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Abstract. In this paper we apply a linear regression with spatial random effect to 
model geographically distributed emission inventory data. The study presented is on 
N20 emission assessments for municipalities of southern Norway and on activities 
related to emissions (proxy data). Taking advantage of spatial dimension of the 
emission process, the method proposed is intended to improve inventory extension 
beyond its earlier coverage. For this, the proxy data are used. The conditional au­
toregressive model is used to account for spatial correlation between municipalities. 
Parameter estimation is based on the maximum likelihood method and the optimal 
predictor is developed. The results indicate that inclusion of a spatial dependence 
component lead to improvement in both representation of the observed data set and 
prediction. 

Keywords: geographically distributed emission inventories, conditionally autore­
gressive models, spatial prediction 

1. Introduction 

This study focus on a spatial aspect of inventories for atmospheric 
pollutants. The study is motivated with situations when emission in­
ventory is to be expanded beyond its present coverage, where relevant 
activity data are missing. In absence of measured data ( activities) con­
tributing to emissions, proxy data 'about' activities can be used. The 
aim is to provide a tool to improve inventory, developed with proxy 
data, by taking advantage of spatial correlation of an emission process. 

In case of greenhouse gases, spatial resolution is usually not crucial 
for the emission effect as such. However, there are severa! situations 
when spatial dimension is needed. In elaborated models of climate 
change, for instance model HadAM3 of the British Meteorological Office 
(Pope et al., 2000), transport of greenhouse gases is modelled similarly 
to other pollutants, e.g. SOx and NOx. vVith growing resolution, for 

t Praca zaakceptowana do druku w czasopiśmie Climatic Change. 

* © 2009 I<luwer Academic Publishers. Printed in the Netherlands. 
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instance in national models of this kind, a need for finer grid of in­
ventory data becomes important. The proposed method can be used 
for this purpose. Other examples include validations of regional in­
ventories by field measurements or by inverse modelling in top down 
approaches (Ciais et al., 2009; Rivier et al., 2009). 

The topie of spatial heterogeneity of greenhouse gas emissions and 
sequestration can be addressed in various ways. For instance, the spatial 
distribution of greenhouse gas emissions for Ukraine has been presented 
in (Bun et al., 2009). (Theloke et al., 2007) develop a methodology for 
spatial (and tempora]) disaggregation of greenhouse gas annual country 
totals. (Oijen and Thomson, 2009) used a process-based forest model 
which accounts for spatial distribution of climate and soi!; a Bayesian 
calibration was employed to quantify uncertainties. 

When performing a statistical inference of spatial inventory data, we 
account for the fact that values at proximate locations tend to be more 
alike. This can be modelled by using spatial statistics. Moreover, since 
for each grid cell we have information on aggregated emission values, 
these are called areał data (also known as lattice data). A popular tool 
for incorporating this kind of spatial information is the conditional 
autoregressive (CAR) model proposed by (Besag, 1974). As opposed 
to the geostatistical models with spatially continuous data, the CAR 
models have been developed to account for a situation where the set 
of all possible spatial locations is countable. The idea is to define a 
model in terms of the conditional distribution of the observation at 
one location given its values at other neighbouring locations. Applica­
tions of the CAR model include, among others, mapping diseases in 
counties and modelling particnlate matter air pollution in space and 
time (Kaiser et al., 2002). 

The aim of the present paper is to demonstrate usefulness of the 
CAR model to analyse data from spatially distributed emission in­
ventory. With available proxy data related to emissions and an inde­
pendent set of ( modelled or measured) emission assessments, one may 
build a suitable regression model. Inclusion of the spatial component 
is intended to improve estimation results, compensating for weaker ex­
planatory power of proxy information. Based on the model, we develop 
the optima! predictor to extend the inventory. 

The outline of the study is the following. Section 2 presents an 
illustrative data set, including an initial non-spatial model. As a next 
step, the model is enriched with a spatial random effect. We use the 
conditional autoregressive structure to account for a spatial correla­
tion between neighbouring areas (municipalities, in this case). The 
model is characterized in Section 3. It comprises model formulation , 
estimation and prediction. Results a.re presented in Section 4 - we fit 

HorabikNahorski•ExternalReview. tex; 18/11/2009; 11: 07; p. 2 



3 

the spatial model and assess its predictive performance by means of a 
cross-validation procedure. Section 5 contains finał remarks . 

