





‘Compliance for uncertain inventories: Yet another look?

Olgierd Hryniewicz', Zbigniew Nahorski’, Jzﬁrg Verstraete', Joanna Horabik',
Matthias Jonas

! Systems Research Institute, Polish Academy of Sciences,
Newelska 6, 01-447 Warsaw, Poland

2 International Institute for Applied Systems Analysis,
Schlossplatz 1, A-2361 Laxenburg, Austria

(Corresponding author — Zbigniew Nahorski, email: Zbigniew Nahorski@ibspan.waw.pl)

Abstract

Direct comparison of pollutant emission inventories, when they are subject to high
uncertainty, like that of greenhouse gases, is inadequate and leads to paradoxes. In the paper
the methods of comparing uncertain inventories are discussed in the context of checking
compliance. This problem is treated from the view of comparison of uncertain alternatives. It
provides categorization and ranking of inventories. The ranking induces compliance checking
conditions.

There exist a number of techniques to rank uncertain estimates. Only these which can be
used to elaborate conditions for checking fulfilment of obligations on the basis of knowledge
of uncertain emission estimate characteristics are considered. Probabilistic and fuzzy
approaches are discussed and compared.
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1. Introduction

A handful of solutions have been proposed to cope with the problem of commitment
verification for emission obligations in case of uncertain inventories, see Jonas et al. (2007).
Many of them pointed to methodological incompetence in using reported (crisp) values in
clearing pollutant emission targets. For many environmental problems, only highly inexact
knowledge on emission values is available, as is the case of greenhouse gases, see e.g. Jonas
and Nilsson (2007); Jonas et al. (2010a); Lieberman et al. (2007); White et al. (2011), where
also paradoxes in using reported values for checking fulfilment of the commitments are
shown.

According to IPCC Good Practice Guidelines (IPCC 1996), the reports should be
"consistent, comparable and transparent”. It is, thus, reasonable to require that decision on
fulfilment of obligations should be fair among parties, in the way, that ordering of inventories
should make it possible to decide which inventory outperforms others. When dealing with
uncertain values with different range of uncertainty and possibly asymmetric distributions,
taking decisions on fulfilment of obligations or comparison of inventories only on the basis of
reported values may contradict simple conclusions inferred from the uncertainty distributions
interpreted either as a probability distribution or as a fuzzy variable. The reason is that our
knowledge of emission is actually characterized not only by its estimated size (reported
inventory) but also its quality, like uncertainty range (as given e.g. by its standard deviation)
and the shape of the uncertainty distribution (like e.g. skewness). This knowledge should be
possibly fully utilized to infer ranking of emissions, as well as deciding on compliance or
noncompliance.




In the sequel two uncertain inventories, A and B of Figure 1, will help us to illustrate
the discussed techniques. The reported inventories of both parties, i.e. the dominant values of
the uncertainty distribution densities u(x), are very close to each other. Ignoring uncertainty,
the party A will be considered compliant (fulfilling the commitment), while the party B will
be considered noncompliant. However, confidence in the inventory value of the party B is
high, while the confidence in the inventory value of the party A is much lower. Therefore,
which party is more credible? Should the party A be considered compliant, while the party B
should not?

A basic question addressed in the paper is to rank inventories, that is, to infer which of
them better meets our idea of fulfilling a given limit. For convenience in further addressing of
this problem we say that a higher ranked inventory is better with respect to (w.r.t.) the target.

In the case of greenhouse gases, reduction of inventory is often defined as a rate, i.e. a
condition 1, < puy, should be satisfied, where 2 is an emission inventory in the compliance
period, 2 is an emission inventory in the basic year (at the beginning of the reduction period),
and p is a required fraction of emission reduction. Here, the task is to compare uncertain
inventories in the compliance year, x., with inventories reduced from the basic year, px;, and
to decide whether the former is lower than the latter. Another saying, ranking of the
inventories is looked for. The method presented here can be also useful for making decisions
in his case.

In general, however, ranking is supplementary to an adopted compliance checking rule,
to justify why some inventories are considered compliant and other not, and to avoid paradox
situations, where the decision on compliance or noncompliance disagree with common sense.

