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Learning in National Inventory Reporting: 
A Bivariate Approach 

Jolanta Jarnicka, Zbigniew Nahorski 

Abstract We analyze the uncertainty in National Inventory Reports (NIR) on greenhouse gases 

(GHG) emission. provided annually by cosignatories to the UNFCCC and its Kyoto Protocol. Each 

report contains data on GHG emission from a given year and revisions of past data, recalculated 

due to improved knowledge and methodology. We consider them realizations of a discrete-time 

non-stationary stochastic process being a sum of two other processes. Given a data matrix of re­

alizations , we aim to estimate and then analyze the mean values and variances of the component 

processes as functions of time. Both existence and uniqueness of a solution to this problem are 

investigated, and algorithms for estimating the mean values and variances (standard deviations) 

are proposed. The results are presented for a few selected EU-15 countries. 

1 Introduction 

National Inventory Reports (NIRs) are prepared annually by the Annex I countries 
since 2001. Some countries slatted inventorying even a few years earlier, around the 
mid-90s . The calculations were performed back until 1990, i.e. back to the (unified) 
has is year of the Kyoto Protocol. It is also a common practice to compile revisions of 
all or some figures from the earlier years along with the newly prepared inventoiies. 
The latter one is recommended, but it is not obligatory. 

The aforementioned inventories and revisions can be analyzed to answer several 
questions. Nahorski & J~da (2007) used the inventories to assess the inventory un­
certainties. The authors showed that, the estimates obtained had quite a good agree­
ment with uncertainty estimates reported at that time by some countries. Hamal 
(2010), and Marland et al. (2009), raised a question, if inventories and revisions can 
be used to estimate the time evolution of uncertainties of the NIR emission esti-
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mates. This problem has been approached from two directions. Hamal (2010) and 
Zebrowski et al. (2016) analyzed data for consecutive years, gathering data from dif­
ferent revisions in a year. Nahorski & Jarnicka (2010), Jarnicka & Nahorski (2015, 
2016a) analyzed revision sequences from different years, fitting a parametric model. 

In this study we present an approach, where the data are analyzed both by years 
and by revisions. This idea has been already signalized in a conference paper by 
Jarnicka & Nahorski (2016b), where only the mean values of the errors are analyzed. 
In the present paper full analysis of both the mean values and standard deviations is 
provided and their estimates for seven selected EU-15 countries: Austria, Belgium, 
Denmark, Germany, Finland, Ireland, and the UK are given. 

2 Problem motivation and statement 

Emissions vary in time and, as time series data, need to be de-trended to fully an­
alyze their properties, e.g. to assess their uncertainty. Following Nahorski & J~da 
(2007), this can be done by calculating deviations from the smoothing splines fitted 
to the most recently revised data series, separately for each country. From the sta­
tistical point of view, it means that the results obtained are conditional on the last 
available inventory report. This way, new sequences of deviations for each revision 
are obtained. Each of these sequences can be considered a realization of a stochastic 
nonstationary discrete-time process, denoted by S~, where y identifies a realization 
and t denotes the discrete time. 

Let us assume that, realizations S~ are not equally long, i.e. they have the same 
start time to (i.e. 1990), but various end times y, where y < Y, and Y denotes the end 
time of the longest realization considered. Hence, for realization y it holds to St Sy, 
and y S Y. The structure of realizations is graphically presented in Table 1. 

. . . s;,- 1 s;, s;.+ 1 • . • s; none . . . none 

... S'r- 1 s~ S'/1 ... s; s;+ 1 . . . s~ 

Table l Indexing the realization data. 

We call shortly the 'realization y' a realization which ends at time y. The index 
t determines the place of an element in realization S~, and is called in the sequel 
the 'position t'. In particular, end time y of the realization y is on the position y. We 
allow for the lack of some intermediate realizations of the process, as well as the lack 
of some data points in available realizations, assume however some restrictions. 
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For simplicity we consider the following notation. By Sy we denote a set of 
indices t of non-missing entries in the realization y. By fJr, we denote a set of indices 
y of non-missing entries in the position t from all existing realizations. The set '!Y 
consists of all indices y of existing realization, and the set :!7 - of all indices t, for 
which there exists a non-missing entry in at least one realization, i.e. :!7 = Uye~ -~·-

Assume that, the process considered is the sum of two other processes , such that 

S~=V1 +Hy (l) 

where V1 and Hy are (possibly dependent) random variables with finite first and 
second moments. The assumed data structure is illustrated in Table 2 . 

