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1. Review ofmethods useful in quantification ofCO2 emissions at fine 

resolution 

1.1 Disaggregation ofC02 emissions to fine spatial scale 

Quantification of CO2 emissions at fine spatial (and time) scales is advantageous for 

many environmental, physical, and socio-economic analyzes; in principle, it can be easily 

integrated with other data in gridded format. lt is especially important for irnproved 

assessment of carbon cycle and climate change. Ofparticular importance are estimations of 

fossil fuel CO2 fluxes, which are used to quantitatively estimate CO2 sources and sinks, see 

e.g. Battle et al . (2000). A few institutions gather data on emissions from fossil fuels at 

national levels, like the US Department of Energy Carbon Dioxide lnformation Analysis 

Center (CDIAC), Boden et al. (2009), Marland et al. (2008); the International Energy Agency 

(IEA), lEA (2007). IPCC gathers data from national GHG inventories within the Kyoto 

Protocol agreement and its continuation, lPCC (1996). British Petroleum company compiled 

energy statistics, BP (2008), which can be also used to estimate national CO2 emissions. 

These data have been used for estimation of global sources and sinks at a regional ( e.g. 

continental) scale, Gurney et al. (2002), Baker et al. (2006), Stephens et al. (2007), Raupach 

et al. (2007), Canadell et al . (2007), Rivier at al . (20 I O). 

For better assessment of sources and sinks, emission data with improved resolution are 

needed. Apart from few national high resolution inventories, like the Vulcan inventory 

compiled for United States with the space resolution I 0km x I 0km and the time resolution I 

month, and considered to be the most accurate nowadays, Gurney et al. (2009), different 

disaggregation methods have been used to obtain high-resolution emissions. The most 

straightforward approach was to disaggregate national emissions proportionally to gridded 

population information, see e.g. Tans et al. (1990), Andres et al. (1996), Olivier et al . (2005). 

These data are typically compiled with the resolution 1° x 1° (approximately 100km x 100 

km). Their resolution cannot be made much liner, as various emissions, like those from power 

stations, are not correlated well with population distribution. 

This way of disaggregation requires gathering a lot of detailed information on emissions 

or on activities generating emissions. The better the information that is available, the better 

the finał result becomes. So, the role of institutions gathering and publishing data needed for 

disaggregation becomes very important in this context. 

Another proxy data used for disaggregation are the satellite observations of nighttime 

lights obtained by the Defense Meteorological Satellite Operational Line Scanner (DMSP

OLS) and released for use by the scientific community, see Huang et al . (2014). Early 



experiments, Elvidge et al. (1997), Doli et al. (2000), showed that the CO2 emissions obtained 

are underestimated in comparison with the CIDIAC data for most countries. A few 

improvements have been made. Rayner et al. (2010) used a modified Kaya identity, in which 

emissions are modeled as a product of aerial population density, per capita economic activity, 

energy intensity of the economy, and carbon intensity of energy. This formula is used to 

predict emissions from severa! sectors, namely energy, manufacturing, transport (broken to 

land, sea, and air emissions), and other, with 0.25° resolution. These prediction are then 

constrained using observations, which are statistics of national emissions, distribution of 

nightlights and population. Comparison with the Vulcan inventory showed better performance 

than the models based onJy on population or onJy on nightlight data. 

Oda and Maksyutov (2011) extracted emissions from point sources before 

disaggregating the non-point emissions proportionally to the nightlight distribution, and 

integrated them again to obtain 1km x 1km emission data. The information on locations of 

high point sources and their emissions were taken from Carbon Monitoring and Action 

database (CARMA, http://carma.org). and national emissions were calculated from the BP 

data on usage of fossil fuels . 

