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Abstract

The report addresses the problem of reducing uncertainty in national greenhouse gases inven-
tovies by taking into account all possible information from inventories, including all revised
valnes published usually in every few years, provided by national centres for reporting green-
honse gases inventories, as well as independent data gathered by the Carbon Dioxide Infor-
mation Analysis Center, Oak Ridge, USA. This is done by proposing a parametric model that
describes the structure of uncertainties in the inventories. A procedure for estimating param-
eters is described and preliminary results of fitting the models to data for several countries

are givell.
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Chapter 1

Introduction

The problem addressed in this report can informally be described as follows. Estimate uncer-
tainties of national emission inventories taking into account both the data revised in consec-
utive years! and correlations between inventories for different countries. In future, this may
constitute a part of further studies where data from other sources will be available in order to
constrain the uncertainty of the inventories presented to UN FCC. Only a part of the research
planned is discussed here. It is concerned with the use of data revised in different years.

The icdea sketched in this report arose during the short stay in ITASA of a group of
researchers from SRI PAS in Poland consisting of Zbigniew Nahorski, Joanna Horabik, and
Jolanta Jarnicka in the days of 5-7 July 2010. The discussion at that time with Matthias
Jonas followed the earlier email correspondence of the Polish group with Matthias Jonas and
Gregg Marland. It has been agreed that the group from Poland would focus on a part of the
issues raised up during the email discussion, partially presented in the papers by Marland (3]
and Mavland et al. {4].

The discussion was continued during the Lviv Workshop &rd International Workshop on
Uncertainty in Greenhouse Gas [nventories, Lviv, 22-24 September, 2010, with additional
participation of Gregg Marland and Khrystyna Hamal (Boychulk).

YA preliminary methodology for this has already been proposed by Khrystyna Hamal (Boychuk) (2] in her

[itering Report.






Chapter 2

Presentation of an idea

2.1 Basic questions

The approach proposed here is based on results presented by Hamal [2] but the problem is
attacked from a slightly different point of view.
To solve the problem formulated in the introduction, two questions have to be answered.

(i) how can the data revised in consecutive years be efficiently used in estimating the

uncertainty,
(it} how to find and interpret the correlations between different national inventories.

The iuterest standing under the former question is obvious. The revisions made in different
veats use different knowledge, and thus the uncertainties of the different revisions are incom-
parable. The latter question pertains to the fact, that all inventories are highly correlated
chie to similar patterns in their evolution.

Let us consider the latter question. We model the data to be composed of the “real”
enission, which we call the “deterministic” fraction and a “stochastic” fraction, related to our
lack of knowledge and imprecision of observation of the real emission. We assume that the
uncertainty is related to the stochastic part of the model. However, there may be possible to
explain partly the stochastic fraction by other variables correlated with it. In our case, the
other variables will be stochastic fractions of other inventories. Thus, first we should try to
extract the “deterministic” fraction of the inventory data and then look for correlation of the

residhands. which can be interpreted as realizations of the “stochastic” fraction. Correlation of
residials [or different countries can partly explain their stochastic fractions. The unexplained
part of the residuals will then be interpreted as “the uncertainty”. Therefore, we have to find

thie “deterministic” fraction.
2.2 Procedure for the set of revised data for a given country

Lo

Going to the first question, each revision data, for a given country, forms a realization of a
stochastic process. These stochastic processes for a fixed country are different, but related,
see Figures | and 2, as examples. They form a bunch of stochastic processes.
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Fig. 1. Graphical i{lustration of the revisions made in 1989 - 2004;
Austria, CDIAC data.
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Fig. 2. Graphical illustration of the revisions made in 1999 - 2005,
Austria, data from the National Inventory Reports.

The model proposed describes a relationship between different processes relatecd with the
revised data for a given country. We assume that the mean values of these processes are
linear functions of the differences between the revision years. Similarly, we assume that their
standard deviations are also linear functions of the same difference.

To make the above description more precise, let us turn to the mathematical formulation
of the model presented. For simplification, we assume that we work with absolute ervors,
i.e. that the stochastic part is expressed in the weight units. But we can easily interpret the
equations below as dealing with the relative errors, expressed in percents (%), by inserting
for the inventory data their logarithms. To simplify the description, let us assume that the
most recent revised data are for the year 2007. For the present paragraph assume also that we
know how to decompose these data into the deterministic and stochastic fraction. Following

the notation from Hamal [2], it can be written as
Eoor,s = Dioors + Sgoor i (2.1)

where
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12 stands for the emission inventory,

D stands for its deterministic fraction,

S stands for the stochastic fraction, and is normally distributed,

i 15 the country identification number,

xis the year, for which the revised data were recalculated, let’s say [1989, 2007].