... v1 - 1+H,. V'+H, v1+1+Hv ... VY+Hy none none 

... v1- 1+Hr V'+Hr v1+1+Hr .. . v•+Hy yY+ 1+Hr ... yY +Hr 

Table 2 The assumed data structure. 

This data structure is motivated by analysis of GHG inventories. An inventory 
consists of sums of emissions from all atom sources. According to the UNFCCC 
guidelines, the emission of the atom source E; is calculated as the product of the 
source activity A;, and the source emission factor EF; 

E;=EF; -A;. 

Assuming small deviations tiEF; and .1A; of both variables, the relative error of the 
emission can be expressed as the sum of relative errors of the emission factor and 
the activity 

!l§;__ t,EF, +!!& 
E; - EF; A;· 

Thus we consider here two types of uncertainty, the one related to preparing the 
rough data for reporting, called in the sequel the data gathering errors, and the one 
related to compilation of the final inventory from the rough data, called the data 
processing errors. 

To simplify the notation, we put E(Hy) ~c Hy, and E(V1 ) '/;IV'. The estimation 
problems can be stated as follows. 

Problem PI 
Given realizations { S~;t E Sy,y E '!Y} of discrete-time process (1), estimate the ~· -mean values m, = V , t E :!7 and my =Hy, y E '!Y. 
Problem P2 
Given realizations as in Pl, estimate the variances d1 = a', t E :!7 and dv = a,,, 
y E '!JI, and covariances Pv',H,, t E Sy,y E '!Y. · · 
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3 Existence and uniqueness of a solution to Pl 

It is quite obvious that, a solution to the Problem PI may not exist, due to too many 
missing entries. Therefore we assume that, an additional condition, which we call 
the Existence Condition (EC), is satisfied. 

Existence Condition ECl 
Lets;., be realizations of (1) . Then the following conditions are met 

(i) for ally E CfJI' - Y there exists Sf, 
(ii) for all t ~ {y : y E CfJI'} and for ally E CfJI' - Y there exists S~. 

EC I requires that, in addition to the endpoints of realizations, the indicated entries 
are non-missing. Condition (i) guaranties the existence of all entries of the longest 
realization, and (ii) assumes the existence of at least one entry for all intermediate 
positions t in any realization except the longest one. 

Remark 1. EC! is sufficient but not necessary. If ECl is not satisfied, existence of 
a solution to Pl can be shown for some practical cases. In particular, if either (i) or 
(ii) is not satisfied, a partial solution exists. 

Observe that, decomposition (1) is not unique. Indeed, for any C E IR we get 

'½' = (V' + C) + (Hy - C) = (V')' + (H')y , (2) 

Since V and Hy depend on arbitrary constant C, the dependence (2) results in in­
finitely many solutions to PI. An additional condition is therefore required. We call 
it the Uniqueness Condition (UC). 

Uniqueness condition UCl 
Let Hy be a random variable, such that Hy < oo. Then 

Hy=O. (3) 

The assumption in (3) was motivated by the application considered in Section 8. 

Remark 2. Specifying (3), UCl determines the value of a constant C in (2), provided 
that decomposition (1) exists. 

Proposition 1. Under ECl and UCl, determination of mean values 1111 = V' and 
my = Hv from S~, is unique. 

The proof is straightforward. From the condition UCl it holds Hy = 0, so for all 
t E 3'j, values V' are given. Following the assumptions of the condition ECl all 
other value can be found as well. 
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4 Estimation method 

Consider all realizations S~. satisfying ECl and UCL We subtract V from all non­

missing s; .. t E .'Y, y E '!Y. Then 'Hy can then be estimated as arithmetic means of the 

differences S~ - V, t E §y. Similarly, V can be estimated as arithmetic means of 

s;, -7l" over appropriate y E 1/1,. Having subtracted both means V and Hy from each 
non-missing entry s; .. all arithmetic means calculated for each realization and each 
position in the residual structure should be equal zero. This motivates the following 
iterative algorithm, consisting of three steps. 