In the paper it is assumed that the distribution of uncertainty of an inventory is given.
This is an ideal case. Unfortunately, it is not always true. Some countries undergo an effort of
carrying out Monte Carlo calculations from which one can get good insight of how the
country's uncertainty distribution looks like. Some other countries report only either
uncertainty interval or even standard deviation. The probability-rooted methods presented in
Section 2 include these which work even when only standard deviation is known; other can
work with the interval information, possibly interpreted as a uniform distribution of
uncertainty. In the fuzzy-set-rooted methods, which are discussed in Section 3, the
distribution of uncertainty may be shaped more flexibly, including the interval information or
e.g. using some expert knowledge.

2. Probabilistic approaches

2.1 Introductory remarks

Treating an inventory as a random value with probabilistic distribution seems to be self-
imposing, although inventories perhaps do not completely comply with the randomness
assumptions.

Comparison of uncertain random values has been already considered in various fields.
The problem of selection from risky projects has a long history in such areas as finance, R&D
projects, IT projects, (Graves et al., 2009). Several methods have been proposed there to
compare such projects. The methods can be divided into groups. All the methods presented
below are adapted to the problem of emission inventories.

2.2 Statistical moments

Mean value and variance. The most elementary technique is based on the mean value and
the variance (MV). The smaller is the mean value and the variance, the better the inventory is.
This method is explained on the case presented in Figure 1. Although the reported value of the




inventory A is smaller than that of B, the mean value of A is greater than the mean value of B.
The same is true for the standard deviations. Even this simple criterion shows that an
inventory of the party B should be considered better w.r.t. the target than that of the party A.
This is contrary to the result for reported values, which ignores uncertainty. Let us mention
that in this approach fulfilling the target would be related to comparison of the mean value
rather and not the reported value. However, this single value is not enough for ranking.
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Figure 1. Comparison of means and variances.

Semivariance. Many inventories would be not possible to compare in pairs, as using two
indices, mean value and standard deviations, may lead to contradictory results. Taking this
into account, a notion of the semivariance can be applied (MSV), which is defined as

5% =/ (z — K)?u(v)de
x

where I{ is a chosen value and p(x) is the distribution density function of an inventory. The
smaller the value of s is, the higher ranked is the inventory. In our case I{ can be
conveniently chosen as a given target, and this value is used in the example of Figure 1, and
also in the survey of results in Table 1. In the example considered 3, > s%5 holds. Thus,
according to this criterion, the inventory B is better w.r.t. the target than A. Using this
criterion, an inventory satisfies the target, if the semivariance is smaller than a preselected

value,

2.3 Critical values

Critical probability. A large group of techniques uses the notion of critical probability (CP),
the notion introduced already in 1952 (Roy, 1952). Most of the methods in this group require
knowledge of the related probability distributions. The measure used to compare inventories

is the probability of surpassing the target /{

crpz/ w(z)d
K

A smaller value of ¢p indicates the inventory, which is better w.r.t. the target. As seen in
Figure 2, again, an inventory of the party B is evaluated as the better one. Satisfaction of a
given limit is connected with specifying the critical probability, which should be not greater
than a prescribed value.
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Figure 2. Calculation of critical values.

Risk. In other related methods, as the Baumol's risk measure and the value at risk
(VaR), the probability « of inventory x to be above a critical value z..; is fixed, and then the
value x4 is calculated. Without going into details, an inventory is better w.r.t. the target
when 2.4 is smaller. In our example, presented in Figure 2, fixing probability to 0.1, the
inventory B is chosen as the better one.

A technique similar in spirit has been proposed to ensure a reliable compliance. It is
called undershooting, (Gillenwater et al., 2007; Godal et al., 2003; Nahorski and Horabik,
2010; Nahorski et al. 2003), and is illustrated in Figure 3. In this approach, it is required that
only a small enough a-th part of an inventory distribution may lie above a target. This idea,
when used to order inventories, becomes equivalent to the CP technique.

In these techniques, satisfaction of a limit is connected with requiring that the related

value .4 is not greater than the limit.
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Figure 3. Illustration of compliance in the undershooting approach.