Now. the data revised in the year y < 2007 are modeled as having the same deterministic
fraction. Thelr stochastic fraction is also normally distributed but with different parameters.
Thus they follow the same type of decomposition

Ey: = Diogri + Sy (2.2)
witly
S’j,i ~ N(m;,il U;,i)v (23)

where the means and the standard deviations are linear functions of the differences in years

when the revisions were made
77?,;,,; = (I,.L'(2007 - y), U;,i = 02007,i + 01(2007 i y)‘ (24)

To better explain the indices used we present them in the sketch from Table 1, where ¥
generalizes the exemplary year 2007. Each revised data for a given year form in it a row.

r—1 z 241 Yy
Ey',,- Ey,i Ey,i . Ey,i 0 S 0
z—1 2 T+1 Y y+1 Y
E)’,i Vi E),’,L e EY,i EY,i A EY,-i

Table 1. Indexing the data.

Parameters a; and b; above can be estimated from the data together with oaggrz;. But
Tapo7,i ¢al also be estimated in another way (see the sequel). Parameter a; describes a shift in
the accuracy of the inventory gathering, and b; ~ a shift of the precision level, both due to the
learning. The above functions can be extended to more complicated nonlinear dependencies,
il necessavy. Some of them may be linear in parameters, like for example quadratic or other
pulynomial functions. Then the method outlined below practically does not change.

The above formulation results in a multiinput-multioutput linear regression problem to
estimate the parameters a; and b;, once the deterministic fraction is extracted from the data.
The Bayes estimation can be a competitive approach, taking into account rather limited
number of data and possibility to use additional knowledge of a prior: uncertainties provided
by, at least some, countries.

We skip the details of estimation and return to the problem of how to find the deterministic
fraction. For this purpose, the smoothing splines can be used, as presented by Nahorski &
Jeda |50 This approach, when applied to the most recently revised data (e.g. for the year
2007). will give not only the estimate of the deterministic fraction, but also an estimate of

11



the variance 0yq7;, which can either be used directly in the formula for above, or as the a
priori value in the Bayes estimation.
Finally, the above procedure can be presented in the algorithmic way.

1. For the most recently revised inventory data calculate the smoothing spline and the
estimate of the variance of the stochastic fraction.

2. Subtract the spline data from all earlier revisions.

3. Use the data obtained in the linear regression or Bayes estimation to get estimates of
a; and b;, and hence also my ;, and o ;.

This gives the full description of the inventory data for all the revisions. Having obtained ny
and U;,i it is possible to scale all the data to the A(0, o9007:) distribution in order to get a
set of homogeneous residuals. There will be one or more residnals for a given year, depending
on the number of the revised data available for this year.

2.3 Finding the correlation structure in the data for many
countries

The sets of homogeneous residuals for each country may be examined for commou corrcla-
tions. One can expect that some group of strongly correlated countries may emerge in the
examination. Different methods to cluster the countries into such groups can be used. They
may be considered as similar countries. For each cluster a common model, which includes the
correlations of data, can be fitted. The models obtained will provide us with the uncertainty
estimates. These, as yet slightly vague deliberations will be presented more precisely in futnre
reports.

12




Chapter 3

First attempt: revisions treated
independently

3.1 Notation
From uow on, the following notation will be used.
1 — a country label,
J = number of revisions made,
yj - vear of revision, j =1,...,J,
Y - the last year, for which the data are available,

1\’_,}];’11 - uumber of data revised in the year y; (for fixed Y and ¢, simplified to Nj),

a™ ~ year, for which the data are calculated, n =1,..., Ny,
Ly, — the data in the year = revised in the year y,

Y e difference of E;, and the spline built for the data from the year Y (for fixed ¥

2
i

and i denoted by UJ”),

i} the expected value related to u;;"ll, with respect to years n =1,..., N; (simplified to

.
my for the given Y and 1),

UY’{ - the standard cdeviation related to v;;t" with respect to years n = 1,..., N; (simplified

Yi
to oy for the given Y and ¢).

3.2 ML estimators of the model parameters

<

The ain is to check that part of the algorithm which consists of construction of the spline
functions, as well as to check the basic assumptions of a shift in the mean values, and standard
deviations, in dependence of the lag in preparation of the inventories.
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Fix 1 and Y and consider differences v of E;’:l and the spline built on the data from the

year V. Assume that
o~ N(mgos), G=100,0

where

m]-=a]-(Y—yj) Uj:0y+b]' f(Y—-y_,-), l)j 20, (3.1)
and f is a given function, such that f(Y —~y;) > -”—3?, Jj=1,...,J. Assume also that ¢
are independent. Our goal is to estimate the unknown parameters aj, by, § = 1,...,.J. and

possibly oy
For a fixed j the likelihood function L(p), where p = (a;,b;,0y), has the form

1 N; ['“ _mJ]2
Lip) = —x—— L, XPW

VI ()

so its logarithm is given by
1 -
InL(p) =—-N;Inv2r — N;lnog; — o Z [vf - 777/]'}2,
].