Algorithm 1 Estimating mean values Hy and V' . 
• , ,.1.(0) S' 

LJ.}v +- y 

k;--0 
repeat 

kt-k+l 
for all y E W do 

C> Step I. Compute alternatively mean values 
C> over I and y, and subtract them 

C> from Ll_s; in subsequent iterations 

calculate the means 1l;k) from L\s;:(k) , t E §, 
L\S,.' (k) t- L\s;:<k- 1) -Tl-,k) 

end for · 
k t- k+ 1 
for all I E !!/ do 

calculate the means V' ,(k) 
L\S,:<kl t- LISy'(k-lJ _ V' ,(k) 

end for 
until lll;k\y E '!JI and IV' '{k)J,1 E !!/ are small enough 
for all y E ('JI do 

C> until the difference is close to zero. 

C> Step 2. Compute initial estimates 

fT, t- Loddk 1r-yk) 
end for 

C> by summing up the partial mean values. 

for all I E !!/ do 
V t- Lcvcnk 17' ,(k) 

encl for 
for ally E '!JI do 

fl. t- #, - ilr 
end for 
for all I E .'Y do 

.::..I ~-=-
v t-V +Hr 

end for 

C> Step 3. Compute final estimates 

C> that satisfy UC3. 

Proposition 2. Under assumptions of Proposition. 1, Algorithm 1 converges to the 
solution. 

Proof To prove the convergence of iterations in Step 1, we first observe that, in each iteration 

the sum of squares of all entries diminishes. Let L\S:,'(k) be the (1,y)th entry in an iteration starting 
with an odd index k. Denote the arithmetic mean of all entries of the realization y in the step k by 

111_!,kJ, y E '!JI, and the one of all entries on the position I by m/k), / E !!/. 
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For the smn of squares of all non-missing entries of the realization yin the step k + l we have 

L (,1Sy'(k+l))2 = L (s;:(k) -m;.k))2 = L (L1S,,'(k))2-(m(,k))2. (4) 
11 E.~ tE .~· IE .~-

Similarly, for the sum of squares of all non-missing entries on the position t in the step k + 2 we 
get 

L (L1Sy'(k+2))2 = L (t1s;/ k+I) - m/k+1))2 = L (,1S,;(k+I ))2 _ (m?+1))2. (5) 

~~ ~~ ~~ 

Let us now consider the sum of squares of all non-missing entries after the step k + 2. From (5) we 
obtain 

L (L1Sy'(k+2))2 = I, L (.1S';'k+2))2 = L { L (L1Sy'(kH))2-(m/kJ)2}. 
{t ,y)e.o/x~ IE .'YyE'!JI; ,e.!Y yE~ 

Proceeding this way and taking into account (4), we get 

L L (L1S,,'(k+1))2 _ L (m/k))2 = L { L (L1Sy'(k))2 _ (m\.k+l))2} _ L (m)kl)2 
yE!3/ t ES'j, t E!Y yE'!V tE~, t t.:7 

and finally 

L (L1Sv'(k+2))2 = L (L1S,:(k) )2 - I, (m(,k+1))2 - L (m!k))2. 
(1,y)E:Yx~ (1,y)E:Yx r'Y yE!'Y t E:Y 

Thus E (.1s;:(k+2)l2 :s L (L1Sy (k))2. 
(t,y)EYxY (t .y)E§x<3/ 

As the sums are nonnegative, the sequence of the sums for increasing k converges. Let us denote 
the limit value by 

E (..1s,:(-)J2. 
(t ,y)EYxY 

It is easy to notice that, the arithmetic means of all realizations and all positions in ..1S:,·(-), 
t E !Y,y E <!JI are equal to zero. Otherwise, we could continue iterations to eventually get smaller 

value of the sum of squares. Hence, the mean values m(.-J, y E <!JI, and,,,/-) , t E :?, can be found 
as the arithmetic means of the differences 