Ghosh et al. (20 I O) investigated two models. In the first one, the correlation between the 

nighttime lights and the Vulcan data is calculated and then used for other countries. This 

model did not provide satisfactory results. One of the reason for discrepancies of the 

nightlight emission estimates was an underestimation of the emissions in the dark areas of the 

nightlight maps. Then, a second model was developed, in which both nighttime lights and 

population data were used. The US Environmental Protection Agency (EPA) total CO2 

emission data were used. First, high point (electrical power plant) emissions were subtracted 

from the original data and the difference (non-utiJity CO2 emissions) was disaggregated 

taking inio account both the nighttirne lights and population distribution. For this, the 

nightlight map has been divided into lit areas and dark areas. SecondJy, the dark areas were 

halved, and "mean" aerial emission was calculated dividing lota! non-utility CO2 emission by 

the sum of the lit and halved dark areas. The '·total emissions" from the lit areas were 

calculated multiplying the mean aerial emission by the areas, whiJe those for the dark areas 

were calculated by multiplying the halved mean aerial emission by the areas. Theo, the 

calculated non-utility CO2 emissions in the lit areas were distributed proportionally to the 

nighttime lights, and those in the dark areas proportiona!Jy to the population. Finally, point 

emissions and non-utility emissions were integrated to the finał grid. 

The most difficult application part of the nighttime lights satellite observations is 

connected with different habits of using lights in different regions. Usually, less developed 

regions use less nighttime lights as compared to the use of fossil fuel energy there. lt may be 



obseived not only on a world level, but also between regions of bigger countries, and even 

districts of big cities, which may become important in case of high resolution offinal maps. 

However, the nightlight maps carry information that can help in disaggregation of national 

emissions. 

Nighttime lights cannot, however, indicate the variability existing among sectors, like 

residential, commercial, industrial or transportation, at least with a usual obseivation 

resolution. But radiation from different sectors do not relate in the same way to the CO2 

emissions. With very high resolutions of the disaggregated emission maps, this effect may 

introduce biases in estimation. 

To find locations of the point sources, databases on world installations, like CARMA, 

are used. Tbese databases do contain errors. For example, not all existing power plants may 

be covered and emission estimates may be only approximate. In CARMA, the location of a 

point source has been inserted based on a postał address, which might be, however, the 

address of the main office, while the facility location was different, or erroneously assigned to 

a company with similar or the same name, see discussion in Oda & Maksyutov (2011 ). 

1.2 Estimation of fossil fuel emission changes from 14C02 observations 

Emissions (or absorptions) of CO2 cannot be measured directly in the atmosphere, 

because it is not possible to distinguish from which source they are released. However, fossil 

fuel emissions are characterized with a oflack of the 14C isotope. The 14C isotope is produced 

by cosmic radiation in the upper atrnosphere, and then it is transported down and absorbed by 

living organisms. The 14C isotope decays over a few hundred years (its half-life equals 

approximately 5700 years), while the fossil fuels come from organisms which lived million 

up to hundred million years ago. lntensive buming of the fossil fuels dilutes the atrnospheric 

concentration of the 14C isotope (Suess, 1955). This way (Jack of) 14C isotope may be used as 

a tracer of fossil fuel originated CO2, and the rate of dilution can be used to assess 

local/regional/global emission offossil fuel CO2. 

The 14C isotope has not been the only tracer of CO2 emissions considered. Moreover, 

SF6 and CO have been investigated {Tumbull et al., 2006, Garnnitzer et al. , 2006; Levin & 

Karstens, 2007), but 14C has been found to be the most useful and directly available. 

However, Lopez et al. (2013), used additional tracers of CO, NOx, and 13CO2 besides that of 

14CO2 to estimate relative fossil fuel (from liquid and gas combustion) and biospheric fossil 

fuel (from biofuels and human and plant respiration) CO2 in Paris and got good agreement. 

