, = [tiJl, i = 1, ... , M be a i-th triangle with vertices [t,1, t,2, t,3]. 

The values Pt;;, i= 1 ... N, j = 1 ... 3 are the probabilities connected with 

these vertices. The probability P(t,,) of the i-th triangle t,, is calculated 

through the formula 

3 

I;Pt;; 
j=l 

P(t,,) = M 3 

I; I; Pt;; 
i=l j=l 

i= l, ... ,M (43) 

For each triangle t,, we define the vector .X,= [.X,j], j = 1, 2, 3, such that 

.X,i = Pt;; · ri, i= 1, ... , M, j = 1, 2, 3, (44) 

Here ri are three independent random numbers generated using uniform 

distribution on [O, l] interval. The point p E t,, is selected using these A,j 
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and in dependence of probability density in the corners 

(45) 

This procedure may be summarized as follows: 

• first we select the triangle according to its average probability; 

• next we select the point inside this triangle taking into account the 

values of probability density in the corners. 

In case of two holes, selection of the initial population consists in drawing 

the pairs of holes. A pair of holes is retained only if the distance between 

their centers is greater that the fixed value 2c:, where € is the radius of the 

hole. If the condition is not verified, the pair is eliminated and the drawing 

continues until the required number or elements is reached. 

Evaluation. The fitness value of every individual is evaluated using the 

cost functional .7 such that the minimization of .7 is equivalent to the max-

irnization of the fitness value. Since the population is considered as a vector 

of individuals sorted according to their fitness values, the !ower value of the 

cost functional means the higher position in the population vector. 
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Crossover. Once the initialization and evaluation are complete, the crossover 

operations perform genetic code exchange between pairs of individuals. These 

pairs are chosen in following way. First we define, as a parameter, a number 

of dominating elements which are always at the beginning of the population 

vector. Then every dominating element undergoes crossover with every sub­

ordinate element. Let a be a random number with uniform distribution on 

[O, l], different in every formula. In case of one hole, the crossover of two 

[ z1 ] = °' [ X1 ] + (l _ a) [ Yi ] · 

z2 x2 Y2 

(46) 

gives two individuals z = [z1, z2, z3, z4]T and z' = [z;, z;, zi, z~]T according to 

formulae 

Z) X1 Y1 

Zz Xz Y2 
= °' + (1- n) (47) 

Z3 X3 Y3 

Z4 X4 Y4 
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and 

z' I X3 Y1 

z' X4 Y2 2 
=a + (1 - a) (48) 

z' 3 X1 YJ 

z' 4 X1 Y4 

The elements obtained in this way are added to the initial population in-

creasing its size. 

Mutation. Mutation is a mechanism for extending the search on the new 

areas of the design space and increasing the variability of the population. 

Each element produced during the crossover is perturbed with a given prob­

ability (in our case 0.2) within the fixed range 6 (in our case 6 = €) according 

to the formula 

z• = z+ [ 1 - 2a1 l · ó, 

1- 2a2 

(49) 

in case of single hole, and for pair of holes 

1 - 2a1 

z•= z+ · ó. (50) 

where a, are random numbers from the interval [O, l]. 
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New generation. In the next step the population consisting of old indi­

viduals and those produced in the crossover stage is pruned by removing the 

elements violating the constraints ( distance between centres greater then 2c 

in case of two holes) and sorted according to fitness value. 

The next generation contains iS of the best elements. In order to prevent 

locking in loca! optima, ½S individuals are again drawn randomly using ap­

propriate probabilities, i.e. the one based on topological derivative or uniform 

on w. 

5.2 Numerical results 

In the first example we consider a case with one hole. As a target domain 

we take a square with one hole inside the interior circular sub-domain. The 

center of this hole is at point (-0.2; 0.2) and the radius is 0.08. The goal 

functional is computed using Zd corresponding to the function f(x) = x1 • 

The size of the initial population for GA is 21 genes, with 3 dominants, and 

the number of generations is 10. The optimization process is repeated 20 

times which gives the average results presented in Fig.4. As we see, the 

algorithm using topological derivative gives on average faster convergence. 

For comparison, we give in Fig. 5 the history of true distances of the best 
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•10·1 .. ,-~-~--~~--~---
1.6 \ 

\ 
\ 

u \ 

Figure 4: Value of shape functional due to the topological derivative density 

(solid line) and the uniform distribution density (dashed line) in case of one 

hole. 

individuals to the reference hole; however, this value was not subject to 

optimization. The value of density probability is shown in Fig. 6. 

In the second example the reference shape contained two holes with radius 

0.05 located at (-0.1, 0.2,) and (0.2, -0.1). The goal functional consisted of 

the sum of two parts with different reference functions zd1, zd2 corresponding 

to right-hand sides fi = x1 +x2 and h = x1 -x2 . As a result, the topological 

derivative was also computed twice, and the value of the finał T was the sum 

of these two parts. It is shown in Fig. 7 while the Fig. 8 presents the average 

26 
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0.1' \\, 

0.12 
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0.1 \ . ......... ... 

'"' 
O.CE 

0.04 
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Figure 5: History of true distances of the best individuals to the reference 

hole. 

performance of both types of genetic algorithms. 

In Fig. 9 we see again the average true distances of the best individual 

to the reference pair, and Fig. 10 shows the typical last population of the 

genetic algoritlur;i using topological derivative. Nearly all members of this 

population overlap. 
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0.04 

0.02 

., 
-0.5 

Density or probabili1y 
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-0.5 

0.5 

Figure 6: Value of probability density for one hole. 

6 Conclusions 

The problem studied in this paper belongs to a class of domain optimization 

problems which may be characterized by the following goal: find location 

of a fixed number of holes, with possibly variable sizes, in the definition 

area of the system of PDE's. These locations and sizes should minimize 

certain functionals and/or satisfy same constraints. Such problems are quite 

common in structural design. Because they can have many !ocal optima, 

genetic algorithms are often suggested as suitable tools. at least in the initial 

stage of the design. Such algorithms are computationally costly, therefore 
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speeding them up may be worthwhile. 

The topological derivative is an ideał tool to this purpose. The cost of 

its computing is negligible in comparison to genetic calculations and it can 

be easily transformed into probability density for drawing elements from 

populations of all possible designs. As we see from examples, the effect is 

quite meaningful and justifies such usage. The approach proposed here is, to 

the knowledge of the authors, new. 
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Figure 7: Value of probability density for two holes. 

Figure 8: Value of shape functional due to the topological derivative density 

(solid line) and the uniform distribution density (dashed line) in case of two 

holes. 
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Figure 9: History of average true distances of the best individuals to the 

reference pair of holes . 

Figure 10: The best individuals given by the topological derivative. 
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