They can also be expressed in the equivalent form, as the series 

yE <!JI (6) 

m/-l = [ m/2kl t E .'!7. (7) 
k;J 

Hence, given (6) and (7), the mean values 

According lo Proposition 1 the solution is unique, which completes the proof. 
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5 Estimation of variances and correlations in P2 

The variance of the sum (1) is given by the following formula 

(8) 

where ( crt)2 is the variance of~. ( cr1 )2 - the variance of the variable V1 , ( cry )2 -

the variance of the variable Hy, and cov(V1 , Hy) is the covariance of the variables 
V1 and Hy , The variables V1 and Hy are strongly correlated, so it is unreasonable 
to assume that, their covariance is equal to zero. As the number of values to be 
estimated is greater than the number of values of ( crJ, )2, the use of conventional 
methods of estimation of the right hand values in (8) is problematic. 

Observe that, any change of ( crt )2 or ( cry )2 in (8) can be compensated by the 
appropriate change of the covarianc·e to keep the left hand value unchanged. To cope 
with this problem, we consider the least-squares minimum-covariance solutions, in 
the least squares sense. That is, we propose to look for solutions minimizing the 
folJowing criterion 

Unfortunately, a solution to this problem is non-unique, since a constant C, (where 
C E R) can be added to one of the variances and subtracted from the other one. 
Taking into account the relationship 

where p; denotes the correlation coefficient of variables V' and Hy , we get 

(9) 

Equation (9) will be used to find the estimates of ( cr1)2 and ( cry)2 as the least-squares 
minimum-correlation solution. 

Problem P2.l. 

Find values ( a' )2, t E .'Y, and ( ay) 2, y E '!JI, that minimize over ( cr' )2, t E .'Y, and 
( crv )2, y E '&', the criterion 
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(10) 
subject to a' > 0, t E .:!7, and ay > 0, y E '!JI'. 

Remark 3. In the minimization domain the criterion function ( 10) is continuous and 
bounded below by 0. The limits on the coordinates (for ak ---+ 0 or/and av • 0) are 
+00 • When additionally sufficiently large upper boundaries, ak :S M, a; :S M, are 
added, a minimum exists. However, it may not be unique. Although the criterion 
function J seems to be symmetric with respect to a 1 and ay, the domains fort and y 
are different, so they cannot be simply exchanged. 

6 Computational procedure 

Computing the first partial derivatives of the criterion function J in ( 10), we have 

a1 1 { 1 ((a;)2- (Oj,)2)2 1 } 
a(a1)2 = - 4 (ar)4 .E · ( o: )2 - .E (o: )2 

yE'!/1, Y yE'!/1, Y 

f E .:!7, (11) 

yE'!JI', (12) 

from where the necessary condition of extreme can be written as follows 

( 2 2) 2 
~ Co:~l -co:,,l 
i..,yE'!/1, (av)2 

t E .:!7 (13) 

((ay)2-(a')2)2 
LrE$i, (a')2 

Ere$, (a')l 

yE '!JI'. (14) 

Obviously, the expressions under the roots are nonnegative, so the real roots (13) -
(14) exist. 

The necessary conditions form systems of nonlinear equations, and their solution 
is a rather complicated task. However, for each known set of the values ( a1 )2, t E 
.:!7 from (14) we can calculate corresponding optimal values of (ay)2 ,YE '!JI' and 
similarly of (a1)2,t E .:!7. 

The above property is needed in the Gauss-Seidel optimization scheme, where, 
starting with an initial solution, the improved solutions are found by iterative alter­
native optimization with respect to both groups of variables. In our case, a small 
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modification is possible, i.e. that optimization with respect to separate variables is 
done analytically, which simplifies and accelerates computations. 

The Gauss-Seidel procedure converges to the optimal solution, if it is unique, see 
e.g. [8]. However, it is not know if a solution to systems obtained from the neces­
sary condition is unique. Moreover, if there are more stationary points, there may 
exist also points other then the minimum values. In such a case the minimization 
procedure proposed above may fail. 