Estimation of the fossil fuel CO2 basically comes from two mass balance equations, for 

CO2 and 14C (or 14CO2), which are presented in the concentration form (or more usually the 



mixing ratio form; the mixing ratio s is defined as s = Pel Pa , where Pe is a CO2 density and 

Pa is the air density) 

(I) 

(2) 

where the superscripts stay, respectively, for the 

( 14c) ( 14c) 
Li 14c- C obs - C ,1 bs 

- c:1, (3) 

where the absolute (abs) value is the absolute radiocarbon standard (1.176· 10-12 mol 14C/molC), 

related to oxalic acid activity. Equation (3) is usually expressed in per mili (%o) and written as 

1114c = [c:is -1] ·1000 [%o] 
(':c) 

abs 

(4) 

Equation (2) can be easily transformed to be in the Li 14C form. Dividing both si des of (2) by 

(':c) and subtracting (I) converted to the equation in C, we get for the left hand side 
abs 

r 
14cobs 

14Cobs --b-c~C) -cobs = c~~i 
abs abs 

By sinlilar transformation of the terms on the right hand side, back conversion of C after 

square brackets to CO2 and multiplication ofboth sides by 1000, we obtain the finał equation 

1114cobsco~bs = 1114CbgCO~g + 1114CffC0lf + 1114CbioCO~io + t,14cotherco~ther (2') 

From (I), the concentration of one component can be calculated and inserted to (2 ' ). The 

choice of the elinlinated component depends in principle on possibility of measuring the 

values present in the equations, and the case considered. For example, Palstra et al . (2008) and 

Turnbull et al . (2009) elinlinate CO~bs, while Levin & Rćidenbeck (2008) eliminate CO~io . 

Having elinlinated CO~bs, the equation for COlf is found as follows 

(11'4c obs - 11'•c•B)·co•o (1114c obs - 1114Cbio)·CO bio (1114cobs -1114c other )· CO''"'r 
co" = 2 + , + , 

2 111•c" - 111•cobs L114C ff - 111• c obs 1114 Cff - 1114Cobs 

As the concentration (and mixing ratio) of 14C in the fossil fuel CO2 is equal to O, then from 

(4) we have I',. 14Crr = -1000. It is often assumed thai CO~tber =O, particularly when a sile is far 

from other sources. However, for greater areas with small biosphere component, the influence 

of ocean may be inlportant. Some authors have assumed Li14Cbio = Li14 Cbg (Turnbull et al., 

2009) and others Li14 Cbio = Li14C 0 bs (Riley et al., 2008;Kuc et al., 2007). Other assumptions 



may be appropriate for the area considered, as this methodology can be applied to different 

scale studies, from the global ones to small-scale, such as flux tower measurements ofCO2. 

Many authors discuss assumptions and assess underlying uncertainties. Tumbull et al. 

(2009) present systematic discussion and quantify uncertainties using modelling and the 

above equations. Uncertainty of the /J.14C0 bs measurements is very important; at best it 

amounts about 2%o, which gives an uncertainty in colf of0.7 ppm for a single measurement 

(Tumbull et al., 2009). The uncertainty of the monthly mean of li 14C0bs may be about ± 1.5 

ppm, and annual mean 0.3-0.45 ppm (Levin & Rodenbeck, 2008). 

The choice of place for measurements of background values is another important issue. 

Since the measurements are usually taken for Ionger time periods, the background values are 

taken from observations at high-altitude sites. In Europe, commonly used background 

observations come from the High Alpine Research station Jungfraujoch at 3450 mas.I. in the 

Swiss Alps. More !ocal sites considered in Europe are the Vermunt station in Austria (1800 m 

a.s.l.) and the Schauinsland in Germany (1205 m a.s.l.). In Poland, there is an observation site 

at Kasprowy Wierch (1989 m a.s.I.) in High Tatra Mountains, which can be used as a regional 

reference station (Kuc et al ., 2007). Tumbull et al. (2009) estimate differences of 1-3 %o due 

to the choice ofa background site. 

Discussion of other uncertainties, particularly in the global modelling, can be found in 

Tumbull et al. (2009). They estimate that the total uncertainty in the calculation of colf is 

about 1 ppm for a single observation. 