where N; is the number of differences v;. Taking into account equations (3.1), we obtain the
necessary optimality conditions of the form

OinL(p) Y-y _ N 5
da; (v 5 f(Y — ;)2 HZ: - (Y —y;)] =0, (3:2)
d1n L(p) N; f(Y —y5) JY —y5)
. - - =0, (3
a; vt b JV —3p) oy + b 77 —5;) 3,; = )] =0 5
N;
dlnL(p) N; 1 > _ '
doy oy + b f(Y —yy) (Uy +05 f(Y — ;) HZ_: el J])] =00
From equation (3.2) we have the estimator of a;
1 5
“ NJ(Y—yj);Uj )

Equations (3.3) and (3.4) are linearly dependent, but assuming that ¢y is given, we can
determine estimator of b;. We get the following formula

- NJ T
where 7; = N na1 U

In sections 4.1 and 4.2 we consider functions f of the form
f¥V —y)) =Y —y;, j=1,...,J, and f(Y -y;)=+Y ~y;, J=1,...,J

Given the function f, he sequences @; and Ej, j=1,...,J can be calculated and then depicted
in graphs, as functions of y;, to test visually their constance.
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3.3  Bstimator of the model parameters covariance matrix

Under mild assumptions the maximum likelthood parameter estimators are asymptotically
normal and unbiased with the asymptotic covariance matrix

c'?ZIuL(p)}— (3.7)

r=-g 250pT

where now pT = [a;  by] is the vector of the maximum likelihood parameter estimators.
To hud the estimator of the covariance matrix the Hessian matrix of the second derivatives

. 92 L(p) &*mLip
_ 9*InL(p) a7 b;0a;

Z AR i
- T = nl(p) &*nLp
apap Ba,-ab,» abj

has to be calculated. Its entries are given by

PinL(p) (Y —y;)?

9a? oy +bfY - y)?
Tl L) A0S Sy -y,

1964 g oy +0; /(Y —y;3))2 .=
&*1n L(p) TRt y] Z < 3(”?’“”‘]’(}/"1/]'))2)

ov? (UY‘H’f 170) et (ov + ;£ (Y = y;))? )

Now inserting the maximum likelihood estimators we get
Fhnip) (Y -y)’
S N

9% In L{p) :c?zlnL(p) _ LAY -y Y ) Z(

a1 ~ o N]‘
Ob; s 9a;0b; (N% Zn—l(vj - 5) )2

P InL{p) _ Y - vj) %’: ) 3(1}}1 — 17]')2 _
05‘2 T Ny 5 B 1 N n 5 )2 -
b 7 j

Ny 11=1(’U_;1 - Uj)z n=1 ; Zn:l(vj — Uy

] 3
=N-f2(Y—y-)<l - ———~————>
! ’ ﬁl; val(un - Dj)z

2
Ler ns note that the element a—l;—é@l may either be positive or negative, depending on the

n=1

. . o . 7 . . . . .
data. If it is positive, the Hesslan matrix cannot be negative definite. Thus, the likelihood
function may possibly have more than one local maximum.
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Chapter 4

Preliminary estimation for several
countries

4.1 CDIAC data analysis for Austria

4.1.1 Data

We skart with the analysis of the CDIAC! data presented in Figure 1, for Austria, in 1989
- 2004, For the data for the year ¥ = 2004, we build a smoothing spline, according to the
procedire given in [5). The result obtained, is shown (in red) in Figure 3, together with data

from the year Y.

= iy
(=) ,’/I
i I
Ls
Ll
L]
S
,
< 8 'y
S 8 S
o e @
& = Lee®
" /
= L %
<1 -
271, —°"
d
— l2Z..a
| T T

1990 1995 2000
year
iy, 3. Smoothing spline; CDIAC data from the year ¥ = 2004, Austria; o004 = 638.7.

The data analyzed, come from the years 1986,1989,1990,1992,1998,1999,2000,2002,2003,
and 2004, They were recalculated in the years 1989,1990,1992,1998,1999,2000,2002,2003, and

'CDIAC - The Carbon Dioxide Information Analysis Center, of the U.S. Department of Energy, located
at the Oak Ridge National Laboratory. It provides continuous observations on atmospheric trace gases like
e.g. CO2 emissions. We analyze global CO2 emissions data from fossil-fuel burning, expressed in million metric

tons of carbon.
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2004. We calculate differences between the revisions of the data (until 2003) and the smoothing
spline (Figure 4).