Given the estimates cr; and the (sub)optimal solutions a-1,t E §;cry,y E '!Y, the 
estimates of p; can be calculated from (9) as 

(15) 

7 Analysis of convergence 

To analyze the convergence, we calculate the second derivatives. We have 

y E '!Y (16) 

and at the optimum, where (12) is satisfied it holds 

y E '!Y. (17) 

Similarly 

tE § (18) 

and at the optimum 
(a-1)2 1 

J,, = -2- E -(A )2 
yEe/t, O'y 

tE§. (19) 

The mixed second order derivatives are equal to zero 

a21 
l yz = d(O'y)2(o-i )2 = 0 z ,f. Y Y, z E '!Y (20) 

a21 
lrs= cJ(o-')2(o-')2 =0 s=/=t t,sE§ (21) 
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cJ2J I (a~)4-(a')4- (ay)4 
l,vr =1,y = a(a1)2(ay)2 = 4 (at)4(av)4 t E ~,y E t/Y (22) 

First, observe that, optimizing only with respect to ( av )2, the Hessian matrix of 
the second partial derivatives is diagonal with the positive values Ivy on the diag­
onal. The matrix lyy is positive defined and then the point satisfying the necessary 
conditions for y E t/Y is the unique optimum. Similarly with optimization with re­
spect to t E !Y. Hence, in each step of the above modification of the Gauss-Seidel 
method the unique optimum with respect to either the variables indexed by t E g 
or y E t/Y is obtained. 

The Hessian matrix of the second derivatives H for all variables has the block 
structure 

H= [; ~] (23 J 

where the matrices A and D are diagonal with the values /11 and lyy on the diagonals, 
respectively, while the matrix B has entries 11y = lyr for all t E 5;,,y E t/Y. The 
positive definiteness of the matrix H can be analyzed using several methods, for 
example the Sylvester criterion or Cholesky factorization . However, this cannot be 
done using analytic methods. 

8 Estimation results 

The NIR data on CO2 emissions without LULUCF (Land-use, Land-use-change, 
and Forestry) for seven EU-15 countries: Austria, Belgium, Denmark, Finland, Ger­
many, Ireland, and the UK, were analyzed. These data span from 1990 to 2014, with 
revisions made every year from 2001 to 2014. The smoothing splines were used to 
de-trend the last emission data series. Figure 1 presents the trajectories of the most 
recent emission data reported (i.e. the longest realizations, for the year Y = 2014) 
with fitted smoothing splines. 
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AUSTRIA: NIR 2014 and spline 
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Fig.1 The NIR data on CO2 emissions 
without LULU CF [Gg] for the year 
Y = 2014 with fitted smoothing 
splines for selected EU-15 countries: 
Austria, Belgium, Denmark, Germany, 
Finland, Ireland, and the UK. 
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For each of the countries considered, the data matrix was then obtained by sub­
tracting the smoothing splines from all the earlier revisions, giving ~. for y < Y. The 
converted matrices satisfy ECl, so Algorithm 1 from Section 4 was applied. This 
way, estimates of mean values V for positions t from 1990 to 2014, and of mean 
values 11-y for revisions y from 2001 to 2014 were obtained. It could be observed 

that, the values m:yk) and m!k) in consecutive iterations converged quickly to zero. 
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After five to seven iterations the estimates of n,Jk) were less than 0.1 and of m!k) 
practically equaled zero. Hence, only a few iterations provided sufficient accuracy. 
The trajectories of estimated mean values V, i.e. of the data gathering errors, are 
depicted in Figure 2, while the estimates of1ly, i.e. of the data processing errors, are 
presented in Figure 3. 
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Fig.2 The trajectories of estimates of V', 
(data gathering errors) 
for seven EU-15 countries: 
Austria, Belgium, Denmark, Finland, 
Germany, Ireland, and the UK. 
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Fig.3 The trajectories of estimates of Hy, 
(data processing errors) 
for seven EU-15 countries: 
Austria, Belgium, Denmark, Finland, 
Germany, Ireland, and the UK. 
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The second part of the analysis was devoted to estimate standard deviations a;, 
(gathering errors) and er,, using the method described in Sections 6 and 7. At first, 
the squared residuals after de-meaning the detrended data s;, were treated as ( <Ty)2. 
The starting point of the algorithm was there one, were the estimates of ( O"y )2 equal 
to half of the maximum value of ( o-;)2, t E .o/y. 