The resolution of colf determination depends, first of all, on a spatial scale 

distribution of /J.14 Cff measurements. The /J.14 Cff measuring observation stations are rather 

scarce. For example, there are only IO measurement sites in Europe (Palstra et al., 2008). As a 

consequence, only rough spatial resolution can result from them. Levin & Rodenbeck (2008) 

attempted to answer the question of detecting reduction of fossil fuel CO2 emissions from 

measurements done in two sites in Germany: at the earlier mentioned Schauinsland station, 

and in the Suburbs of Heidelberg in upper Rhine valley. The conclusion was that in neither 

station it was possible to detect a significant decreasing or increasing trend of the fossil fuel 

component. To test the difference between the means of 5 year base and 5 year commitrnent 

periods, they assumed their statistical independence and Gaussian distributions, and then 

applied a statistical t-test. With the 95% confidence Ievel, they found that the changes of 

emission would have to be Iarger than 36% to be detectable (with 5% significance) at 

Schauinsland, and 10% to be detectable in Heildelberg. Rayner at al. (2010) used 

measurements from 194 stations and results of modelling by a transport model to conclude 

that this way they can get a reduction of uncertainty on pixel (0.25° resolution) Ievel fluxes 



about 15%, but a reduction of the uncertainty of national emissions of 70% in their 

downscaling method. 

Much better spatial resolution can be obtained using measurements in plant materials, 

like com leaves (Hsueh at al., 2007), rice (Shibata et al. , 2005), grape wine ethanol 

(Burchuladze et al., 1989; Palstra et al ., 2008), grass (Quarta et al., 2005; Riley et al., 2008), 

tree leaves (Levin at al., 1980), and tree rings (Tans et al., 1979; Levin & Kromer, 1997, 

Babst et al., 2014). Most of them allow only for annual estimation, so measurements have to 

be done for many years to get longer time series. Only wine ethanol and tree rings enable 

historical records. This way Palstra et al. (2008) was able to measure 14C in 165 different 

wines from 32 different regions in 9 different European Countries. These measurements were 

then compared with those obtained from a regional atmospheric transport model, predicting 

fossil fuel CO2 with the resolution 55 km x 55 km, with a good compatibility. Riley et al. 

(2008) used measurements from winter annual grasses collected at 128 sites across California, 

USA, to model transport of fossil fuel CO2 by using a regional transport model with the 

resolution 36 km x 36 km. 

These examples show that, at present, the 14C measurements are not sufficient enough to 

be useful for high resolution disaggregation of emissions. We admit though, that they can give 

some constraints or local values, which can be perhaps somehow helpful in checking of 

disaggregation results, or as an additional information for consideration. However, they may 

be useful for time disaggregation. 

1.3 Atmospheric inversion for estimating CO2 fluxes 

The main idea of the inversion methods is to use measurements in the atmosphere to 

estimate the fluxes. For this, the Bayes estimator is generally applied (Enting, 2002; 

Tarantola, 2005). We start with formulation of a model, which is basically used in these 

methods. A linear model which has been used in the HASA RAfNS project is considered 

Yobs = Hx+ l/J (5) 

where Yobs is a m-vector of the measured atmospheric concentrations (mixing ratios) in the 

receptor points, in space and time, above the background value, x is a n-vector of fluxes 

(emisions) from sources in the region considered, and His the matrix, which relates emissions 

in sources to the measurements. The elements of m x n matrix H are computed using a 

transport model. lt is assumed that they are constant in the considered time period, which may 

be a quite rough approximation. l/J is a m-vector ofuncertainties of the relation (5), which is 

modeled as a random variable with the Gaussian distribution 

(6) 



The real tluxes are unknown but it is assumed that a unsure information Xprior on fluxes is 

given, so that 

X = Xprior + {} (7) 

where again the uncertainty is modeled as a random vector with the Gaussian distribution 

independent on p(-,J,) 

p( {}) = [(2rr r det CxJ-1 exp {-¼ {}T c;1{}} (8) 

We are looking for the conditional probability p(XIYobs) - From the Bayes theory we have 

P(xjy ) = p(yobs lx)p(x) 
obs P(Yobs) 