2. Preliminary explorations 

Our illustration is provided with the data set on N2O emissions re­
ported in 2006 for municipalities of southern Norway. In 2006, the 
main contributors to the country total N2O emissions were as follows 
(National Inventory Report, 2008). 47% of ernissions were attributed 
to agriculture, with agricultural soi! as the most important source. The 
second most important source was production of nitric acid in two 
plants, which accounted for 37%. Nitric acid is used in the production 
of fertilizer. Emissions from road traflic arnounted to 4 %. The remaining 
12% included emissions from e.g. manure management and waste-water 
handling. 

The considered map of southern Norway covers 259 municipalities 
out of 431 in the whole of Norway. The data come from the StatBank 
(available at http://www.ssb.no) in Statistics Norway. According to 
the StatBank identification system, the area of our interest covers the 
municipalities of nurnbers from 0101 to 1449. One of the mentioned 
nitric acid plants is operating in Porsgrunn municipality, which is a 
relatively small municipality located near the southern coast of the 
considered area, see also (Perez-Rarnirez , 2007) . Emissions from this 
kind of point sources are usually reported and there is no need to model 
them. In our analysis we do not consider emissions from this source. 

The municipalities have been chosen by the StatBank as the smallest 
unit for geographical distribution of emissions. Details on the Norwe­
gian emission model can be found in (Sandmo, 2009). 

Out of the statistics available in the StatBank at the municipal level, 
we consider the following variables that might explain spatial distribu­
tion of N2O emissions. Figures on livestock and detailed statistics on 
agricultural usage are the ones that are the most relevant to the N2O 
emissions. However, these data sets contained a large number of missing 
values, and as such were of poor quality. Emissions from agriculture can 
be generally characterized with data on agricultural area in use as well 
as with data on persons employed in agriculture. Regarding emissions 
from stationary and mobile sources, data on population can be of use. 
Besides the Porsgrunn plant, emissions from fertilizer production occurs 
in a small number of municipalities . There is a Jack of statistics on 
relevant production, financial data or employment at the municipal 
level (Flugsrud et al., 2009). 
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Independence of the above-mentioned variables from the emission 
data was consulted with the inventory preparers from Statistics Norway 
(Flugsrud et al., 2009). We found out that for the municipal emis­
sion assessments they used figures from the agricultural statistics that 
are both more detailed and more comprehensive than those described 
above. In addition, a model that estimates emissions of ammonia from 
agriculture were used, as were figures on energy use. 

Let us denote1 
y; - N2O emissions (tonnes) (Table 03535) , y = (y1, ... , Yn)T 

x;,1 - agricultural area in use (decare) (Table 06462), 

X1 = (x1,l, • • •, Xn,l)T 

x;,2 persons employed in agriculture (Table 03324), 

xz = (x1,2, ... , Xn,zf 
Xi,3 - population (Table 05231), x3 = (x1,3, ... , Xn,3)T. 

Figure 1 presents a scatterplot matrix for these data. We notice that 
the relationship between y and x1 is more pronounced than between 
y and Xz. Our aim is to explore opportunities for improvements of 
inventory prepared in the absence of information on agricultural area 
(x1) activity, but using data on persons employed in agriculture (x2) 
as its proxy. Therefore we define a multiple regression model 

(1) 

where €; are independent random variables following norma! distribu­
tion with mean equal O and variance a 2 and i = 1, ... , 259 indexes 
municipalities. In the sequel we compare results of the above model 
to the one with variable x1 instead of xz. We distinguish between an 
observation (y;) and a random variable (.Y;) generating this observation. 
In the model (1) regression coefficients of the covariates x2 and x3 have 
p-values equal 2e-16 and 2.07e-09, respectively. The model explains 
79% of variability in N2O emissions - coefficient of detennination is 
R2 = 0.79. 

