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Abstract 

Direct comparison of pollutant em1ss1on inventories, when they are subject to high 
uncertainty, like that of greenhouse gases, is inadequate and leads to paradoxes. In the paper 
the methods of comparing uncertain inventories are discussed in the context of checking 
compliance. This problem is treated from the view of comparison of uncertain alternatives. It 
provides categorization and ranking of inventories. The ranking induces compliance checking 
conditions. 

There exist a number of techniques to rank uncertain estimates. Only these which can be 
used to elaborate conditions for checking fulfilment of obligations on the basis of knowledge 
of uncertain emission estimate characteristics are considered. Probabilistic and fuzzy 
approaches are discussed and compared. 

Keywords: greenhouse gases inventories, compliance, uncertain alternatives, ranking. 

1. Introduction 

A handful of solutions have been proposed to cope with the problem of commitment 
verification for emission obligations in case of uncertain inventories, see Jonas et al. (2007). 
Many of them pointed to methodological incompetence in using reported (crisp) values in 
clearing pollutant emission targets . For many environmental problems, only highly inexact 
knowledge on emission values is available, as is the case of greenhouse gases, see e.g. Jonas 
and Nilsson (2007); Jonas et al. (20 I 0a); Lieberman et al. (2007); White et al. (2011 ), where 
also paradoxes in using reported values for checking fulfilment of the commitments are 
shown. 

According to IPCC Good Practice Guideiines (IPCC 1996), the reports should be 
"consistent, comparable and transparent" . It is, thus, reasonable to require that decision on 
fulfilment of obligations should be fair among parties, in the way, that ordering of inventories 
should make it possible to decide which inventory outperforms others. When dealing with 
uncertain values with different range of uncertainty and possibly asymmetric distributions , 
taking decisions on fulfilment of obligations or comparison of inventories only on the basis of 
reported values may contradict simple conclusions inferred from the uncertainty distributions 
interpreted either as a probability distribution or as a fuzzy variable. The reason is that our 
knowledge of emission is actualiy characterized not only by its estimated size (reported 
inventory) but also its quality, like uncertainty range (as given e.g. by its standard deviation) 
and the shape of the uncertainty distribution (like e.g. skewness). This knowledge should be 
possibly fully utilized to infer ranking of emissions, as well as deciding on compliance or 
noncompliance. 



In the sequel two uncertain inventories, A and B of Figure I, will help us to illustrate 
the discussed techniques. The reported inventories of both parties, i.e. the dominant values of 
the uncertainty distribution densities µ(x), are very close to each other. Ignoring uncertainty, 
the party A will be considered compliant (fulfilling the commitment), while the party B will 
be considered noncompliant. However, confidence in the inventory value of the party B is 
high, while the confidence in the inventory value of the party A is much !ower. Therefore, 
which party is more credible? Should the party A be considered compliant, while the party B 
should not? 

A basie question addressed in the paper is to rank inventories , that is, to infer which of 
them better meets our idea offulfilling a given limit. For convenience in further addressing of 
this problem we say that a higher ranked inventory is better with respect to (w.r.t.) the target. 

In the case of greenhouse gases, reduction of inventory is often defined as a rate, i.e. a 
condition :re ::; (XE&, should be satisfied, where 1:c is an emission inventory in the compliance 
period, Xb is an emission inventory in the basie year (at the beginning of the reduction period), 
and p is a required fraction of emission reduction. Here, the task is to compare uncertain 
inventories in the compliance year, x 0 , with inventories reduced from the basie year, px&, and 
to decide whether the farmer is !ower than the latter. Another saying, ranking of the 
inventories is looked for. The method presented here can be also useful for making decisions 
in his case. 

In generał, however, ranking is supplementary to an adopted compliance checking rule, 
to justify why some inventories are considered compliant and other not, and to avoid paradox 
situations, where the decision on compliance or noncompliance disagree with common sense. 

In the paper it is assumed that the distribution of uncertainty of an inventory is given. 
This is an ideał case. Unfortunately, it is not always true. Some countries undergo an effort of 
carrying out Monte Carlo calculations from which one can get good insight of how the 
country's uncertainty distribution looks like. Some other countries report only either 
uncertainty interval or even standard deviation. The probability-rooted methods presented in 
Section 2 include these which work even when only standard deviation is known; other can 
work with the interval information, possibly interpreted as a uniform distribution of 
uncertainty. In the fuzzy-set-rooted methods, which are discussed in Section 3, the 
distribution of uncertainty may be shaped more flexibly, including the interval information or 
e.g. using some expert knowledge. 

2. Probabilistic approaches 

2.1 Introductory remarks 

Treating an inventory as a random value with probabilistic distribution seems to be self­
imposing, although inventories perhaps do not completely comply with the randomness 
assumptions. 

Comparison of uncertain random values has been already considered in various fields. 
The problem of selection from risky projects has a long hi story in such areas as finance, R&D 
projects, IT projects, (Graves et al., 2009). Several methods have been proposed there to 
compare such projects. The methods can be divided into groups. All the methods presented 
below are adapted to the problem of emission inventories. 