2.4 Stochastic dominance

Stochastic dominance. In the stochastic dominance technique an inventory B is better w.r.t.
the target than A, if their cumulative probability functions (cpfs) satisfy Fa(z) < Fi(z) for
all 2, and the condition is strict for at least one 2. It is obvious that not all inventories can be
decisively compared this way, see cpfs of our exemplary inventories A and B depicted in
Figure 4. Although cpf of the party B is greater for most values of z, it is lower than cpf of the
party A for a small range of [ow value arguments. This possible lack of an answer yes or nor
is not convenient for comparison of inventories. However, some modifications have been
proposed to extend the set of inventories which can be compared.
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Figure 4. Stochastic dominance criterion for comparison of inventories A and B.

Almost stochastic dominance. In the almost stochastic dominance (ASD)' the inventory B is
better w.r.t. the target than A, if the area between both cpfs for Fp(x) < Fa(z) is small
enough (g times smaller, usually with 0 < ¢ < 0.5) part of the whole area between pdfs,
J.\Fs(z) — Fa(x)|da. It can be seen by inspection in Figure 4 that this condition is satisfied
in our example of Figure 1. Thus, also this technique indicates the inventory B as the better
one w.r.t. the target in this case.

A simplified comparison of inventories could confine to checking the values of cpfs at
z = K. This would be equivalent to a variant of critical probability approach. Thus, the
analysis of fulfilment of the limit in the stochastic dominance techniques could be reduced to
checking if the value of the inventory cpf at the limit is big enough.

2.5. Discussion of probabilistic approaches

The results obtained so far for the inventories from Figure 1 are summarized in Table 1.
As can be seen there, all methods point to the inventory B as the better one w.r.t. the target
that is contrary to the conclusion taken when only the reported values are considered.

Table 1. Criteria values for comparison of inventories A and B for the inventories from Bigd! Nie mozna
odnaleZ¢ Zrodta odwolania..

Method |  Criterion Criterion | Inventory
value for A | value for 8| chosen
MV my =4 mg = B
Ta = 16% Ty = %
MSV | 854 =13.45 3:25“3 = 0.35 B
CP Crpa = % carpg = é B
risk —‘ CeritA = 10.6 | coritp = 2.1 B

These methods guarantee proper ordering of inventories when the reported value is
smaller or at most equal to the limit. In the other case, the ordering may be opposite to the
expected. To see it, let us consider an example presented in Figure 5. The distributions are
shifted to the origin, so 0 in the figure corresponds to the value 2. Intuitively, B would be
considered better w.r.t. the limit, as this inventory is more credible. Using the reported
inventories only, they are considered equivalent.

" This is the first order ASD. For the second order ASD see Graves and Rinquest (2009).




Figure 5. Exemplary distributions of inventories A and B.

The mean of both distributions is 0 and the variance is ¢° = a*/6, where [—a, a] is the
interval, on which the distributions are nonzero: in the figure a equals 2 for the inventory A
and 1 for the inventory B. Thus, the mean and variance method obviously prefers B. Denoting
t = I{/a, the dependence of cpr on k is depicted on Figure 6. According to the critical
probability index, for X > &, i.e. k> 0, B is better w.r.t. K than A, but for £ <0 it is opposite.
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Figure 6. Dependence of critical probability cpr in function of k for inventories A and B from Figure 5.

To order properly the inventories for X < &, it would be useful to consider the probability

B= f_’;u(x)dx

The higher is f, the closer is the inventory to be considered compliant. And in reverse, the
smaller is 8, the more convinced we are to consider the inventory as noncompliant. To make
significant decisions, we would like to have a small value of « for deciding that the inventory
is compliant, and a small value of # for deciding it is noncompliant. Thus, there will be an
indecision interval in the inventory, see Figure 7. WhenKk € (2}, 7% ), then we are not
convinced enough if the inventory fulfils the limit or not. This can be also considered as a

generalization of the undershooting method.
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Figure 7. Illustration of compliance, noncompliance and the indecision interval.

The question arises what can be done when the limit falls in the indecision interval of an
inventory. It is actually quite fair to say that for these inventories no decision can be taken
with high enough confidence. One of the answers proposed for such cases in Jonas et al.
(1999) and Gusti and Jeda, (2002) was to wait until one or another exceedance occurs in the
inventories assessed in the consequent years. A rough method to estimate when this may take
place was also designed, called rhe verification time. It is based on a linear or quadratic
prognosis of future emission trajectory. This approach requires for compliance an additional
obligatory undershooting so that the countries emission reductions and limitations become
detectable.