Residuals of the model, that is responses minus fitted values, are 
presented in Figure 2: a residua! plot (a) and a map (b) . From a 
residua! map we can identify the cluster of municipalities with under­
estimated emissions (yielding positive residuals) in the eastern part; 
moreover municipalities with highly overestimated emissions (yielding 
negative residuals) are located in the western region. In Figure 2(a) 
residuals are plotted against municipality numbers. Since municipali­
ties are not randomly numbered and neighbouring areas usually have 

1 In brackets we report a number of the table containing the data set available 
from the StatBank web site as of October 2009. 
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Figure 1. Scatterplot matrix showing plausible relations between data on: N20 emis­
sions (y), agricultural area (x1) 1 persons employed in agriculture (x2) and population 
(x3) in municipalities. 

close identification numbers, we again note that there exist regions with 
underestimated and overestimated emissions. 

We check spatial correlation in the residuals using the Moran's I 
statistic 

J = n I:i I:j Wij(Ei - t)(Ej - t) 

I:i I:j Wij I:i(Ei - t) 2 

where Ei - a residua! of linear regression in the area i, t - the mean 
of residuals, Wij - the adjacency weights ( Wij = l if j is a neighbour 
of i and O otherwise, also Wii = O) . We consider two municipalities 
as neighbours if they share common border. Moran's I can be rec­
ognized as a modification of the correlation coefficient. It accounts 
for correlation between resid uals in area i and near by locations and 
takes values approximately on the interval [-1, l]. Higher (positive) 
values of I suggest stronger positive spatial association. Under the 
null hypothesis, where Ei are independent and identically distributed, 
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a) b) 

Figure 2. Residuals from the linear model with covariates on persons employed in 
agriculture (x2) and population (x3). 

I is asymptotically normally distributed, with the mean and variance 
known, see e.g. (Banerjee et al., 2004). 

In the case of the residuals from model (1) with covariates on x2 

and X3 Moran's I is equal to 0.2466. The corresponding test statistic 
z (Moran's I standardized with the asymptotic mean and variance) is 
equal to z = 6.6953 while Zer = 2.33 at the significance level a = O.Ol. 
Thus we reject the null hypothesis of no spatial correlation of errors. 
Moran's I is, however, recommended as an exploratory information 
on spatial association, rather than a measure of spatial significance 
(Banerjee et al., 2004). 

3. Modelling spatial correlation 

In this section we develop a model to characterize the spatial distri­
bution of N20 emissions in municipalities. Further, we provide details 
on the model estimation, prediction and an applied cross-validation 
procedure. The calculations were accomplished using the statistical 
software R (R Development Core Team, 2008). 

3.1. THE MODEL 

Let Y; denote a stochastic variable associated with the observed emis­
sion (Yi) defined at each spatial location i for i = 1, .. . , n. It is assumed 
that the random variables Y; for i = 1, ... , n follow norma! distribution 
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with the mean µi and common variance o-2 

Y.lµi, o-2 ~N(µ;, o-2). (2) 

The collection of all Y; is denoted as Y = (Y1, ... , Yn)T. Given the 
values of µ; and o-2 , stochastic variables Y; are assumed independent, 
thus the joint distribution of the process Y conditional on the mean 
process µ = (µ1, ... , µn)T is 

YIµ ~N(µ, o-2 In), (3) 

where In is an identity n x n matrix. 
Our approach to modelling the mean µ; expresses the observation 

that available covariates explain part of the spatial pattern in observa­
tions , and the remaining part is captured through a regional clustering. 
To this extent we make use of the conditional autoregressive model. The 
CAR structure is given through specification of the full conditional 
distribution functions for i = 1, ... , n 

µ,lµj ,#i ~ N (xr /3 + p'L Wij (µj - x; /3), i:_) 
j-:f;i Wi+ Wi+ 

( 4) 

with w;+ = Lj Wij being the number of neighbours of area i; x; is a 
vector containing 1 for the intercept {30 and k explanatory covariates 
of area i e.g. population; /3 = (/30 , {31 , ... , f3k)T is a vector of regression 
coefficients and r 2 is a variance parameter. An additional parameter p 
is introduced into (4) in order to remedy singularity of the covariance 
function in the joint distribution ofµ, for more details see e.g. (Banerjee 
et al., 2004). 

The second summand of the conditional expected value of µ; (a 
remainder) is proportional to the average value of remainders µj - x; /3 
for those areas j which are the neighbours of the site i (i.e. Wij = 1 ). The 
proportion is calibrated with parameter p. The conditional variance is 
inversely proportional to the number of neighbours W;+, 

Given (4), the joint probability distribution of the process µ is the 
following (Banerjee et al. , 2004; Cressie, 1993) 

µ ~N(X/3,r2 (D-pW)- 1), (5) 

where X is the (design) matrix containing transposed vectors x,, i = 
1, ... ,n [I X11 . x„ l 1 X21 , , , X2k . 