As the Jacobians in the transfonnations (5) and (7) equal 1, then 

P(Yobslx) = [(2rr)m det Cyr1 exp {-¼ (Yobs - Hx)TCy1 (Yobs - Hx)} 

p(x) = ((2rrr det CxJ-l exp {-¼ (x - Xpriorf c;1 (x - Xpriar)} 

Tuus, the conditional probability p(xlYob,) is proportional to 

(9) 

(10) 

(11) 

p(XIYob, ) - exp {-H (Yobs - Hx)TCy1 (Yobs - Hx) + (x - Xprior/ c;1 (x - Xpriar)]} (12) 

Now, assuming that it is unique, the value x which maximizes the above conditional 

probability is taken as the estimator. Namely, it is the value which minimizes the following 

cost function 

J = (Yobs - Hx)TCy1 (Yobs - Hx) + (x - Xprior/ c;1(x- Xprior) (13) 

The above cost function has an appealing interpretation. The finał estimate should be as close 

as possible to the prior estimate (the second summand), and as close as possible agree in 

prediction of atmospheric concentrations with the measurements (the first surnmand). The 

weights of both subcriteria depend inversely on error estimates of the priors and 

measurements. 

For a nonlinear dependence of Yobs on x the cost function has to be in generał 

minimized numerically. For the linear case, as above, the solution can be found analytically. 

Since the matrices Cy and Cx are symmetric, the derivative off with respect to x becomes 

Supposing thai the below inverted matrix is nonsingular, the derivative is zero for 

X= (HTCy1 H+c;1f 1 (HTCy1Yobs + c;1xpriar) = 

= (HTCy1 H+c;1f 1 [WCy1 (Yobs - Hxprior) + (Wcy1 H+c;1 )xpriarl 

which finally gives the Bayes estimator of the tluxes 

X= Xprior + (HTCy1 H+c;1f 1 HTC_j;1(Yabs - HXprior) 

(14) 

(15) 



Jf the matrix Hrc;;1 tt+c;1 is singular, then a singular value decomposition (SVD) can be 

used. 

Jt can be demonstrated that having inserted x to (12) one gets a Gaussian distribution. 

Theo, as the expression under the exponent in a Gaussian distribution is quadratic, we can 

find the inverse of the covariance matrix Cx of the estimator from the second derivative of J. 
Differentiating ( I 4) gives 

thus 

(16) 

This matrix allows us to estimate statistical uncertainty of the Bayesian estimator. The most 

right expression in (16) is more convenient to be calculated numerically, as only m x m 

matrix has to be inverted there, while it is necessary to invert n x n matrices in the more left 

expression. Usually, there is n » m . 

Let us look at interpretation of the expressions (15) and (16). The estimate x is the sum 

of the a priori estimate plus a correction, which depends on the deviation of observations 

from their predicted values. This correction improves the initial estimate of fluxes (e.g. 

obtained from disaggregation of the inventory estimates). The expression (16) tells us that the 

errors of the improved estimates (the values on the diagonal of Cx) are not bigger (and very 

likely they are smaller) than the errors of the a priori estimate. 

To use the above expressions, it is necessary to know estimates of the covariance 

matrices Cx and Cy. This question is discussed in various papers (e.g. Peylin et al., 2005; 

Rivier et al., 2010; Lauvaux et al., 2008). Different methods offinding appropriate values has 

been proposed. Very often the diagonal matrices have been used. Exponential decay of 

covariance values both in space and/or time has been found to better match the reality. 

Michalak et al. (2005) developed a maximum likelihood method for estimating the covariance 

parameters. The likelihood function is forrnulated and the Cramer-Rao bound is derived. 

However, the likelihood function has to be minimized numerically. 