3. Fuzzy set approaches

3.1 Conceptual difference
A fuzzy set is a generalization of a common, crisp set. A crisp set can be defined by its
characteristic function y 4, taking either value 0 or 1, see Figure 8. A fuzzy set is characterized
by a similar membership function ua, which takes values from the interval [0, 1} The fuzzy
sets, whose membership functions have values equal to 1, are called normalized. We consider
here only normalized fuzzy sets.
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Figure 8. The characteristic function x.4 and a membership functions f14 of a set A.

The membership function value, called in the sequel the membership grade, can have
one of three interpretations (Dubois and Prade, 1997): veristic, possibilistic and as
truthvalues. The veristic interpretation means, that an element fully belongs to the set, if it has
a membership grade equal to 1, it does not belong for the value equal to 0, and only "partly




belongs" for the intermediate values. In a possibilistic interpretation, the fuzzy set represents a
number of possible elements, the membership grades of each element indicates how possible
this event is: ranging from a value of 0 if it is impossible, over values between 0 and 1 if it is
somewhat possible, to a value of 1 if it is perfectly possible. As such, the fuzzy set describes
imprecision and can be compared to the probability density function. However, its
normalization condition is less strict that in probability theory: the constraint now is that the
highest value must be 1 (this implies that there must be at least one element that is perfectly
possible). The difference in normalization also implies different algebra rules. The use of
membership grades as fruthvalues is an extension of boolean logic: 1 is considered to
represent true, 0 represents false and intermediate values express a partial truth. This can be
used when evaluating statements: saying that 90 is a big number can be considered only partly
true.

A fuzzy number is a fuzzy set in the numerical domain R that satisfies a number of
criteria (there is some discussion as to which criteria are absolutely necessary), for more
details we refer to Klir (1995) or Zimmerman (1999).

A fuzzy set can be fully characterized by a family of so called a-cuts denoted by A,, i.
e. points u, for which the value 1i4(u) assumes at least the value ¢, see Figure 8, where an
example of an a-cut for & = 0.5 is depicted and denoted g5 Let us notice here that now a
has another meaning than in the probabilistic part. The problem is that both the notion of v as
the probability of not fulfilling the target and the notion of a-cut in the fuzzy set research area
are commonly used. To solve this overlap, in this section of the paper we switch to using 7
(instead of &) for the measure of that part of distribution where the target is not satisfied (that
is the probability of not fulfilling the target in the probabilistic approach).

Two additional notions connected with a fuzzy set are worth to mention. One is the
support, denoted supp A4, which is the set of points u, for which the membership function is
strictly positive. The second notion is the core of the fuzzy set, called corc A, which is the set
of points, for which the membership function is equal to 1.

Fuzzy set and possibilistic models of uncertainty can be considered as a competitive
approach to the probabilistic one, described above. A few arguments can be given in favour of
this approach. There are a number of interpretations of probability theory, we will only
consider the ones related to the current context; for an overview we refer to Héjek (2010).
First, the probabilistic approach is intrinsically related to the frequency of variable appearance
(frequentist approach, (Venn, 1876)), while it is hardly possible to have frequent inventories
at the same year. The use of the probability as degree of belief has been proposed in Ramirez
(2006), but Kahneman et al. (1982) showed that many people do not adhere to the probability
calculus in this interpretation. Second, in the fuzzy set approach determination of the
distribution is much more flexible. The distributions can be freely shaped and do not need to
follow any known probabilistic distributions to be practically useful. For example, they can be
estimates given by experts. Uncertainty of emission inventories often has an expert-quantified
character, even if the Monte Carlo simulation is used to estimate its distribution. Third, the
algebra in the fuzzy set approach is simpler, in the sense that for complicated problems more
often it is possible to get a final analytic solution using the fuzzy approach than using the
probabilistic one, see e.g. Nahorski et al. (2007); Nahorski and Horabik (2010). As in the case
of inventories the data are often obtained through a mixture of statistical methods and
corrections, interpretations and estimates by experts, who express some belief and label the
data accordingly, fuzzy set theory may be well suited for the analysis of compliance.