2.2 Statistical moments 

Mean value and variance. The most elementary technique is based on the mean value and 
the variance (MV). The smaller is the mean value and the variance, the better the inventory is. 
This method is explained on the case presented in Figure I. Although the reported value of the 



inventory A is smaller than that ofB, the mean value of A is greater than the mean value ofB . 
The same is true for the standard deviations. Even this simple criterion shows that an 
inventory of the party B should be considered better w.r.t. the target than that of the party A. 
This is contrary to the result for reported values, which ignores uncertainty. Let us mention 
that in this approach fulfilling the target would be related to comparison of the mean value 
rather and not the reported value. However, this single value is not enough for ranking. 

µ.(x) 

target 
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Figure 1. Comparison of means and variances. 

Semivariance. Many inventories would be not possible to compare in pairs, as using two 
indices, mean value and standard deviations, may lead to contradictory results. Taking this 
into account, a notion of the semivariance can be applied (MSV), which is defined as 

s} = {"° (x - K) 2J.i(.1;)dx 
lr< 

where I( is a chosen value and p(x) is the distribution density function of an inventory. The 
smaller the value of s} is, the higher ranked is the inventory. In our case I( can be 
conveniently chosen as a given target, and this value is used in the example of Figure I, and 
also in the survey of results in Table I. In the example considered st, > sh holds. Thus, 
according to this criterion, the inventory B is better w.r.t. the target than A. Using this 
criterion, an inventory satisfies the target, if the semivariance is smaller than a preselected 
value. 

2.3 Critical values 

Critical probability. A large gro up of techniques uses the notion of critical probability (CP), 
the notion introduced already in 1952 (Roy, 1952). Most of the methods in this group require 
knowledge of the related probability distributions. The measure used to compare inventories 
is the probability of surpassing the target l( 

CTJJ = /'"° µ(x)dx }/( 
A smaller value of Cl')) indicates the inventory, which is better w.r.t. the target. As seen in 
Figure 2, again, an inventory of the party B is evaluated as the better one. Satisfaction of a 
given limit is connected with specifying the critical probability, which should be not greater 
than a prescri bed va! ue. 
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Figure 2. Calculation ofcritical values. 

Risk. In other related methods, as the Baumol's risk measure and the value at risk 
(VaR), the probability a: of inventory x to be above a critical value Xcrit is fixed, and then the 
value Xcrit. is calculated. Without going into details, an inventory is better w.r.t. the target 
when Xcrit is smaller. In our example, presented in Figure 2, fixing probability to O. I, the 
inventory B is chosen as the better one. 

A technique similar in spirit has been proposed to ensure a reliable compliance. It is 
called undershooting, (Gillenwater et al., 2007; Godal et al., 2003; Nahorski and Horabik, 
2010; Nahorski et al. 2003), and is illustrated in Figure 3. In this approach, it is required that 
only a small enough a:-th part of an inventory distribution may lie above a target. This idea, 
when used to order inventories, becomes equivalent to the CP technique. 

In these techniques, satisfaction of a limit is connected with requiring that the related 
value Xcrit is not greater than the limit. 

C, 

::::\ X 

x K 

Figure 3. Jllustration of compliance in the undershooting approach. 

2.4 Stochastic dominance 

Stochastic dominance. In the stochastic dominance technique an inventory B is better w.r.t. 
the target than A, if their cumulative probability functions (cpfs) satisfy FA(x) ~ FB(x) for 
all l:, and the condition is strict for at least one x. It is obvious that not all inventories can be 
decisively compared this way, see cpfs of our exemplary inventories A and B depicted in 
Figure 4. Although cpf of the party B is greater for most va lues of x, it is !ower than cpf of the 
party A for a small range of low value arguments. This possible Jack of an answer yes or not 
is not convenient for comparison of inventories. However, some modifications have been 
proposed to extend the set of inventories which can be compared. 

4 
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Figure 4. Stochastic dominance criterion for comparison of inventories A and B. 

Almost stochastic dominance. In the a/most stochastic dominance (ASD) 1 the inventory Bis 
better w.r.t. the target than A, if the area between both cpfs for F3(:r) < FA(x) is small 
enough (€ times smaller, usually with O < € < 0.5) part of the whole area between pdfs, 
fx IFB(x) - FA(x)ldx. It can be seen by inspection in Figure 4 that this condition is satisfied 
in our example of Figure I. Thus, also this technique indicates the inventory B as the better 
one w.r.t. the target in this case. 

A simplified comparison of inventories could confine to checking the values of cpfs at 
x = K. This would be equivalent to a variant of critical probability approach. Thus, the 
analysis of fulfilment of the limit in the stochastic dominance techniques could be reduced to 
checking ifthe value of the inventory cpf at the limit is big enough. 

2.5. Discussion of probabilistic approaches 

The results obtained so far for the inventories from Figure 1 are summarized in Table I. 
As can be seen there, all methods point to the inventory B as the better one w.r.t. the target 
that is contrary to the conclusion taken when only the reported values are considered. 

Table 1. Criteria values for comparison of inventories A and B for the inventories from Błąd! Nie można 
odnaleźć źródła odwołania„ 

Method Criterion Criterion Inventory 
value for A value for B chosen 

MV m,1 =4 mB = 1 B 
O'A=l6¼ O'a = ł 

MSV st-A = 13.45 S~B = 0.35 B 
CP C1'PA = i crpa = i B 
risk CcritA = 10.6 CcrUB = 2.1 B 

These methods guarantee proper ordering of inventories when the reported value is 
smaller or at most equal to the limit. In the other case, the ordering may be opposite to the 
expected. To see it, !et us consider an example presented in Figure 5. The distributions are 
shifted to the origin, so O in the figure corresponds to the value x. Intuitively, B would be 
considered better w.r.t. the limit, as this inventory is more credible. Using the reported 
inventories only, they are considered equivalent. 