1000

500

v
0

~500

-1000

1990 1995 2000

year_j

Fig. 4. Differences v}'; CDIAC data, Y = 2004, Austria

4.1.2 Model 1, f(Y —y;) =Y —y;

Starting with
f(Y_y]):Y_ij j:]'l"'!‘]i

and hence

my = a; (¥ — y;), oj = ay +b; (Y —y;), (4.1)

we use formulas (3.5) and (3.6) to estimate parameters a; and b; (Figure 5), where the estimate
of o004 = 638.7 was calculated when building the smoothing spline. Having obtained @, and
by, we get my and o; (Figure 6). The estimates are gathered in Table 2.

27 0 o
.
= . o . * ¢
. 8
o .
& ) g | .
. o
J 2 g
2 o
2
i s
g |
Y
o 3
g » L .
b T Al T T T T T L T T T 1 7T
1950 1984 1938 2002 1980 1894 1898 2002
year J yoar_j

Fig. 5. Estimates of parameters a; and b;; model (4.1); Austria.
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Fig. 6. Calculated values of m; and o;; model (4.1); Austria.

Figire 5 shows that the coefficients @, until the year 2002, are arranged along consecutive
vears. Ji may be noted that @agos, stands out from the other values. The same is for the
cocfficient Egom‘ Except of these coefficients, and perhaps 32002, the rest of them have quite
similar values in the respective groups. The means of the sequences G; and 3]- are drawn
as constant lines in Figure 7. The mean value for the sequence of @; equals -29.7, and its
standard deviation 94.4. For the sequence Ej the mean value is equal to -61.4, and its standard

deviation to 85.8.

-
2 . . . . - . . .
.
S . 7
7 T 2 .
:
< 2 g |
2 T
T § B
¥
H
3 . § 7 .
1990 1994 1998 2002 1990 1994 1998 2002
year i year

Fig. 7. Mean values for @; and Ej; model (4.1; Austria).

Accordiug to (4.1), the values m; and ¢; should be linear. To check it, straight lines have
heen fitted to these sequences (Figure 8). For the data analyzed, the ratio R? are equal to

61 and 54%.

.
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4 ¥ 3 <
E . o
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R o
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: 3
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yearj year_}

Fig. 8. Linear regression for m; and o;; model (4.1); Austria.
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K 1989 1990 1992 1998 1999 2000 2002 2003 niean | std
a5 33.18 20.9 2.02 -33.75 | -43.74 | -12.2 46.34 | -250.04 | -29.7 | 94.4
b; -20.07 | -35.62 | -26.39 | -24.92 -9.77 | -18.62 | -91.11 | -264.43 | -61.4 | 85.8

my | 497.77 | 292.62 24.2 -202.51 | -218.7 | -48.81 [ 92.67 | -250.04 | R = 0.61 1
rcrj 337.6 | 140.05 | 322.1 | 489.23 | 589.9 | 564.26 | 456.5 374.3 R?=10.54 T
Table 2. Estimates of parameters in the model {4.1); Austria, CDIAC data.

The question then arises whether the assumption of a linear model for the mean valie
and standard deviation was justified. To better assess it, the data for other countries will he
analyzed, as well as other data sets, e.g. from the National Inventory Reports (Section 4.2).
However, before that, we examine another model, with a nonlinear function f.

4.1.3 Model 2, f(Y —y;) = /Y —y;

Before we analyze other data sets, we consider a modification of the model, i.e.

) =T =L,
m; = a; (Y — y;), o5 = oy + bj\/Y —y;. (4.2)

Using formulas (3.5) and (3.6) together with (4.2}, we obtain the following results (Fig. 9 - 10).

3 5
., ol N
o . 7 .
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? C e 8 | .
- P . .
4 2 8]
2
5 g
g
;
] . CE
1 T T T T T T T T T T LN T T T
1990 1994 1898 2002 1980 1994 1998 2002
year_j year_j

Fig. 9. Estimates of parameters a; and bj; model (4.2); Austria.
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Fig. 10. Calculated values of m; and o;; model (4.2); Austria.

The values estimated are shown in Table 3, and the fit of the model (4.2} is illustrated
in Figures 11 and 12. The results for 4; and m; did not change. The main changes occured
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tor by, Now, the mean value is -102,0 and the standard deviation 76,6. The change of model
caused decrease of the mean value and standard deviation. Thus, the new sequence of b; is
now closer to a constant line, see Figure 11.
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year_j yoar_j

Fig. 11. Mean values for &; and b;; model (4.2); Austria.
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Fig. 12. Regression functions for m; and oy; model (4.2); Austria.

Figure 12 shows the regression function, fitted to sequences of m;, and 05,7 =1,...,J. In
the case of s, we obtain, as in the model (4.1), a linear function. However, to the sequence
of o; a nonlinear regression function (in blue) was fitted. Due to the fact that locally it gives
the impression of a linear one, we also included a graph of the function itself.