An idea to use the likelihood function approach has been also used in a so-called 

geostatistical inverse modelling (Gourdji et al., 2008). In this approach, instead of using the 

prior inforrnation, emissions are modeled as linear combinations oftrends 

x=Xb+( (I 7) 

where X is a prespecified matrix defining the trends, b is a vector of parameters, and Ę is a 

vector of errors. The parameters and model structure are estimated using observations Yobs in 

the relation 



Yobs = HXb + { 
where { is a linear function of Ę and if,. Looking for a linear estimator 

Z= AYobs 

and requiring that it is unbiased, the following equation is obtained 

(AHX-X)b = O 

and it is satisfied when 

AHX-X = O 

(18) 

(19) 

(20) 

Assuming the Gaussian distributions, maximization of the likelihood function reduces to a 

minimization of the loss function 

(21) 

over x and b. Following the geostatistical approach, this minimization is subject to a vector 

equality constraint (20) coming from the requirement ofunbiased prediction by the model. lts 

solution enables finding the vectors x and b, which minimize the problem, as well as 

estimates oftheir covariance matrices. The details are given in Gourdji et al. (2008), and thus 

are not discussed here. 

A more advanced modelling of the fluxes has been proposed in the so called 

assimilation data method, proposed by Kaminski et al. (2002) and then used e.g. in Rayner et 

al. (2005). ln their method a more thorough model of emissions from the biosphere is 

included. The models depend on unknown parameters, which are estimated using the 

Bayesian approach. In place of the sirnple linear dependence of concentrations (mixing ratios) 

in the receptor points on fluxes, they use an atmospheric transport model. Then they optimize 

a cost function of the type 

lz = [yobs - M(p)Yc;; 1 + (p - Ppriorf c;;-1 (p - (x - Xpriorf c;1 (x - Xprior)) (22) 

where M(·) is the model, p is the vector of parameters, and Xprior is the vector of prior 

parameter estimates. To minimize this cost function, it is necessary to use a numerical 

nonlinear optirnization method. 

The above expressions have been mostly used in flux inversion studies. Ciais et al. 

(2010) give many comments on practical application of this kind of methods. Peylin et al. 

(2005) use them for estirnating monthly European CO2 fluxes, and they report 60% reduction 

of errors. Rivier et al. (201 O) applied them for estirnating monthly fluxes of CO2 from the 

biosphere and ocean for the global and European scale. The Bayesian estimate errors were 

reduced by 76% of the prior errors for the western and southem Europe, and by 56% for the 

central Europe. Lauvaux et al. (2008) give inversion results for a 300 km x 300 km region in 

South-West of France near Bordeaux with the 8 km x 8 km resolution of CO2 fluxes, with 

about 50% error reduction. Continuous measurements were taken in two towers, and two 



aircraft measuring of CO2 were used. Thompson et al. (2011) estimated the N2O fluxes in 

western and central Europe. With on1y one in-situ measurement site used for inversion, they 

obtained between 30% and 60% error reductions for Germany. 

The idea of atrnospheric inversion methods is actually a generał one, and can be used 

for improving estimates given any additional information in a suitable form. Atrnospheric 

measurements are rather rare in space, so it may be difficult to obtain big improvements at a 

very fine spatial grid. Perhaps some expectations could be connected with the assimilation 

data method with a suitable parameterization. Nevertheless, atrnospheric inversion methods 

are nowadays the most important methods used to constrain the emission flux estimates from 

the biosphere. 

A very promising idea is, however, to apply the Bayesian methodology proposed in the 

atrnospheric inversion for combining very high resolution space estimates of the fossil fuel 

with the information from the nighttime lights. Tbese two information sources give 

independent information, which can complement each other. In this case, the cost function 

(13) tak.es a simpler form 

(23) 

where Yobs is the vector of the emission estimates from the nighttime observations and X prior 

is the vector of estimates from disaggregated inventories. The solution of the minirnization 

problem is 

X= Xprior + (c_;;1+c;1 r 1 c_;; 1 (Yobs - Xprior) = Xprior + Cx(Cy+Cx)-1 (Yobs - Xprior) 

(24) 

and the estimate of the improved estimate covariance matrix tak.es the form 

Cx = (c_;; 1 + c;1f 1 = Cx - cx(cx + Cyf1 Cx (25) 

A particularly simple computations are obtained for diagonal covariance matrices Cx 
and Cy. In this case the above formulae read 