X= . , 

~ X~J Xnk 
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D is an n x n diagonal matrix with W;+ on the diagonal; and W is an 
n x n matrix with adjacency weights w;1. 

3.2. EST!MAT!ON 

Estimation of unknown parameters /3, p, a2 and r 2 is based on the 
maximum likelihood approach. From (3) and (5) we obtain the joint 
unconditional distribution of Y 

Y~N(X/3,M+N), (6) 

where for notational simplicity M = a 2In and N= r 2 (D - pW)- 1 

were introduced. To see this !et us write (3) as Y = µ + v, where 
v ~ N (O, M) and (5) in the form ofµ= Xf3+v , where v ~ N (O, N). 
Together we obtain Y = X/3 + v + v, which is a sum of a constant 
and two independent norma! random variables with the distribution 
v + v ~ N (O, M + N). Compare also the lemma of Lindley and 
Smith (Lindley and Smith, 1972). 

The log likelihood associated with (6) is, see e.g. (Papoulis and Pillai, 
2002) 

.C (/3, p, a 2 , r 2 ) = - ~ log (IM+ NI) - i log (2,r) 

1 ( T -I - 2 y - X/3) (M + N) (y - X/3), (7) 

where I· I denotes a determinant and y is a vector containing the obser­
vations Yi, i = 1, ... , n. With fixed p, a2 and r 2 , the log likelihood (7) 
is maximized for 

(3 (P, a2, r 2 ) = (XT (M + N) X)- 1 XT (M + N) y, (8) 

which substituted back into (7) provides the profile log likelihood 

.C (P, a2, r 2) = - ~ log (IM+ NI) - i log (2,r) 

- ~ (y-X (XT (M +N)Xr1 XT(M +N)yf 

x (M+N)-1 

X (y-X (xT (M + N)xr1 xT (M +N)y). 

(9) 

Further maximization of .C (p, a 2 , r 2 ) is performed numerically. One 
also needs to ensure that the matrix D - pW is nonsingular. This 
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is guaranteed if >.11 < p < >.;;-1, where >-1 < ... < >-n,>., ,j, O, i 
1, ... ,n are the eigenvalues of n-1/ 2wn-112 , see (Banerjee et al., 
2004; Cressie, 1993). Our optimization procedure takes this constraint 
into account. 

3.3. PREDICTION 

Consider a random variable Yo associated with em1ss10ns at an un­
observed location and !et µ 0 denote the mean corresponding to this 
variable. We assume that the distribution of Yolµo is of the form (2) 
and the distribution of µ 01µ is of the form (4). The predictor of the ob­
servation Yo, that is optima! in terms of minimum mean squared error, 
is given by E(Yoly). It should be stressed that knowledge on covariates 
xo is required to calculate the predictor in the location considered. 

To begin with, we derive the conditional distribution of µiy based 
on (3), (5) and (6) 

µiy ~ N (BC, B) (10) 

with B = (M-1 + N-1) - 1 and C = M-1y + N- 1Xf3. 
Next we develop the predictor E(YolY), see also (Kaiser et al., 2002). 

In deriving the formula we will make use of the following property of 
the conditional expected value: Yo = E(Yolµo) and analogously µo = 
E(µolµ). We have 

E(YolY) = E [E (Yolµo) IY] = E [µolY] = E [E (µolµ) IY] 

E [x'{; /3 + p L Woj (µj - x; /3) IY] 
j Wo+ 

x'{;/3- p L woj x;/3 + E [p L woj µjlY] 
j wo+ j wo+ 

(ll) 

We use the expression (10) to calculate the rightmost expectation in 
the last equality of (ll) and denoting the jth element of the vector BC 
with lj, we get the predictor 

'\"""' Wo· 
E(YolY) = x'{; /3 + p L.., - 1 (lj - x; /3). 

j Wo+ 
(12) 

In order to assess quality of the prediction we perform a leave--one­
out cross-validation procedure. The idea is to fit a model to a data 
set from which a single observation was dropped. This observation is 
considered as unobserved and its value is calculated using the predictor 
(12). The operation is repeated for each observation (n times). The 
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difference between the observation y; and the prediction y;, d; = y, -
Yi, constitutes a base to quantify prediction error. We summarize it 
forming the mean squared error 

mse = _!. L(Y, -y7) 2, 
n i 

(13) 

which should be as low as possible, indicating how well a model predicts 
data. We report also the minimum and maximum value of d,, aver­
age values of the absolute differences ld,I, and the sample correlation 
coefficient r between the predicted and observed values. 