B 1989 1950 | 1992 1998 1999 T 2000 [ 2002 | 2003 mean | std
2] 33.18 20.9 2.02 -33.75 | -43.74 | -12.2 46.34 | -250.04 | -29.7 | 94.4
@J -77.8 | -133.3 | -91.4 | -61.03 | -21.8 | -37.24 | -128.9 | -264.4 | -102.0 | 76.6
my | 497.77 292.6‘2—, 242 | -202.51 [ -218.7 | -48.81 | 92.67 | -250.04 | RZ =0.61 |
| oj | 337.6 [ 140.04 | 322.1 | 489.2 | 589.9 [ 564.3 | 456.5 | 3743 | R =046 |
Table 3. Estimates of parameters in the model (4.2); Austria, CDIAC data.

Comparing the results obtained using model (4.2) with those obtained using model (4.1),
it can be seen that modification gave a change in the sequence of 5j, which is now much closer
to the constant one. To better examine which of the models allows us to obtain a better fit,
we will analyze another data sets (Section 4.2).



4.2 Analysis of the data from the Austrian National Inventory
Reports

4.2.1 Data

In this section we analyze data from the National Inventory Reports?. For a better com-
parison of the results obtained, with those from section 4.1, we consider again the data for
Austria. The data refer to COy emissions in the years 1990 — 2005, and recalculations (re-
visions), performed every year, from 1999 to 2005. We start, as before, with building &
smoothing spline for the data of year ¥ = 2005 (Figure 13).
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Fig. 13. Smoothing spline; data from National Inventory Reports; Y = 2005, Austria;
T2005 = 2065.5.
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Fig. 14. Differences v data from National Inventory Reports; ¥ = 2005, Austria

2 According to United Nations Framework Convention on Climate Change (UNFCCC), each of the countrius
which have signed the Convention, is obliged to provide annually data on greenhouse gas inventorics.

22




Then we calculate the differences v}, between the constructed spline, and subsequent revisions
of the data, carried out in 1999 - 2004. The results are shown in Figure 14,

4.2.2 Model 1

We start with the model (4.1). Differences v} and formulas (3.5), and (3.6), are used
to estimate the parameters a; and b; (Figure 15). Estimates 4; and Ej make it possible to
calculate the values m; and o; (Figure 16).
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Fig. 15. Estimates of parameters a; and b;; model (4.1); Austria.
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Fig. 16. Calculated values of m; and oj; model (4.1); Austria.

I contrast to the CDIAC data, in this case, the l;j sequence is characterized by an evident
decreasing linear trend. Coefficients G; seem to be quite dispersed. To investigate the con-
stance ot sequences @; and {}]‘, as well as the linearity of m; and o, we calculate, as previously,
the mean values and the linear regression, and then test goodness of fit of a linear model. The
vesults are depicted in Figures 17 and 18, and in Table 4.
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Fig. 17. Mean values for 4; and b;; model (4.1); Austria.
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Fig. 18. Linear regression for m; and ¢;; model {4.1); Austria.

j | 1999 [ 2000 [ 2001 [ 2002 [ 2003 2004 [ mean | std
a; | 36.25 | -2.72 | 260.81 | 402.24 | 330.49 | -3.21 | 170.6 | 182.0
bj | -149.16 | -190.50 | -262.85 | -335.42 | -582.58 | -1004.44 | -435.8 | 357.1
[my [ 181.23 | -13.58 | 1043.25 | 1206.73 | 660.98 | -3.20 | R =037 ]
 o; | 1170.6 [ 1113.01 | 1014.1 [1059.28 [ 900.38 | 971.1 |[R?*=076 |

Table 4. Estimates of parameters in the model (4.1); Austria; data from the National
Inventory Reports.

4.2.3 Model 2

Now, consider the model (4.2). The results of the analysis conducted are shown in Figures
19 - 22, and in Table 5.
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Fig. 19. Estimates of parameters a; and b;; model (4.2); Austria.
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Fig. 22. Regression functions for m; and o;; model (4.2); Austria.
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std

[y 2000 | 2001 2002 2003 2004 | mean
| a; | -383.04 | -480.5 | -258.48 | 338.06 | -52.45 |-168.3 | 325.5
by | -20.54 | -50.41 | -93.19 | -230.50 | -404.20 | -161.6 | 156.6
[ my [ -1940.21 | -1921.99 [ -775.45 | 676.13 | -52.45 | R>=10.77
o; | 225240 | 21098.5 | 2120.55 | 1938.94 | 1995.83 [ R* = 0.85

Table 6. Estimates of parameters in the model (4.1); Belgium, data from the
National Inventory Reports.

The square root model for oy
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Fig. 26. Calculated values of m; and oy; model (4.2); Belgium.

