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1 Introduction 

Greenhouse gas (GHG) emission inventories serve as a basic tool for verification of in­
ternational treaties aimed at constraing global warming. Despite all their drawbacks 
and limitations [19], national GHG inventories provide invaluable information on an­
thropogenic emission sources, and, indirectly, on effectiveness of undertaken emission 
abatement measures. Constant efforts of IPCC community seek to improve the inventory 
procedure and to limit underlying uncertainties and imprecision [15]. 

Although the greenhouse gases directly are not harmful for human health, their spatial 
distribution is of great importance. For instance, a network of ecosystem long-term 
observation sites is launched a.cross Europe to understand behavior of the global carbon 
cycle and greenhouse gas emissions. The activities are conducted within the Integrated 
Carbon Observation System infra.structure. Another approach is to develop a spatially 
resolved GHG inventory. All of these efforts open new opportunities for improvement of 
emission reduction activities, including among others attribution of sources and sinks. 

The present study was conducted as a part of the 7FP Marie Curie Actions project 
Geoinformation technologies, spatio-temporal approaches, and full carbon account for im­
proving accuracy of CHG inventories. One of the ma.in aims of the project is to develop 
a spatial inventory of GHG for Poland. The task comprises estimation of GHG related 
activity data, which need to be spatially resolved in this case, and their corresponding 
emission factors. In terms of considered sectors, subsectors and separate emission source 
groups, the IPCC guidelines [13] provide relevant methodology, and it is followed through­
out the project. The ma.in GHG emission sectors include energy (fossil fuel burning from 
stationary and mobile sources), industry and agriculture. 

Development of spatial GHG inventory crucially depends on availability of low res­
olution activity data. In Poland, relevant information needs to be acquired from na­
tional/regional totals. A procedure of allocation into smaller spatial units (like districts, 
municipalities and finally 2x2km grid) differs among various emission sectors. Basically, 
all the emission sources are categorised as line, area or large point emission sources; fur­
ther steps differ significantly for ea.ch group. For large point sources, such as power /heat 
stations or refinery plants, corresponding emissions are associated directly with a partic­
ular object located in space. Line sources, like roads, railways or pipelines, are usually 
analyzed by cutting line objects into sections using respective grids. Area sources com­
prise e.g. agricultural fields , urban areas as well as highly dense urban transportation 
network. In this case, a procedure of spatial allocation depends on methods and tech­
nologies of fossil fuel combustion in a considered sector [2j . A common approach though 
is a spatial allocation ma.de in a proportion to some related indicators, i.e. proxy data, 
which are available in a finer grid. This solution to a large extent relies on subjective 
assumptions, and usually there is no mean for verification of the results obtained. 

Ma.king inference on variables at points or grid cells different from those of the data 
is referred to as the change of support problem. Several approaches have been proposed 
to address the problem. The geosta.tistical solution for rea.lignement from point to areal 
data is provided by block kriging [9, 8]. In the case that data are observed at areal 



units and inference is sought at a new level of spatial aggregation, areal weighting offers 
a straightforward approach. Some improved approaches with better covariate modeling 
were also proposed e.g. in [16, 17] 

Within the Work Package 3 (Deliverable 3.2) of GESAPU project, the statistical 
scaling methods have been developed in order to support the procedure of compiling high 
resolution activity data. In this report we describe the original method for allocating 
GHG activity data to finer spatial scales conditional on covariate information, such as 
land use, observable in a fine grid. The proposition is suitable for spatially correlated, 
area emission sources. 

The approach resembles to some extent the method of Chow and Lin (1971) [4], origi­
nally proposed for disaggregation of time series based on related, higher frequency series. 
Here, a similar methodology is employed to disaggregate spatially correlated data. Re­
garding an assumption on residual covariance, we apply the structure suitable for area 
data, i.e. the conditional autoregressive (CAR) model. Although the CAR specification is 
typically used in epidemiology [lj, it was also successfully applied for modelling air pollu­
tion over space [14], [20] . Compare also [11] for another application of the CAR structure 
to model spatial inventory of GHG emissions. The maximum likelihood approach to 
inference is employed, and the optimal predictors are developed to assess missing con­
centrations in a fine grid. In addition, the standard errors of estimated parameters are 
provided, based on the Fisher information matrix. We demonstrate a usefulness of the 
disaggregation method for spatially correlated area sources, in particular for agricultural 
sector. 