4. Results 

The spatial CAR model has been applied to the em1ss10n data. In 
addition, we estimate the linear regression (1) denoted LM(x2, x3), as 
well as the model LM(x1 , x3) with the variable on agricultural area 
(xJ) instead of the number of people employed in agriculture (x2)­
The linear regression models are also estimated with the maximum 
likelihood approach. 

The results are compared using the Akaike Information Criterion 
(AIC), which is a suitable tool for comparison of models estimated 
with the maximum likelihood method. The AIC is calculated as a 
sum of twice the negative log likelihood C. ( 0) and twice the number 
of parameters p: 

AIG= -2C. (0) + 2p. 

The term -2C. (0) measures how well the model fits the data; the larger 
this value, the worse the fit. Model complexity is summarized by the 
number of parameters p. The idea of the AIC is to favour a model with 
a good fit and to penalize for the number of parameters. Thus models 
with smaller AIC are preferred to models with larger AIC. 

Table I. Model cornparison for the linear 
regressions {LM) and the spatial model 
(CAR) 

[ Model -C, AIC 

I LM(x2,x3) I 1622.27 3252.55 

CAR(x2,x3) 1552.32 3116.65 

LM{x1,x3) 1281.98 2573.97 
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For the estimated models both the negative log likelihood and the 
AIC are displayed in Table I. The applied spatial structure improved 
the results considerably. The negative log likelihood -L decreased from 
1622 for the linear regression LM(x2, x3) to 1552 for the spatial model 
with the same set of covariates CAR( x 2 , x3). The spatial model in­
cludes only two parameters (p and -r2) mare than its linear regression 
counterpart. In terms of the AIC criterion the spatially enriched model 
is preferred (has !ower the AIC), since the decrease in the negative log 
likelihood overwhelms increased model complexity. 

To put this improvement in a perspective, we present results for the 
non-spatial model LM(x1, x3) with the variable on agricultural area. 
Spatially explicit model CAR(x2, x3) with the proxy is still much worse 
than the model LM(x1 , x3). The latter has -I, = 1282 and AIC = 
2574. In terms of the negative log likelihood - I,, the gain achieved 
by taking into account a spatial correlation can be summarized as a 
20.5% improvement over the initial model. Parameter estimates for the 
models are reported in Table II. 

Table II. Estimated pararneter values 

I Model f3o /31 (3, (33 a' p T2 

I LM(x,,x,) , -1.882 0.129 0.00012 15.494 

CAR(x,,x,) -1.965 0.128 0.00013 15.127 0.9984 0.6186 

LM(x1,x,) 0.177 0.0007 0.00031 15.494 

We regard the method as a tool, which can help to extend spatial 
coverage of inventories in a situation, when the inventories are based 
on proxy data. The motivation behind is that proxy data is mare fre­
quently available than measured data. This task calls for prediction. 
To evaluate predictive performance of the method, we employ a cross­
validation technique. The procedure was applied to the spatial model 
and its non-spatial counterpart with the same set of proxy variables, 
see Table III. We note again that observation Yi is not accounted for 
in the construction of the predictor Yi, thus a model is reestimated for 
each observation separately. In a case of the spatial model, it is a time 
consuming procedµre. 

Cross-validation results are also displayed in Figure 3 as predicted 
values for the respective models, along with the observations. It can be 
noticed that the spatial model predicts the original data slightly better. 
However, we suspect that same of the differences might have been 
masked because the mapped values are binned into 9 classes. Therefore, 
in Figure 4 we present the model residuals d.;. Here we can clearly see 
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a) 

c) 

b) 

Figure 3. Predicted values in the model CAR{x2,x3) (a); predicted values in the 
linear regression LM(x2, X3) (b); observed emission (c). 

that for the linear regression in the eastern part there is a cluster of 
municipalities with highly underestimated values (positive residuals). 
Application of the spatial random effect to some extent remedied this 
deficiency. 