The fuzzy sets have been used in the undershooting technique (Nahorski and Horabik,
2010) to calculate the distribution of the difference &, — px; for the uncertain inventories. But
their role was only instrumental there, as the rest of the technique was close to the idea used in
probabilistic CP technique.




In the fuzzy set theory, the ranking of fuzzy (or inaccurate) values is a problem to which
different solutions have been proposed. Ignoring conceptual differences, there are sufficient
similarities to warrant investigating how the possibilistic ranking methods hold up against the
other methods. In the following subsections, we will list four conceptually different groups of
methods that are used to rank fuzzy numbers. Some of these methods resemble those from the
probabilistic approaches, other use quite different paradigms. These methods were chosen to
illustrate that various approaches can be used to tackle the ranking problem.

3.2 On the underlying assumptions

Most of the fuzzy ranking methods have been developed for fuzzy sets over the domain
[0.1]. The main reason for this is that there are some specific advantages in developing
ranking methods (e.g. integrals over the domain cannot yield a result greater than 1). For the
application of the methods in ranking different inventories, the methods could be modified to
suit a different domain. This is possible for all the methods, but may complicate the formulas
somewhat. To keep the formulas simple and to remain true to the original definitions, it was
chosen not to do this. An alternative option would be to rescale the domain of the inventories
to the interval [0, 1] to allow for a direct application of the methods. If the supports of the
fuzzy number is finite, as we assume here, and in the original support @ € [/, 7} the new
variable, spread in [0, 0], is defined as z = (& — 1) /(r — ).

The ranking methods below put an ordering on at least two fuzzy numbers. Some
authors have chosen to rank from lowest to highest; others rank from highest to lowest. The
concept of this article is to present different methods and how difficult cases are distinguished
differently. As such, these are minor details that can easily be overcome and should not deter
from the message.

There were quite a number of different techniques proposed for ranking fuzzy sets. Not
all are mentioned below. Some of those not mentioned can be found in a review paper by
Bortolan and Degani (1985). A newer technique can be found in Tran and Duckstein (2002).

3.3 An analogue to moments

Yager F1. In Yager (1978), the author presents three different ranking methods. They are
pure ranking methods in the sense that a number is derived for every element. The number is
independent of the other elements in the set.

A weight function ¢ is introduced to add weights to the fuzzy set A. This basically
allows us to specify which values are more important, based on their possibility, Common
weight functions are either g(z) = 1 (reflecting that all possible values are equally important)
and g(z) = z (indicating that the higher the possibility of a value, the more important it is and
the more it will contribute to determine the rank).

u

Figure 9. F1 ranking function proposed by Yager.




The first ranking function is defined as foll?ws:
P = do 9Ea2)0z
Jo nalz)dz

If the weight function g(z) =z is used, then F) represents the mean value of the
membership function, called usually the center of gravity of the fuzzy set. This is illustrated in
Figure 9. Note that if the weight function ¢(z) = 1 is used; no ranking conclusions could be
drawn: F| would result in 1 for every fuzzy set.

When ¢(z) = z, this technique can be compared with the mean value technique in the
probabilistic approach. The ranking function may be defined in a more general way, and one
option could be to take g(z) = [z - Fl(A)ig(z>:1] 2, analogous to the variance. Also an
analogue of semivariance could be defined here, which shows similarity of this fuzzy
approach technique with the probabilistic one.

3.4 Analogues to critical values

Nahorski et al. A strict analogue to a critical value technique in probabilistic approach has
been proposed in Nahorski et al. (2003); Nahorski et al. (2007); Nahorski and Horabik (2010).
To get an analogue to probability, which defines the critical value, the critical area is
normalized by dividing it by the area under the membership function, as in Figure 3. This
approach assumes a rather precise knowledge of the membership function.

Adamo. On the other hand, Adamo (1980) proposed to consider points satisfying
pa(z) =a, 0 < a <1, and choose the highest value of = as a ranking criterion. In another
wording, the criterion value is the most right value of the ci-cut of the fuzzy number A. The
critical value depends now on the choice of «, but in this case it has clear fuzzy set
interpretation connected with the a-cut. This idea may be compared with the one by Nahorski
et al., where the critical area has a more probabilistic origin, while that of Adamo has a more
fuzzy set flavour, see Figure 10. For a given membership function both techniques can be
related by mathematical expressions.
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Figure 10. Determination of the critical value 2., in the Nahorski et al. (calculation
of the 7-th part of the distribution area) and Adamo (calculation of the a-cut) techniques.