2004

J_] 2000 2001 2002 | 2003 | 2004 | mean [ std
Gy | -388.04 | -480.5 | -258.48 | 338.06 | -52.45 | -168.3 | 3255

[ by | -66.07 | -100.8 | -161.4 | -326.1 | -404.3 | -211.7 | 14638
my | -1940.21 | -1921.99 | -775.45 [ 676.13 | -52.45 | B? = 0.77
o; | 2252.4 | 21985 | 2120.5 | 1938.9 | 1995.8 | R? = 0.96 B

Table 7. Estimates of parameters in the model (4.2); Belgium, data from the
National Inventory Reports.



4.3.2 Netherlands

The linear model for
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Fig. 28. Calculated values of m; and o;; model (4.1); Netherlands.

[ 1999 2000 2001 2002 2003 2004 | mean | std
a; | -776.86 | -370.23 | -507.11 | -425.31 | 619.04 | 88.69 |-228.6 | 5012
b; | 8.8 | -99.68 | -33.39 | 101.6 | -586.9 | -1321.77 | -309.0 | 556.3
my; [ -3884.32 | -1851.16 | -2028.45 | -1275.94 [ 1238.08 | 88.69 [ R’ =0.65
oj | 372578 | 2712.1 [ 3076.95 | 3515.31 [2036.71 | 1338.73 | R? = 0.50

Inventory Reports.
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Table 8. Estimates of parameters in the model (4.1); Netherlands; data from the National




The square root model for o;
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Fig. 29. Estimates of parameters a; and b;; model (4.2); Netherlands.
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Fig. 30. Calculated values of m; and o;; model (4.2); Netherlands.

1999 2000 2001 2002 2003 2004 mean std
-776.86 | -370.23 -507.11 | -425.31 619.04 88.69 -228.6 | 501.2
210.4 -222.9 -66.78 175.9 [ -829.9 | -1321.8 | -342.5 | 610.1
5 | -3884.32 | -1851.16 | -2028.45 | -1275.94 | 1238.08 | 88.60 | R®=0.65
5 | 3725.78 2712.1 3076.95 | 3515.31 { 2036.71 | 1888.73 | R* = 0.59
Table 9. Estimates of parameters in the model (4.2); Netherlands; data from the National
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4.3.3 Denmark
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3000 3200

2800

2000 2001

2002 2003

yeacj

2004

[[7 ] 2000 ] 2001 | 2002 | 2003 | 2004 | mean std
@; | -1264 | -21.32 | -1.76 | -560.9 | -8.46 | -121.0 246.0
b; | -336.2 | -459.6 | -649.8 [ -1235.1 { -2079.8 | -952.1 7185 |
m; | 632 | -85.29 | -527 |-1121.9| -846 | R*=0.10 |
o, | 32885 [ 3131.2 | 3020.02 [ 2499.3 | 2889.7 [ R* =058 |

National Inventory Reports.
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Table 10. Estimates of parameters in the model (4.1); Denmark, data from the




The square root model for oy
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Pig. 34. Calculated values of m; and o;; modet (4.2); Denmark.
[ j ] 2000 | 2001 2002 | 2003 2004 | mean std |
[a; [ 1264 | 2132 | -1.76 | 5609 | -8.46 | -121.0 2460 |
[ b, 1-751.8 [-919.1 | -1125.5 | -1746.7 | -2079.8 | -1324.6 | 5658 |
['m;] 632 [-8529 | 527 [-11219] -846 [ RZ=0.10 |
| oj | 3288.4]3131.3 | 3020.02 | 2499.3 | 2889.6 | R* = 0.50 ]

Table 11. Estimates of parameters in the model (4.2); Denmark; data from the

National Inventory Reports.
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4.3.4 Finland

The linear model for o;
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Fig. 35. Estimates of parameters a; and bj; model (4.1); Finland.
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Fig. 36. Calculated values of m; and o;; model (4.1); Finland.

J 1999 2000 2001 2002 2003 2004 mean | std
a; | -768.21 | -902.93 | -1154.69 | -1487.88 | 67.41 -57.67 | -717.3 | 612.0
b; | -189.17 | -239.84 | -303.95 | -392.80 | -549.09 | -1268.7 | -490.6 | 401.7 |
m; | -3841.05 | -4514.67 | -4618.74 | -4463.63 | 134.83 | -57.67 | k% = 0.60

o; | 1590.14 | 1525.97 | 1509.38 | 1546.52 | 1627.0 | 1456.49 | R* = 0.48

National Inventory Reports.

Table 12. Estimates of parameters in the model (4.1); Finland, data from the
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The square root model for o;
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Fig. 38. Calculated values of m; and oj; mode! (4.2); Finland.
j | 1999 2000 2001 | 2002 ] 2003 | 2004 | mean | std
aj | -768.21 | -902.93 | -1154.69 | -1487.88 | 67.41 | -57.67 | -717.3 | 612.1
by | -463.4 | -536.3 | -607.9 | -680.5 | -776.5 | -1268.7 [ -722,2 | 289.1
my [ -3841.05 | -4514.67 [ -4618.74 | -4463.63 | 134.83 | -57.67 | 12> = 0.60
oy | 15901 | 1525.0 | 1509.4 | 15465 | 1627 | 1456.5 | R* =0.84

Inventory Reports.
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Table 13. Estimates of parameters in the model (4.2); Finland, data from the National




4.3.5 UK

The linear model for o;
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Fig. 39. Estimates of parameters a; and b;; model (4.1); UK.
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Fig. 40. Calculated values of m; and o;; model (4.1); UK.