1 This is the first order ASD. For the second order ASD see Graves and Rinquest (2009). 
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Figure 5. Exemplary distributions ofinventories A and B. 

The mean of both distributions is O and the variance is a 2 = a2 /6, where [-a, a] is the 
interval, on which the distributions are nonzero: in the figure a equals 2 for the inventory A 
and 1 for the inventory B. Thus, the mean and variance method obviously prefers B. Denoting 
k = I</ a, the dependence of cpr on k is depicted on Figure 6. According to the critical 
probability index, for K > i:, i.e. k > O, B is better w.r.t. K than A, but for k < O it is opposite. 

cpr 

k 

-1 O 

Figure 6. Dependence of critical probability cp,· in function of k for inventories A and B rrom Figure 5. 

To order properly the inventories for K < i:, it would be useful to consider the probability 

/3 = L:µ(x)dx 
The higher is /J, the closer is the inventory to be considered compliant. And in reverse, the 
smaller is /J, the more convinced we are to consider the inventory as noncompliant. To make 
significant decisions, we would like to have a small value of a: for deciding that the inventory 
is compliant, and a small value of /J for deciding it is noncompliant. Thus, there will be an 
indecision interval in the inventory, see Figure 7. Whenl( E (x~,.it, x~rit), then we are not 
convinced enough if the inventory fulfils the limit or not. This can be also considered as a 
genera ł ization of the undershooting method. 
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Figure 7. Illustration of compliance, noncompliance and the indecision interval. 

The question arises what can be done when the limit falls in the indecision interval of an 
inventory. It is actually quite fair to say that for these inventories no decision can be taken 
with high enough confidence. One of the answers proposed for such cases in Jonas et al. 
(1999) and Gusti and Jęda, (2002) was to wait until one or another exceedance occurs in the 
inventories assessed in the consequent years . A rough method to estimate when this may take 
place was also designed, called the verification time. łt is based on a linear or quadratic 
prognosis of future emission trajectory. This approach requires for compliance an additional 
obligatory undershooting so that the countries emission reductions and limitations become 
detectable. 

3. Fuzzy set approaches 

3.1 Conceptual difference 

A fuzzy set is a generalization of a common, crisp set. A crisp set can be defined by its 
characteristic function XA, taking either value O or I, see Figure 8. A fuzzy set is characterized 
by a similar membership function PA, which takes values from the interval [O, 1]. The fuzzy 
sets, whose membership functions have values equal to 1, are called normalized. We consider 
here only normalized fuzzy sets. 

XA 

Ao.s u 

m-p1 m A m+pr 

Figure 8. The characteristic function XA and a membership functions /lA of a set A. 

The membership function value, called in the sequel the membership grade, can have 
one of three interpretations (Dubois and Prade, I 997): veristic, possibilistic and as 
truthvalues. The veristic interpretation means, that an element fully belongs to the set, if it has 
a membership grade equal to 1, it does not belong for the value equal to O, and only "partly 
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belongs" for the intermediate values. In a possibilistic interpretation, the fuzzy set represents a 
number of possible elements, the membership grades of each element indicates how possible 
this event is: ranging from a value of O if it is impossible, over values between O and 1 if it is 
somewhat possible, to a value of 1 if it is perfectly possible. As such, the fuzzy set describes 
imprecision and can be compared to the probability density function. However, its 
normalization condition is less strict that in probability theory: the constraint now is that the 
highest value must be 1 (this implies that there must be at least one element that is perfectly 
possible). The difference in normalization also implies different algebra rules. The use of 
membership grades as truthvalues is an extension of boolean logic: 1 is considered to 
represent true, O represents false and intermediate values express a partia! truth . This can be 
used when evaluating statements: saying that 90 is a big number can be considered only partly 
true. 

A fuzzy number is a fuzzy set in the numerical domain IR that satisfies a number of 
criteria (there is some discussion as to which criteria are absolutely necessary), for more 
details we refer to Klir (1995) or Zimmerman (1999). 

A fuzzy set can be fully characterized by a family of so called 0:-cuts denoted by A0 , i. 
e. points ·u, for which the value /lA(u) assumes at least the value 0:, see Figure 8, where an 
example of an a-cut for a = 0.5 is depicted and denoted A0,5. Let us notice here that now 0; 

has another meaning than in the probabilistic part. The problem is that both the notion of 0: as 
the probability of not fulfilling the target and the notion of a-cut in the fuzzy set research area 
are commonly used. To solve this overlap, in this section of the paper we switch to using rJ 
(instead of 0:) for the measure of that part of distribution where the target is not satisfied (that 
is the probability of not fulfilling the target in the probabilistic approach) . 

Two additional notions connected with a fuzzy set are worth to mention. One is the 
support, denoted supp A, which is the set of points ·u, for which the membership function is 
strictly positive. The second notion is the core of the fuzzy set, called core A, which is the set 
of points, for which the membership function is equal to 1. 