Values for analysis of prediction error for the two models are given in 
Table III. The spatial model showed noticeable improvement over the 
linear regression. In particular, the mean squared error was reduced 
by about 15% from 135 to 115. A smaller reduction is noted for the 
average in absolute residuals . With inclusion of spatial dependence we 
obtain higher minimum and !ower maximum residuals, which yields a 
reduction of over 14% in a spread of differences d.;. 

HorabikNahorski*ExternalReview.tex; 18/11/2009; 11:07; p.12 
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a) b) 

Figure 4. Residuals from cross-validated values for the model CAR(x2, X3)(a); and 
for the model LM(x2,x3) (b) 

Table III. Cross-validation results 

/ Model 

I 
LM(x2,x3) 

CAR(x2,x3) 

mse avg(ldl) 

134.67 7.06 

115.38 6.87 

min(d) max(d) r 

-44.63 58.03 0.877 

-41.57 46.60 0.896 

In Figure 5 predicted values y7 are plotted against the observations 
Yi for the two models. An overall impression is that the spatial model 
provides better predictions. This is confirmed by a higher value of sam­
ple correlation coefficient r, see Table III. It should be noted however, 
that small value observations (i.e. below ca 10 tonnes) are predicted 
more accurately with a linear regression approach. This observation is 
related to a generał feature of the conditional autoregressive models, 
which tend to over-smooth data. 

5. Concluding remarks 

The goal of this study was to demonstrate that emission inventories 
may be improved by making efficient use of spatial information. We 
consider a case study with a geographically distributed inventory for 
N20. Suppose we wish to spatially expand the inventory beyond the 
present coverage. We have some proxy data available both for the 

HorabikNahorski*ExternalReview. tex; 18/11/2009; 11: 07; p .13 



14 

o o 

50 100 150 50 100 150 

Figure 5. Predicted values vs. observed values for the model CAR(x2 1 x3) (a); and 
for the model LM(x2, x,) (b) 

present inventory a.rea and in a predictive capacity. The proxy data 
is, however, of limited adequacy. 

The idea is to take advantage of potentially existing spatial correla­
tion to improve the outcome. First, the task includes model estimation 
based on available measured/modelled inventory as a first step. Sec­
ond, an appropriately constructed predictor is employed to produce 
emission assessment out of the proxy information. To model spatial 
dependencies we make use of the conditional autoregressive structure. 
It was introduced into a linear regression as a random effect. 

The results indicate that inclusion of a spatial dependence compo­
nent lead to improvement in both representation of the observed data 
set and prediction. Specifically, int rod uction of spatial random effect 
into a model with less adequate covariate (on number of people em­
ployed in agriculture) improved estimation results by over 20% of what 
would be obtained using more relevant activity data ( on agricultural 
area). In terms of prediction, a 15% reduction in the mean squared 
error was achieved. 

The presented application of the method seems to be particular ly 
suitable to N20 emissions, since N20 emission pathways include among 
others agriculture and soi! emissions. These factors tend to be spa­
tially correlated and have quite often been modelled with spatial tools, 
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e.g (Sigua and Hudnall, 2008). Based on a study of 15 national green­
house gas inventories, (Leip, 2009) note that N20 emissions from agri­
cultural soils are dominating the uncertainty of not only the agricultural 
sector, but also the overall greenhouse gas inventory for many countries. 

Accounting for spatial scale of inventories may have one more aspect. 
One may compare estimation results for alternative proxy data used 
and try to conclude on their relevance. Similar analysis has been already 
performed in same studies, e.g. see (Winiwarter et al., 2003). In that 
study two sets of data on NOx (Nitrogen oxides) emissions over the 
same spatial grid for the Greater Athens, Greece were compared. The 
authors examine significance of area, line and point emission sources 
on the basis of statistical exploratory tools and a visual comparison 
of maps. In the case study presented here, we believe the problem is 
more of data availability rather than lack of knowledge on the relevant 
covariates. Therefore our focus remains on prediction. 

The applied spatial model proved to be especially success ful w hen 
dealing with underestimated emission assessments. Further develop­
ments of the method would be required to deal with the problem of 
over-smoothed values for low emission observations. 
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