[y 1999 2000 2001 2002 2003 2004 | mean | std

G; | 13046 | 1373.9 | 1068.08 | 2026.57 | 265.03 | -749.99 | 881.4 | 980.7
b; | -189.17 | -239.84 | -303.95 | -392.89 | -549.09 | -1268.7 | -490.0 | 401.7
m; | -3841.05 | -4514.67 | -4618.74 | -4463.63 | 134.83 | -57.67 | R = 0.60 |
o; | 1590.14 | 1525.97 | 1509.38 | 1546.52 | 1627.0 | 1456.49 | R = 0.84 1

Inventory Reports.
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Table 14. Estimates of parameters in the model (4.1); UK; data from the National



The square root model for o;
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Fig. 41. Estimates of parameters a; and b;; model (4.2); UK.
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Fig. 42. Calculated values of m; and ¢;; model (4.2); UK.

E]’ ) 1999 2000 2001 2002 2003 2004 mean | std |
G ]7 1304.6 1373.9 1068.08 | 2026.57 | 265.03 | -749.99 | 881.4 | 980.7
; -465.4 -868.5 -644.6 -755.06 | -703.9 | -1227.4 | -777.5 | 257.6
171317-3841‘05 -4514.67 | -4618.74 | -4463.63 | 134.83 | -57.67 | R®> =0.60
o; | 76915 | 6889.5 | 75423 | 7523.7 | 7836 | 7604.16 | R? = 0.43
Table 15. Estimates of parameters in the model (4.2); UK, data from the National

Inventory Reports.

Sununing up the above results, the model (4.2) improves constance of the sequence 13]- in
alinost all cases, except for the Netherland. However, the sequence b is still decreasing. This
means that it is possible to find a better model, which will provide a sequence of b; much

closer to a constant sequence.
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Chapter 5

First attempt: All revisions considered
together

5.1 Maximum likelihood estimators

We assume now that the parameters in the expected value and standard deviation models
do not depend on revisions, that is a and b do not depend on j. Thus, the model has the
following form

mj=alY —y;)  oj=oy +0f(¥Y —y;), 0#0, (5.1)

where f is a function, satisfying f(¥" ~y;) > —%F. Now, we consider all data, for all revisions,

that is ZJ] N; data.
The likelihood function is now equal to

2
1 Ny [} — my]
L(p) = Ty~ TI%, exp —L <
7=1 QTFNJ(O'j)Ni =1 .7( )
and its logarithm
o 1 N a
InL{p) = Z [— Njlnv2r — Njlnoj — W Z [of —-mj]'}.
J=1 n=1
Taking into account model {5.1), we get the first order necessary optimality conditions of the
form
N.
Jn L(p) - y5) SN
—_— e vl —a(Y —y;)} =0, (5.2)
chat JZ;(U\ +bf( J]))OLZI[ 7 7 }

II

OlnL J —~N;f(Y —y;) ¥ —y3) 2] _
g[m FEFV =) " oy + 0707 - J]))BZ w - aly —5))] =0, 653

=1

dln L(p I 2
doy: Z[U) +bf - y5) +(U)’+bf(y‘y )BZ oY - )] } =0 (54)

j=1
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Equations (5.3) and (5.4) are linearly dependent, so it is impossible to estimate both b and
oy. Only the sum oy + b f(¥ —y;) can be calculated from each of those equations. As beforr,
we therefore assume that the estimate of oy is known.

From equation (5.2) we can find the estimate of a of the form

J Y—y; Ni n
L= Ty s g v Y
J N; (Y -y;)°
7=1 {oy+0 F{¥Y —y;))
To find an estimate of b it is necessary to solve one of nonlinear equations — (5.3) or (5.4},

substituting the estimate d for a. Thus, to estimate the parameters a and b, one needs to

solve numerically the system of equations (5.2) ~(5.3) or (5.2) - (5.4).
To find the asymptotic parametric covariance matrix, we calculate the second derivatives.

a=

821nL(p N Y —y) f (Y —y;) .
Z [oy +bf(Y — y])]z (5.5)
8% In L( 2y —
—;9‘51)‘?_)‘ Z[U—Yf%f('yi“?z_: 7= a(Y — ;)] {5.6)
BInLp) =~ Nf(Y ) 3F(Y — ) . ,
T T LTy T b T Z[ e =il
J
_ f¥ - y;) 4 3 P
= Zl[dy+bf(yiy])]2[ J [Uy+bf(Y y] 2; - (t() UI)]]
J N
- - fY —y) _ 3y —aY —gy))? -
a jzz‘;,;[UY+bf(Y-yj)]2 [1 [UY‘*'bf(Y"yj)]z} 6.7)

As before, there is no guarantee that the Hessian matrix is negative definite.
To find the covariance matrix, the maximum likelihood parameter estimates have to be
inserted and the Hessian matrix inverted.