Fuzzy set and possibilistic models of uncertainty can be considered as a competitive 
approach to the probabilistic one, described above. A few arguments can be given in favour of 
this approach. There are a number of interpretations of probability theory, we will only 
consider the ones related to the current context; for an overview we refer to Hajek (2010). 
First, the probabilistic approach is intrinsically related to the frequency of variable appearance 
(frequentist approach, (Venn, 1876)), while it is hardly possible to have frequent inventories 
at the same year. The use of the probability as degree of beli ef has been proposed in Ramirez 
(2006), but Kahneman et al. (1982) showed that many people do not adhere to the probability 
calculus in this interpretation. Second, in the fuzzy set approach determination of the 
distribution is much more flexible. The distributions can be freely shaped and do not need to 
follow any known probabilistic distributions to be practically useful. For example, they can be 
estimates given by experts. Uncertainty of emission inventories often has an expert-quantified 
character, even if the Monte Carlo simulation is used to estimate its distribution. Third, the 
algebra in the fuzzy set approach is simpler, in the sense that for complicated problems more 
often it is possible to get a fina! analytic solution using the fuzzy approach than using the 
probabilistic one, see e.g. Nahorski et al. (2007); Nahorski and Horabik (2010). As in the case 
of inventories the data are often obtained through a mixture of statistical methods and 
corrections, interpretations and estimates by experts, who express some belief and label the 
data accordingly, fuzzy set theory may be well suited for the analysis of compliance. 

The fuzzy sets have been used in the undershooting technique (Nahorski and Horabik, 
2010) to calculate the distribution of the difference a:c - pxb for the uncertain inventories, But 
their role was only instrumental there, as the rest of the technique was close to the idea used in 
probabilistic CP technique. 



In the fuzzy set theory, the ranking offuzzy (or inaccurate) values is a problem to which 
different solutions have been proposed. Ignoring conceptual differences, there are sufficient 
similarities to warrant investigating how the possibilistic ranking methods hold up against the 
other methods. In the foltowing subsections, we will list four conceptually different groups of 
methods that are used to rank fuzzy num bers. Some of these methods resemble those from the 
probabilistic approaches, other use quite different paradigms. These methods were chosen to 
illustrate that various approaches can be used to tackle the ranking problem. 

3.2 On the underlying assumptions 

Most of the fuzzy ranking methods have been developed for fuzzy sets over the domain 
[O, l ]. The main reason for this is that there are some specific advantages in developing 
ranking methods (e.g. integrals over the domain cannot yield a result greater than 1). For the 
application of the methods in ranking different inventories, the methods could be modified to 
suit a different domain. This is possible for all the methods, but may complicate the formulas 
somewhat. To keep the formulas simple and to remain true to the original definitions, it was 
chosen not to do this. An alternative option would be to rescale the domain of the inventories 
to the interval [O , 1] to al low for a direct appl ication of the methods. If the supports of the 
fuzzy number is finite, as we assume here, and in the original support :c E [ł, r], the new 
variable, spread in [O, O], is defined as z= (a: - l)/(r - l). 

The ranking methods below put an ordering on at least two fuzzy numbers. Some 
authors have chosen to rank from lowest to highest; others rank from highest to lowest. The 
concept ofthis article is to present different methods and how difficult cases are distinguished 
differently. As such, these are minor details that can easily be overcome and should not deter 
from the message. 

There were quite a number of different techniques proposed for ranking fuzzy sets. Not 
all are mentioned below. Some of those not mentioned can be found in a review paper by 
Bortolan and Degani ( 1985). A newer technique can be found in Tran and Duckstein (2002). 

3.3 An analogue to moments 

Yager Fl. In Yager (I 978), the author presents three different ranking methods. They are 
pure ranking methods in the sense that a number is derived for every element. The number is 
independent of the other elements in the set. 

A weight function g is introduced to add weights to the fuzzy set A. This basically 
allows us to specify which values are more important, based on their possibility. Common 
weight functions are either g(z) = I (reflecting that all possible values are equally important) 
and g(z) = z (ind i cating that the higher the possibility of a value, the more important it is and 
the more it will contribute to determine the rank). 

µ 

1 

IR 

Figure 9. FI ranking function proposed by Yager. 
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The first ranking function is defined as fellows: 

( ) J0
1 g(z)µA(z)dz 

F1 A = ~-1,--------
fo µA(z)dz 

If the weight function g(z ) = .? is used, then Fi represents the mean value of the 
membership function, called usually the center of gravity of the fuzzy set. This is illustrated in 
Figure 9. Note that if the weight function g(z) = 1 is used; no ranking conclusions could be 
drawn: F1 would result in 1 for every fuzzy set. 

When g(z ) = z, this technique can be compared with the mean value technique in the 
probabilistic approach. The ranking function may be defined in a more generał way, and one 

option could be to take g(z) = [z - F1(A)f9(,J=IJ2, analogous to the variance. Also an 
analogue of semivariance could be defined here, which shows similarity of this fuzzy 
approach technique with the probabilistic one. 

3.4 Analogues to critical values 

Nahorski et al. A strict analogue to a critical value technique in probabilistic approach has 
been proposed in Nahorski et al. (2003); Nahorski et al. (2007); Nahorski and Horabik (20 I O) . 
To get an analogue to probability, which defines the critical value, the critical area is 
normalized by dividing it by the area under the membership function , as in Figure 3, This 
approach assumes a rather precise knowledge of the membership function. 