~ _ + Cii,x ( ) 
Xi - Xi.prior ~ Yi,obs - Xi.prior , 

tl ,X H,y 

,.. _ 1 _ ca,xcu,y 
Cux - -,--,- - ---, 

' -+- ca,x+cu,y 
cii,x cu,y 

lt is readily seen that cu,x $ C;;,x and C;;,x $ C;;,y, 

1.4 Flux tower observations 

i= 1, ... ,n 

i= 1, ... ,n (26) 

(27) 

Flux towers offer possibility of direct measurements of emission source and sink fluxes, 

usually coming from the biosphere. The measurements are done above the plant canopies, and 

use the so-called eddy covariance method. A basie idea of the eddy covariance is as follows, 

see also Burba & Anderson (2007). 



Let F2 be the vertical flux of a gas. In a turbulent flow, this flux can be presented as 

F2 = VPe = PaVS (28) 

where v is the vertical wind velocity, Pe is the gas (CO2) density, Pa is the air density, and 

s = Pel Pa is the earlier introduced mixing ratio. Bar above the variables means averaging 

over all flows coming from different turbulences (different eddies). lntroducing the mean 

values of each variable ( denoted by bar) and its deviation from the means ( denoted with li 

before the variable), the above expression can be written as 

F2 =(Pa+ lipa)(v + liv)(s +lis)= 

= Pa vs + Pa vlis + Palivs + Palivlis + lipa vs + lipa vlis + lipalivs + lipalivlis 

But the mean values of deviations equal zero, so we are left with 

F2 = PaVS + Palivlis + lipavlis + lipalivs + lipalivlis 

Now, under the assumption thai the deviations of the air density are negligible (equal O), the 

expression reduces to 

Fz = PaVS + Palivlis 

Finally, assuming zero average wind velocity, we get 

F2 = Palivlis = Palivlis (29) 

This expression is often further simplified by reducing Pa with the denominator in the 

definition of s, to obtain 

F2 = livlipe = (v - v)(Pe - Pe) 

In the probability theory, the above expression is the covariance of v and s, from which the 

name of the method has been coined. 

li is further assumed thai the stochastic flow processes are ergodic, and then the 

averaging over the flows is tumed over to averaging in time. In practical applications, the 

means are calculated by averaging the product livlis for half an hour, and covariances are 

calculated from very frequent measurements of liv and lis (with the frequency 10-20 Hz). 

There were many assumptions taken in deriving the formula (29), which may be not 

satisfied in practical measurements. Foken & Wichura (1996) discuss the errors connected to 

them. 

The flux tower observations could be a perfect way to provide very high resolution 

emission tluxes from the biosphere both in space and time, provided thai a flux tower net is 

dense enough. Unfortunately, the flux towers are rather scarce. Even in the large area of USA 

and Canada, only 36 tlux tower observations are reported (Raczka et al. , 2013). In Poland, 

there is one experimental flux tower, and in Ukraine there is none. Their use can be therefore 

considered perhaps in the future, when more flux towers are constructed. At present, they are 

rather used for an assessment of biosphere emission models, like the one presented in 

Baldocchi and Meyers (1998) or Raczka et al. (2013). 



3. Concluding remarks 

A review of available approaches to assimilation of independent emission assessments has 

been provided. Four groups ofmethods have been identified, and their basie paradigrns and 

principles have been reviewed. These are: the satellite observations of nighttime lights, the 

observations of 14CO2 mixing ratios, the inversion of atmospheric measurements, and the flux 

tower observations. An analysis of independent sources of information revealed that, at the 

present state of availability of observations, only satellite observations of nighttime lights can 

be readily used for an independent emission assessment ofvery high resolution inventory, like 

the one developed for Poland within the GESAPU project. Such data has been received from 

the ODIAC project. They have been used for a comparison, both in a qualitative and 

quantitative manner. Regardless of many identified differences in assumptions taken in both 

methods, a good match was obtained for about 90% of around 80 OOO grid cells. The major 

differences were mainly due to misallocation ofsome high point sources in the ODIAC data, 

and due to errors caused by a mismatch in overlay ofboth maps. 
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