5.2 Data analysis

Let us apply the model

F¥-y) =Y~y J=1,...,
mj = a(Y —y;) o =oy +6(Y - y;) (5.8

o

)

to previously analyzed data, starting with Austria. The parameter estimates are depicted in
Table 16. For comparison, the mean values of the sequences d; and Bj, together with their
mean square deviations from & and f), respectively, are given. The mean square deviations are
calculated according to the following formulas.
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Data a meaﬂ Sa b } mean L Sp
CDIAC data | -29.01 | -29.7 l 94.4 —22.13[ -61.4 95.5
NatInv.Rep. | 218.12 | 170.6 [ 189.3 [ -387.7 [ -435.8 | 361.0 |
Table 16. Estimates of parameters a and b in the model (5.8); Austria.

To illustrate the results, we present them in Figures 43 and 44, together with sequences
iy and by, calculated in section 4.1 and 4.2.
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Fig. 43. Estimates of parameters ¢ and b; model (5.8); Austria; CDIAC data.
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Fig. 44. Estimates of parameters a and d; model (5.8); Austria;
data from the National Inventory Reports.

We also conduct the analysis for other data sets from section 4.2 (the results obtained are
in Table 17 below).

| Country a mean b Lmean
{ Belgium | -331.47 [-168.3 [ -62.28 | -1616
metllel'l’dllds -411.86 | -228.6 | -30.9 -309.0
Denmark -36.98 | -121.0 | -513.83 -952.1
Finland -734.04 | -717.3 | -562.6 -490.6
UK 1285.95 | 881.4 | -328.17 | -490.6

Table 17. Estimates of parameters e and b; model (5.8)
for EU countries, considered in section 4.2.
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Now we consider model of the form

f(Y_y]):VY‘yJ’ jzlz"'y'-]v

m; = a(Y —y;)

and apply it to the CDIAC data for Austr

Inventory Reports. The results obtained are

o; =0y +b/Y ~y;, (5.9)

ia and to the data from the Austrian National
presented in Table 18, and in Figures 45 aud 46.

Data a mean

Sa b mean N

CDIAC -28.8 | -29.7

94.4 | -79.92 | -101.98 344.2

Nat.Inv.Rep. | 217.1 | 170.6

189.0 [ -604.7 | -435.8 | 2824 |

Table 18. Estimates of paramete
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Fig. 46. Estimates of parameters a and &; model (5.9); Austria;
data from the National Inventory Reports.

Finally, we use the model (5.9) to data from the National Inventory Reports for EU
countries analyzed in section 4.2. Results of the analysis are presented in Table 19.
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[ Country [ mean b mean
Belgium -301.6 | -168.3 | -122.0 -161.6
Netherlands | -396.6 | -228.6 | -261.1 -309.0
Denmark -55.8 ] -121.0 { -633.4 -952.1
Finland -729.2 | -717.3 | -577.5 -490.6
UK 1156.5 | 8814 | -369.6 | -490.6

Table 19. Estimates of parameters a and b; model (5.9)
for EU countries, considered in section 4.2.

These are very preliminary results, just showing possibility of calculations. Much better
interpretation of these models will be possible when the nonlinear model for the revisions
treated independently is found.
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Chapter 6
Conclusions

In this report an idea of a model describing the learning process in evaluation of the national
emissions is presented. The maximum likelihood estimators of the model parameters and their
covariance matrix have been derived. Preliminary calculations for data from several countries
and a discussion on choice of the model have been done.

The following preliminary conclusion can be drawn at this stage.

o The square roat model parameter estimates are closer to the mean values than those for
the linear model. However, the sequence of estimates b; have clear decreasing patterns.

This suggests that a better model can still be found.

Comparison of the results from the CDIAC and National Inventory Report data for
Austria shows that they have quite different characters. In particular, while the variance
for the latter data have a decreasing trend, the trend for the former data is rather
increasing. As the decreasing character can easily be interpreted to be due to learning,
it is rather difficult at this stage to interpret the increasing variance of the CDIAC data.

The sequences of &; do not show clear common trend for data from examined countries.
Perhaps a model of the form m; = ay;(Y — a;) + ag;(Y — y;)? could be tried, with very
different estimates of parameters. The problem, which could be spotted, is connected
with very small number of data in each revision (5-6 values). This may not be enough
for good estimation of an additional parameter.
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