Applying the method, we could observe that, in the first two-three iterations the 
minimization of the criterion J was very fast. After that, the algorithm switched 
to maximization. Convergence of the criterion values became much slower, while 
estimates of the variances were still changing (mainly decreasing). The shape of the 
curves did not changed much, and in some cases the algorithm switched again to 
the minimization, but the criterion value was never smaller than the one obtained 
nafter early iterations. This may suggest that, the minimized function has a rather 
complicated shape, posibly with more local minimum values, although the curve in 
the neighbourhood of the minimum values may be rather flat. 

The estimates of the standard deviation for the best early minimum values are 
depicted in Figure 4 for the gathering variables and in Figure 5 for the processing 
ones. 
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Fig.4 The estimates of standard deviations 
(gathering variables) 
for seven EU-15 countries: 
Austria, Belgium, Denmark, Finland, 
Germany, Ireland, and the UK. 
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Fig.5 The estimates of standard deviations 
{processing variables ) 
for seven EU-15 countries: 
Austria, Belgium, Denmark, Finland, 
Germany, Ireland, and the UK. 

Additionally, in Figures 6 and 7 the mean values estimated above, along with 
subtracted and added estimates of standard deviations are presented. The results 
depicted there can be considered a sort of confidence intervals. 
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Fig.6 Estimated mean values (gathering) + -
corresponding standard deviations 
for seven EU-15 countries: 
Austria, Belgium, Denmark, Finland, 
Germany, Ireland, and the UK. 
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9 Discussion of results 
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While the estimates of Hy (for data processing) presented in Figure 3 form reason­
ably smooth curves, the estimates of V1 for data gathering (Figure 2) seem to be 
purely random. Due to the uniqueness condition UCl, it holds 

.E V' =0. 
IES'y 

It is easy to observe that is satisfied for V in all cases. Hence, analyzing the mean 
values, no learning feature was observed in gathering the rough data. On the other 
hand, some learning can be attributed to the process of processing the rough data, 
which is more or less visible in all cases. It is worth mentioning that, for most coun­
tries the mean values of processes reach the final value from below. A noticeable 
exception in that rule is Finland, and to some extend Denmark. 

Slightly opposite, the standard deviations of data processing often decrease in the 
early 2000th, but then start to be rather constant (Figure 5). The standard deviations 
of data gathering (Figure 4) may be quite volatile, but tend to decrease in recent 
years. 

In other words, data processing became more precise in time, but its accuracy did 
not improve since beginning of 2000th. Precision of data gathering did not change, 
but its accuracy improved in 2000th. In both cases, some learning is manifested, 
although of different nature: in precision for data processing, and in accuracy in 
data gathering. 

The results presented for the standard deviations are, however, still tentative. The 
minimized functions were not yet explored well enough and it is not clear if the min­
imum values obtained are global or only local. Moreover, the results obtained from 
estimation of the correlation coefficients need some interpretation. Distributions of 
the estimates, depicted in Figure 8, show that the coefficients gather close to -1. It 
may suggest that, there exist some relationship between variables in the minimized 
function. Answering these questions however requires further studies. 
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Fig.8 The estimates of correlation coefficients 
for seven EU-15 countries analyzed: 
Austria, Belgium, Denmark, Finland, 
Germany, Ireland, and the UK. 
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10 Conclusions 

We presented methods of estimating mean values and variances (standard devia­
tions) of the data gatheting and data processing errors in the National Inventory 
Reports on GHG emissions, containing data from a given year and revisions of past 
data. We aimed at estimating time evolution of the uncertainty, taking into account 
all data revised in consecutive years. For this, we calculated deviations of revisions 
from the smoothing spline fitted to the latest data reported, treating the deviations 
obtained as realizations of a non-stationary process. We focused on estimation of 
the mean values and variances of these deviations. 