The proposed methodology, in its basic version, is described in section 3.1 ; this part 
has been already presented in [12], which is attached to this report as an Appendix II. 
In addition, the basic model is extended for the case of various regression models in each 
region (here, voivodeship); see section 3.2. The performance of the method for livestock 
data in agricultural sector of GHG inventory is presented and discussed in section 4. 
The considered case study shows an allocation from districts to municipalities (i.e. an 
irregular grid); the proposed approach is compared with the results of naive disaggregation 
in proportion to a single covariate (here, population density). For an application of the 
technique to a regular grid (fourfold and ninefold disaggregation), see Appendix II. It also 
presents the performance of the method evaluated with respect to explanatory power of 
covariates available in a fine grid , i. e. it is shown to which extent inclusion of a spatial 
correlation structure can compensate for less adequate covariate information. 

2 The data set 

Considered is a livestock dataset (cattle, pigs, horses, poultry, etc.) based on agricultural 
census 2010, and available from the Central Statistical Office of Poland - Local Data 
Bank [10]. The goal is to allocate relevant livestock amounts from district (powiaty) into 
municipality (gminy) levels. 

In particular, for horses the data arc available also in municipalities, and this fact 
enables verification of the proposed disaggregation method. Therefore, in what follows we 
consider the task of disaggregation of number of horses reported for 314 districts into 2171 
municipalities, taking advantage of covariate information observable for municipalities, 



compare Figure 1. Only rural municipalities are considered in the study, see Figure 2. 

Figure 1: Livestock data (horses) available for districts 

As explanatory variables we use population density (denoted :z:1 ) and land use in­
formation. For the latter, the CORJNE Land Cover map, available from the European 
Environment Agency [7], was employed. For each rural municipality we calculate the area 
of agricultural classes, which may be related to livestock farming, see Figure 3. Three 
CORJNE classes were considered (the CORJNE class numbers are given in brackets): 

• Arable land (2.1); denoted :z:2 

• Pastures (2.3); denoted :z:3 

• Heterogeneous agricultural areas (2.4), which include subclasses Complex cultiva­
tion patterns (2.4.2) and Land principally occupied by agriculture, with significant 
areas of natural vegetation (2.4.3); denoted :z:4 • 

The results of the disaggregation with the proposed procedure are further compared 
with the results of allocation proportional to population of municipalities. Here, we 
stress once more that only rural municipalities are considered in the study. Otherwise, 
allocation of number of horses in a proportion to population would be meaningless. This 
naive approach, however, gave rise for a modification of the basic version of the method. 
Namely, we account for the fact that a relationship of farmed livestock with available 
covariates is diversified across the country - we allow for various regression models for 
regions. In this particular case study, we treat 16 voivodeships (wojew6dztwa) as regions. 
This extention of the model is described in section 3.2. 



Figure 2: The net of rural municipalities 

3 The disaggregation framework 

3.1 The basic model 

3.1.1 Model formulation 

Fine grid. We begin with the model specification in a fine grid. Let Y; denote a random 
variable as.5ociated with a missing value of interest y, defined at each cell i for i = 1, ... , n 
of a fine grid (n denotes the overall number of cells in a fine grid). Assume that each 
random variable Y; follows Gaussian distribution with the mean µ, and variance er} 

Y;Iµ, ~ N (µ, , er?) . (1) 

Given the values /L; and er}, the random variables Y; are assumed independent. The values 
µ = {µ,}f=1 represent the true process underlying distribution of activity data in our case 
study, and the (missing) observations are related to this process through a measurement 
error of variance er}. The model for the underlying process µ is formulated as a sum of 
regression component with available covariates, and a spatially varying random effect. 



Figure 3: CORINE land use map of Poland, with the net of rural municipalities 



Spatial correlation is modelled with the conditional autoregressive structure CAR. 
Following an assumption of similar random effects in adjacent cells, it is given through 
the specification of full conditional distribution functions [5), [8] 

11,lµi.#• ~ N x, /3 + p L- (11i - xi /3), - , i,J = l, .. . , n ( 
T W,j T T 2 ) .. 

j#i Wi+ W;+ 
(2) 

where w,j are the adjacency weights; W;+ is the number of neighbours of area i; x; /3 
is a regression component with explanatory covariates for area i and a respective vector 
of regression coefficients, and r 2 is a variance parameter. The joint distribution of the 
process µ is [5], [8] 

(3) 

where X is a design matrix with vectors x,; Dis an n x n diagonal matrix with W;+ on 
the diagonal; and Wis an n x n matrix with adjacency weights w,j- Equivalently, we 
can write (3) asµ= X/3 + E, E ~ Nn (0, N), with N = r 2 (D - pW) - 1. 