These techniques can be simply used for derivation of criterions for checking fulfilment
of the limit, analogously to the ones which stem from the similar probabilistic approaches.

Yager F2. The second ranking function introduced by Yager (1978) compares the given
fuzzy set A to the linear fuzzy set B, defined by uy(2) = 2.
The second ranking function is then defined as follows:
Fy(4) = max min(z, ft4(2))




Here, S represents the support of the fuzzy set A; in our case assumed to be the interval
[0, 1}, Graphically, this yields the intersection point between the linear fuzzy set (up(z) = z)
and the given fuzzy set A. This is illustrated in Figure 11.

Figure 11. F2 ranking function proposed by Yager.

This rating function has a simple interpretation. The fuzzy set with the membership
function () = z may be interpreted as representing a variable "high". The membership
function min(z, pta(z)) represents a variable, which is a conjunction of A and B, i.e. the
points, which belong both to the variable "high” and A. In other wording, it represents
distribution of the possibility that A is "high". Its maximal point satisfies these two
requirements in the "best" way.

The membership function of the variable "high" may be shaped in a different way. Jain
(1976) proposed more general set of functions 15(2) = (2/2mez)*, k > 02 In this case the
result of comparison of fuzzy numbers may, however, strongly depend on the choice of £, and
no clear criteria exist, which value of £ should be chosen.

Apart of ranking the fuzzy numbers, the critical values could be used to check
fulfilment of obligations, analogously to the stochastic approach. The simplest would be strict
comparison of Fy with I, However, the constructions proposed here are of a rather subjective
character, difficult to interpret physically, and therefore their use may be limited.

Figure 12, F3 ranking function proposed by Yager.

Yager F3. The third ranking function defined by Yager (1978) is more complex to explain
using formulae, although it is simple to interpret geometrically. It is defined as

F5(A) =/ " m(Aq)de
0

% In this section, the assumption is that zumex = 1



with A, the a-cuts of A, tyax 1S the highest occurring possibility in the fuzzy set A3 andm is
the middle point of the a-cut.

The formula is relatively easy to grasp graphically: the index is the surface area to the
left of the line that runs exactly along the middle of the fuzzy number. For triangular fuzzy
numbers, this connects the top of the fuzzy number (i.e. where the possibility is one) with the
middle of the support. This is represented by the shaded area in Figure 12.

This ranking index can be directly used to checking satisfaction of the limit. For this let
us notice that F3(A) is the mean value of the function m(A,),, in which o is the argument.
This is because 0<a <1 so for the triangular membership functions
Fy(A) = fol m(Ay)da = m(Ags). Thus, in this case F3(A) is equal to the middle value of the
0.5-cut of the fuzzy number A. For other membership functions the integral will be equal to
the middle value of some a-cut, perhaps different from 0.5. Anyway, this index is closely
related with an a-cut, where the appropriate o is determined by the shape of the membership
function. This makes this approach a little similar to the Adamo method, with critical value
determined at the middle of the a-cut instead at the right end. This interpretation encouraged
us to classify this technique within the critical values group.

3.5 Examples

In this section, the Yager ranking methods will be compared to verify how the ranking
of different special cases differ.

Same support, different core. First, we consider two fuzzy numbers that have the same
support, but a different core as shown in Figure 13. Intuitively, people would state that
A, > Aq. This ranking is also observed by the Yager's ranking methods (F1, F2 and F3) as
shown on Table 2.

A

Figure 13, Two fuzzy sets with the same support and a different core.

Table 2. Same support, different core; with Yager ranking functions
[¢5] [¢D) asz F1 F2 F3

A;103104|071047 0541045
A;103(0.6]0.7]0.53]0.63]0.55

Same core, different support. When the core of the different fuzzy numbers is the same, but
the supports are different, the numbers become quite a lot more difficult to classify. The
examples are illustrated in Figure 14.

? For the normalized sets, as assumed in this paper, dpax = 1.
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