Adamo. On the other hand, Adamo (1980) proposed to consider points satisfying 
/•A( z) = ex, O :S: ex :S: 1, and choose the highest value of z as a ranking criterion. In another 
wording, the criterion value is the most right value of the c,-cut of the fuzzy number A. The 
critical value depends now on the choice of a, but in this case it has elear fuzzy set 
interpretation connected with the a-cut. This idea may be compared with the one by Nahorski 
et al., where the critical area has amore probabilistic origin, while that of Adamo has a more 
fuzzy set flavour, see Figure I O. For a given membership function both techniques can be 
related by mathematical expressions. 

µ,1(z) 

C, 

I 

: 11-th part 

o Zcrit 

Figure IO. Determination of the critical value Zc,it in the Nahorski et al. (calculation 
of the 1)-th part of the distribution area) and Adama (calculation of the a-cut) techniques. 

These techniques can be simply used for derivation of criterions for checking fulfilment 
of the limit, analogously to the ones which stem from the similar probabilistic approaches. 

Yager F2. The second ranking function introduced by Yager (I 978) com pares the given 
fuzzy set A to the linear fuzzy set B, defined by /lH(1) = z. 

The second ranking function is then defined as fellows : 
F2 (A) = maxmin(z,/-lA(z)) 

,ES 

IO 



Here, S represents the support of the fuzzy set A; in our case assumed to be the interval 
[O, 1]. Graphically, this yields the intersection point between the linear fuzzy set (µs(z) = z) 
and the given fuzzy set A. This is illustrated in Figure 11. 

r : 1~···· _,.,,•.· .. ,,., . 

, I .. 
,/ I · R 

. F2 1 

Figure 11. F2 ranking function proposed by Yager. 

This rating function has a simple interpretation. The fuzzy set with the membership 
function t•H(z) = z may be interpreted as representing a variable "high". The membership 
function min(z, µ.,1(z)) represents a variable, which is a conjunction of A and B, i.e. the 
points, which belong both to the variable "high" and A. In other wording, it represents 
distribution of the possibility that A is "high". Its maximal point satisfies these two 
requirements in the "best" way. 

The membership function of the variable "high" may be shaped in a different way. Jain 
(1976) proposed more generał set of functions J.ln(z) = (z/zmaz)\ k > 0.2 In this case the 
result of comparison offuzzy numbers may, however, strongly depend on the choice of k, and 
no elear criteria exist, which value of k should be chosen. 

Apart of ranking the fuzzy numbers, the critical values could be used to check 
fulfilment of obligations, analogously to the stochastic approach. The simplest would be strict 
comparison of Fi with K. However, the constructions proposed here are of a rather subjective 
character, difficult to interpret physically, and therefore their use may be limited. 

IR 

1 

Figure 12. FJ ranking function proposed by Yager. 

Yager F3. The third ranking function defined by Yager (1978) is more complex to explain 
using formulae, although it is simple to interpret geometrically. lt is defined as 

F3(A) = l"m•• m(A,,)da 

2 In this section, the assumption is that Zmn.x = 1. 

Il 



with A0 the 0:-cuts of A, O<max is the highest occurring possibility in the fuzzy set A,3 and m is 
the middle point of the 0:-cut. 

The formula is relatively easy to grasp graphically: the index is the surface area to the 
left of the line that runs exactly along the middle of the fuzzy number. For triangular fuzzy 
num bers, this connects the top of the fuzzy number (i.e . where the possibility is one) with the 
middle of the support. This is represented by the shaded area in Figure 12. 

This ranking index can be directly used to checking satisfaction of the limit. For this !et 
us notice that F.1 (A) is the mean value of the function m.(A,,),, in which 0: is the argument. 
This is because O s; a s; 1, so for the triangular membership functions 
F3(A) = f0

1 m(A,,)da = m(Ao.s). Thus, in this case F3(A) is equal to the middle value of the 
0.5-cut of the fuzzy number A. For other membership functions the integral will be equal to 
the middle value of some 0:-cut, perhaps different from 0.5. Anyway, this index is closely 
related with an 0:-cut, where the appropriate 0: is determined by the shape of the membership 
function. This makes this approach a little similar to the Adamo method, with critical value 
determined at the middle of the u-cut instead at the right end. This interpretation encouraged 
us to classify this technique within the critical values group. 

3.5 Examples 

In this section, the Yager ranking methods will be compared to verify how the ranking 
of different special cases differ. 

Same support, different core. First, we consider two fuzzy numbers that have the same 
support, but a different core as shown in Figure I 3. Intuitively, people would state that 
A2 > A1 . This ranking is also observed by the Yager's ranking methods (FI, F2 and F3) as 
shown on Table 2. 

µ 

1 

IR 

1 

Figure 13. Two fuzzy sets with the same support and a different core. 

Table 2. Same support, different core; with Yager ranking functions 

a1 a2 G.3 FI F2 F3 

A1 0.3 0.4 0.7 0.47 0.54 0.45 

A1 0.3 0.6 0.7 0.53 0.63 0.55 

Same core, different support. When the core of the different fuzzy num bers is the same, but 
the supports are different, the numbers become quite a lot more difficult to classify. The 
examples are illustrated in Figure 14. 

3 For the normalized sets, as assumed in this paper, O'mnx = 1. 
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Intuitively, people can agree that 8 2 -< 8 1 and that 8 3 -< 8 1 ; we also see that 8 3 -< 8 2 . 