It is assumed that uncertainties related to data gathering and processing, enter 
additively into the combined data, which is well motivated by the way the uncer­
tainties appear in the inventory reports. Moreover, it is assumed that, only the latter 
uncertainty is affected during preparation of new revisions, while the former ones 
are only attributed to the year when the emissions were inventoried for the first time. 

The problem was first analyzed from mathematical point of view. It was pointed 
that, in general a solution to the separation-of-means problem may not exist, and 
if it does, it is not unique. Conditions for existence and uniqueness of mean values 
were introduced, and the algorithm for solving the problem was proposed. 

To separate the variances, the least-squares minimum-con-elation estimates were 
introduced. This idea leads to minimization of a nonlinear criterion function con­
sisting of the sum of squares of the correlation coefficients. It was possible for it 
to find separately the unique optimal solutions for each argument from solving the 
necessary optimization conditions. This encouraged us to use a variant of the Gauss­
Seidel optimization method. However, analysis of the Hessian matrix of the second 
order derivatives proved too complicated to draw any decisive conclusions on global 
solutions characterization. 

The results of application to the NIR data for Austria, Belgium, Denmark, Ger­
many, Finland, Ireland, and the UK, were presented. The mean-separation method 
worked well and converged to a solution close enough to the optimal one in only a 
few iterations. The variance-separation method was able to find a local minimum in 
two or three iterations. But the shape of the minimized function proved to be com­
plicated, possibly with many local minimum values. This part of the study requires 
further research. 
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Appendix 

Here we present an alternative analysis of uniqueness, which uses an analytic geom­
etry approach. The derivations do not lead to a final conclusion, so it is still rather 
another ~otivation of a suspicion that the solution of the problem P2.1 may not be 
unique. 

Before going to analysis of the full case, we start with a simplified one. To sim­
plify notation, we denote x, = ( a1 )2, Zy = ( O'y )2, Sty = ( aJ, )2. We know that a min­
imum of the criterion function (10) exists. Let us assume that the value of a (t,y) 
element of the sum for this minimal point is µ,y, We look for values x,, Zy satisfying 
the equation 

1 (S,y -x, - Zy) 2 

4 =µ,_)' 
XrZy 

(24) 

After few simple manipulations we get 

(x, -S1y) 2 + (Zy - S,y) 2 + 2(1- 2µ,y)x,zy = S~Y 

Then, the points that give the same value µ,y of the criterion satisfy an algebraic 
equation of the second degree. Hence, they lie on a conic curve. Translation of 
coordinates v,y = x, - S,y and Wry = Zy - S,y yields 

Let us notice that for µ,y < ¾ the left hand side is negative while the right hand side 
is positive. Hence, the above equation has no real solutions in this case. This also 
means that it is impossible to get the zero value of the criterion function ( 10). 

Calculating the discriminant we have 
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6 = 1- (1-2µ, .1.)2 = 4µ,y(l -µ, y) 

Hence: 
if 6 > 0 (or¾ :::; µ,.v < 1), then the curve is an ellipse; 
if 6 = 0 (or µ,y = 1), then the curve is a parabola; 
if 6 < 0 (or µ,y > 1), then the curve is a hyperbola. 
Hence, for µ,.v 2: ¼ there is continuum of points satisfying (25). 

Now, considering the general case, we have 

~ ~ [1 (S,y- xr -zy)2 ] _ 0 1.., 1.., - ----- - µty -
yE!o/ rej\- 4 XrZy 

which can be transformed to 

L L (xr - Sry)2 + (zy - Sr.1,)2 + 2(1 -2µ1y)x1zy -S;y = O 

yE~tE.'.lr, XrZy 

and then to 
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(26) 

(27) 

[ [ {[(x1-S1y)2+(zy-S1y)2+2(1-2µry)x,zy-S~v] IJxr IJzv}=O (28) 
yE!JJI re:Y,. IE.?li, yE!3/, 

Hence, the set of points minimizing the criterion function forms now a complicated 
hypersurface. In particular, the intersection of all quadric surfaces (25) belongs to 
it, but possibly not only. From the assumption, at least one real point satisfying the 
equation exists. The question is how many they are. Analysis of this case seems to 
be a complicated task, but it seems very likely, that the minimal points form a set of 
the cardinality of continuum. 