The problems start when comparing B1 with B 4. The latter has nonzero possibility distribution 
for smaller values than B1, so following the same reasoning as for B2, it should be smaller. 
Yet it also has nonzero possibility distribution for bigger values, so it should also be bigger. 
Many people would say that both are more or less equal; depending on the use and 
application, B1 could be preferred as its shows less uncertainty (smaller range in which the 
values can occur), and thus greater credibility. 

µ 

1 

1 
Figure 14. Four fuzzy sets with the same core but different supports. 

Table 3. Same core, different supports; with Yager ranking functions. 

a, a? as FI F2 F3 
B, 0.3 0.5 0.7 0.5 0.59 0.5 
B2 0.2 0.5 0.7 0.47 0.58 0.48 
B3 0.2 0.5 0.6 0.43 0.54 0.45 
B4 0.2 0.5 0.8 0.5 0.61 0.5 

Table 3 lists both the numeric data for the fuzzy sets used, as well as the rankings 
provided by the three Yager ranking methods. For B1, B2 and B3, it clearly yields the same 
results as the intuitive ranking. While B1 is considered equal to B4 in the ranking methods FI 
and F3, F2 shows a minor difference, indicating that 84 >- 8 1 . This is rather counter-intuitive, 
as there is more uncertainty about B4, but it is obvious from the ranking index that the 
difference is very small. 

3.6 Fuzzy dominance 

3.6.1 Possibility and necessity measures 

In spite of a similar name, the fuzzy dominance techniques proposed up to now in the 
literature, differ completely in spirit from the stochastic dominance ones, presented in 
subsection 2.4. It is important to remember here that we use the normalized fuzzy numbers on 
the domain rescaled to the interval [O, l]. The results ofthis subsection may be not true, ifthe 
normalization or rescaling is not done beforehand. 

To compare fuzzy numbers using the fuzzy dominance approach, possibility and 
necessity measures can be used, as introduced by Dubois and Prade (1983), see also 
Hryniewicz and Nahorski (2008). A normalized fuzzy set with a membership function µ(z) 
induces on the interval [O, l] a possibility distribution 1r(z) = /t(z). For simplicity, we refer to 
defined this way possibility distribution as Jt(z). Given a possibility distribution, the 
possibility measure of a subset ZE U= [O, l] is defined as 

Poss(Z) = sup 1i(z) 
zEZ 
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It can be interpreted as a degree of possibility that an element is located in the set Z, see 
an interpretation in Figure 15. Let us notice that using a characteristic function Xz(z) of the 
set Z, the possibility measure can be equivalently defined as 

Poss(Z) = sup min{µ.(z),xz(z)} 
•EIO,l] 

Let us notice that when Z= [r, 11 then the above index can be interpreted as a measure that 
an element x is not smaller than r, i.e. r ::; x. 

Comparing these notions to the probabilistic ones, the possibility distribution 
corresponds to the probabilistic distribution, and the possibility measure Poss(Z) corresponds 
to the probability of the subset Z. 

µ(z), xz(z) 

I 
I 

I 

I 

I 
I 

I 
I poss 

\ 
\ 
\ z 

µ(z), xz(z) 

z o+....., __ _,_....._ _ __..__+- o -1-..,_ __ _._ ___ ._-1-_ 
O Z 1 O Z 1 
Figure 15. lllustration ofpossibility (left) and neccessity measures (right) for a crisp set Z. 

However, in the possibility theory an additional measure is introduced, called the 
necessity measure. lt is defined as 

Nec(Z) = l - Poss(.Z) 
where Z is the complementary set of Z in [O, 1 ], see Figure 15. It can be interpreted as a degree 
that an element is located necessarily in the set Z. Similarly as in the possibility case, an 
equivalent definition may be 

Nec(Z) = 1- sup min{µ(z},x.z} = inf max{l - ,i(z),xz(z)} 
,e[o,1] ,e[o.1] 

A simple property, which can easily observed in the Figure 15, holds 
Ncc(Z) ::; Poss(Z) 

which may be interpreted that the measures give !ower and upper bounds on uncertainty 
connected with localization of an element in the set Z. The !ower one, necessity, is the degree, 
in the range [O, l], of our conviction that the point is in the set Z. The higher one, possibility, is 
the degree of our supposition. 

Now, taking a fuzzy sets Z instead of a cri sp one, the characteristic function xz (z) is 
replaced by the membership function pz(z), providing the following definitions 

Poss(Z) sup min{µ(z), µz(z)} 
•E[O,l] 

Nec(Z) 1 - sup min{p(z), µz} = inf max{l - p(z), µz(z)} 
,e[O,l] zE[O,l] 

see Figure 16. For further use, µz(z) = l - {tz(z) is introduced as the membership function 
of the complementary set of Z. 

14 



µ(z), /tz(z) 1,(z), µz(z) 

I\ 
I \ 

nec 1 \ :µz(z) 
I 

I 

z 

o o 

Figure 16. Jllustration ofpossibility (left) and necessity measures (right) for a fuzzy set Z. 

3.6.2 Possibility of dominance indices 

Having introduced the above notions we can pass to defining fuzzy dominance indices. To 
calculate the possibility and necessity indices, the membership functions are analyzed on the 
two-dimensional piane (z, y), and more specifically, either on the upper right or the bottom 
left half of the square [O, I] x [O, 11 compare Figure 17. This is analogous to consideration of 
two-dimensional probability density function for independent variables. To compare two 
fuzzy numbers, one of them, say B, is taken as a reference one. Its membership function plays 
a role of a reference poss ibi lity distribution. 

We introduce now the notions of the dominance of a fuzzy set A over B, denoted 
below as A '.'.:: B, and strict dominance, denoted as A >-- B. 

The possibility of dominance (PD) index of a fuzzy set A over a fuzzy set B is defined 
as 

PD= Poss (A!':: B) = SUP,,y,=2'.Y min {µA (z), /IB (y)} 
The index PD is a measure of possibility that the fuzzy numbers A is greater than B, or that 
the set A dominates the set B. This index has been first proposed by Baas and Kwakernaak 
(I 977). A probabilistic analogue of this index would be the probability that A 2 B. This 
index has to be analysed on the piane (z, y) in the upper right half of the square [O, l] x [O, l], 
see Figure 17, where the projection on the function min{µ,1(z), µs(z)} on the square is 
drawn, with the membership functions µ.A(z) and µs(y) drawn on the axis. The highest value 
ofthis function (equal to 1) is located in the area y > z (at the point marked with •), while the 
value PD < 1 is located on the boundary of the upper half of the square, at the point marked 
with o. It is now easy to notice that the value PD can be calculated as presented in Figure 18. 

Analysing the way the value PD is calculated, and using notation from Figure 18, it is 
seen that 

Poss(A '.'.:: B) = 1 if mA 2 ms 

Poss(A t B) = O if mA+ P,·A ~ ms + Pm 
Just, the possibility of dominance index PD equals O, if any point of the support of A is 
small er than any point of the support of B . łf the supports overlap, PD > O. If the core of A 
is greater or equal to the core of B, then PD = I. 

The possibility of strict dominance (PSD) index for a fuzzy set A over a fuzzy set B 
is defined as 

PSD= Poss (A>-- B) = sup, infy,y2'.= min {µ,1(z), 1 - /•s(v)} 
where /l,t (2) and /•B (y) are the membership functions of A and B, respectively. 
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Figure 17. Calculation of the PD index on the (z,y) Figure 18. Calculation of the PD index on a line. 
piane. 

Analysis of the function on the two dimensional square brings us on the situation 
depicted in Figure 19. Now we have 

Poss(A >- B) = 1 if mA ?:: mB + P,·B 

Poss(A >- B) = O if mA + PrB ?:: mB 
where PrB is the right end of the support of B, see Figure 8. 

The possibility of strict dominance index is therefore equal to O, when the support of A 
is situated to the left of the core of B. It is positive in the opposite case. It equals 1, if the 
support of B is situated to the left of the core of A. Just, the membership function of A has to 
be more shifted to the right to get the same value of the index as in the possibility of 
dominance case. 

-, ,------
',: ', - I 
,, ' B, 
1:\ ',. I 
I : \ :S I 
I : \ . ' 

Al , 
I \ 
I \ 
I \ : 

O --+-,._ ___ ,.,_· _,_ ___ _,_,..z-"', 
O ffiA ffiB 

Figure 19. Calculation of the PSD index. 

3.6.3 Necessity of dominance indices 

The necessity of dominance (ND) index of a fuzzy set A over a fuzzy set B is defined as 
ND= Nec(A ~ B) = inf.supy,y:,;.max{l- ~tA(z),µa(Y)} 

Similarly to the previous analyses, calculation of this index reduces to analysis of the 
situation presented in Figure 19. It yields 

Nec(A ~ B) = I if mA - PIA ?:: mB 

Nec(A ~ B) = O if m;1 ~ mB - Pm 
where pis is the left end of the support of B, see Figure 8. 
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Figure 20. Calculation of the NSD index. 

Thus, the necessity of dominance index equals O when the core of A is to the left of the 
support of B. It is positive in the opposite case. It equals 1, ifthe support of A is situated to the 
right of the core of B. 

The necessity of str i et dominance (N SD) index of a fuzzy set A over a fuzzy set B is 
defined as 

NSD Nec (A>- B) 
inf max(l - µA(z) , 1- µB(Y)) 

:,y;y:5z 

1 - Slip min {tlA (z), /1B (y)} 
z,y;z$y 

1 - Poss (B t A) 
This index is the opposite to the measure of possibility that the set B dominates the set 

A. This index has been first proposed by Watson et al. (1979). The analysis of the index 
reduces to ana lysis of the situation presented in Figure 20. There is 

Nec(A >- B) 1 if mA - PIA 2'. mB + PrB 

Nec(A >- B) = O if mA ~ mB 

3.6.4 An example 

In order to further examine the method let us now consider a difficult ordering of two 
fuzzy numbers with distributions depicted in Figure 21. Simple inspection provides the 
following results 

Poss(A t B) = Poss(B t A) = 1 
and therefore 

Nec(A >- B) = Nec(B >- A) = O 
Thus, both the possibility and necessity of strict dominance indices do not distinguish 

these fuzzy numbers. With the other indices, we get 
Poss(A >- B) < Poss(B >- A) 

and 
Nec(A t B) > Nec(B t A) 

The possibility of strict dominance index suggests that the set B is rather to the right 
of the set A, while the necessity of dominance index suggests that rather A is to the right of B . 
This is connected with considering mutual location of the either right or left slopes of the 
distributions, respectively. 

The possibility of strict dominance index suggests that the set B is rather to the right 
of the set A, while the necessity of dominance index suggests that rather A is to the right of B. 
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This is connected with considering mutual location of the either right or left slopes of the 
distributions, respectively. 

I 
' I ' I ' I ' ' I A ' I ' ' I ' I ' ' z o 

o 

Figure 21. A test case for ordering of two difficult distributions. 

The Dubois and Prade approach does not prioritize the fuzzy sets itself, like earlier 
techniques. lt answers the question of the degree of possibil ity or necessity of dominance of a 
chosen set by another one; it allows for week (soft) comparing of a set against one or more 
other sets rather than assigning a rank to each set. Thus, comparison of these inventories 
might give a rather indecisive answer. Similarly as in the undershooting technique, some 
critical values should be set for making decision on dominance. Moreover, it should be 
remembered that the indices will not necessary provide consistent results. 

3.6.5 Checking satisfaction of a limit 

An interesting question is, if these techniques can be used for assessing satisfaction of the 
limit. For this, the limit can be interpreted as a crisp value that is a fuzzy variable with the 
membership function 

{ 1 i/ z = L 
µB(z )= O if z-IL 

where L is the rescaled value of the limit L. In these cases PD = PSD and ND = N SD, so 
the analysis can be confined only to the necessity N and possibility P indices. 

µA(Z), µB(Y) 

ri, 

I ' 
{ ND', ,. ' 
: NSD ~ - ' ' A 

I · PD', 
1 B2 , 
I PSD , 

O -l-...._ ___ _,_ ______ '.,_ ,...,.z=,Y 
0 11LA 

Figure 22. Calculation of the indices for the crisp limits . 

In Figure 22 two cases are depicted: the limit B1 higher than mA, and the limit B2 

smaller than m,1. In the former case P > O and N= O. In the latter P = land N > O. We see 
that using the necessity indices is equivalent to the Adamo method with N = l - a . The 
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possibility indices give an information on a degree of not achieving the limit (recall that the 
limit is achieved here when A is greater than B), which could be used in inferring 
noncompliant inventories. 

Thus, we can formulate the following rules. The inventory is considered compliant, if 
the necessity index is high enough. The inventory is considered noncompliant, if the 
possibility index is small enough. This, actually, provides situation, which is fully analogous 
to the one presented in Figure 7. Fixing minimal necessity N and maxima! possibility P 
indices we arrive again to the notion of indecision interval, where the necessity index is too 
small and the possibility index of limit satisfaction is tao high. 

Application of the Dubois and Prade method gives useful information on fulfilling the 
limit. However, analysis of the membership functions in three dimensions is rather 
cumbersome. Simple interpretations on the piane, like in Figures 18-21, can help in the 
analysis . Necessity indices give practically the same information as in Adama and Nahorski at 
al. method. Possibility indices can possibly be applied in quantifying noncompliance. 

4 Conclusions 

This paper focuses on a presentation of the methods for ranking uncertain values, with 
application to comparison of uncertain emission inventories and possibility to use the 
techniques proposed in checking satisfaction of the given limit emission. The review shows a 
variety of approaches and techniques. Not all of them can be immediately used in analysis of 
inventories; some other are rather complicated or give no decisive answer. However, they 
clearly show that the comparison of the reported inventories, without taking into account its 
uncertainty distribution, leads to paradoxes and is not well grounded scientifically. There are 
many possibilities to choose a method for deciding, which inventory satisfies the limit, and 
which not, consistent with ordering or ranking of the inventories. Some of them, like e.g. the 
undershooting method, has been proposed earlier for this purpose (Godal et al., 2003; 
Nahorski et al., 2003), see also Jonas et al. (2010), and adapted to be used in trading of 
emissions, see additionally Nahorski et al. (2007); Nahorski and Horabik (2010, 201 I). But 
any use of techniques outlined in this paper or others, which take uncertainty into account, 
inevitably necessitates changing the presently used rules of checking compliance, which 
depend only on comparison of the reported inventories. Ignoring uncertainty is more 
hazardous to the finał result for asymmetric uncertainty distribution, which may happen in 
many national inventories, as well as when inventories with quite different uncertainty 
distributions are compared, as in the case of emissions from different activities. 

In the fuzzy approach it is possible to formulate the problem with only rather vague 
information on the inventories uncertainty. The price paid for it is only a week statements on 
ranking, much less precise than in the stochastic approach, or indecisive, providing only some 
ind i ces of possibility or necessity. They would require setting some critical values for making 
decisions. This is, however, more difficult than in the stochastic case, as intuition on the 
meaning of these indices is much smaller. For some techniąues, also those not presented in 
the above review, it is even not elear how to check compliance using the idea of ranking used 
in them. 

In spite of basie conceptual differences between the probabilistic and fuzzy approaches, 
many techniques of comparison of uncertain values are quite alike. Among them the risk 
methods in probabilistic approaches and fuzzy dominance provide similar techniques of 
checking compliance, with actually small technical differences in terminology and decision 
parameters. Although this paper has not been intended to provide a thorough comparison of 
usefulness of the techniques presented in checking compliance, these techniques look to be 
preferable for closer examination. 
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