Coarse grid. The model for the data observed at the district level is obtained by 
the multiplication of µ with an N x n aggregation matrix C , where N is a number of 
observations on the district level 

(4) 

The matrix C consists of O's and l's, indicating which cells have to be aligned together. 
The random variable ,X = Cµ is treated as the mean process for variables Z = {Z,}{:'.,1 

associated with observations z = { z,}{::1 of the aggregated model 

(5) 

Also at this level, the underlying process ,X is related to Z through a measurement error 
with variance o-}. 

3.1.2 Maximum likelihood estimation 

The parameters /3 , a} , r 2 and pare estimated with the maximum likelihood method based 
on the joint unconditional distribution 

where M = a}IN. 
Next , the log likelihood function associated with (5) is formulated 

1 I Tl N -- log M + CNC - - log (21r) 
2 2 
l r( r) -1 - 2 (z - CX/3) M + CNC (z - CX/3), (6) 

where l· I denotes the determinant. The analytical derivation is limited to the regres­
sion coefficients /3 , and further maximisation of the profile log likelihood is performed 
numerically. 



3.1.3 Evaluating the Fisher information matrix 

The standard errors of parameter estimators are calculated with the Fisher information 
matrix. Let us denote with iJ a vector of maximum likelihood estimates for a model 
parametrized by 0 with associated log likelihood L(0) . The Fisher information matrix is 
defined as 

J(0) = E [-L<2l(0)] , 

where E denotes the expected value, and £(2) is the Hessian matrix of second order partial 
derivatives of the log likelihood function. Inverting this matrix gives the asymptotic 
covariance matrix of the maximum likelihood estimators, i.e. the Cramer-Rao (lower) 
bound. 

To estimate J(0) , either the expected or the observed Fisher information matrices can 
be used [3, 18]. The expected information matrix is defined a.5 

The observed information matrix is defined as minus the second derivative of the log 
likelihood function at iJ given data: 

It should be noted that .7(0) , unlike I(0) , is a maximum likelihood estimator of J(0). 
I(0) is actually only an approximation of J(0) that may be, however, easier to compute 
for complicated models, where the theoretical Fisher information matrix may be difficult 
to determine. For instance, for state-space models the expected information matrix was 
shown to estimate more accurately the true Fisher information [3] . On the other hand, 
in [6] the authors argue in favour of the observed information matrix over the expected 
one. 

In what follows, we derive the expected and observed Fisher information matrices 
for the considered disaggregation model. For notational convenience, we shall henceforth 
denote V = M + CNCr, U = z - CX/3, and P = (D - pW)- 1 . 

Let us denote the derivative vector of the log likelihood function (6) as 

It comprises the following elements: 

L 2 = -~tr (v- 1 ) + ~uTv- 1v - 1u 
"z 2 2 

L 2 = - ~tr (v- 1cpcr) + ~urv- 1cpcrv-1u 
T 2 2 

L = -~tr (T2v - 1CPWPCT) + ~T2UTv- 1CPWPCTv- 1u 
P 2 2 ' 



where tr(•) denotes the trace of a matrix. The respective diagonal elements of the second 
derivative matrix1 

are as follows: 
Lfifi = -(cxfv- 1cx (7) 

L 2 2 = ~tr (v-1v-1) - uTv- 1v - 1v - 1u (8) 
O"z G'z 2 

Lr'r' = ½tr (v- 1cPcTv- 1CPCT) - uTv- 1cpcTv- 1cpcTv- 1u (9) 

~tr (v- 1 -r2CPW pcTv- 1-r2CPW PCT 
2 
-2v- 1-r2CPWPWPCT) 

-uT (v- 1-r2CPW pcTv- 1-r2cPw PCT 

-v- 1-r2CPWPWPCT) v - 1u 

The Fisher information matrix becomes 

Consequently, we obtain 
J{:i = (cxfv- 1cx 

J 2 = ~tr (v-1v -1 ) 
"z 2 

Jr, = ~tr (v- tcpcTv-tcpcT) 
2 

Jp = ~tr (v- 1-r2CPWPCTv- 1-r2CPWPCT). 
2 

(10) 

(11) 

(12) 

(13) 

(14) 

Evaluating the above expressions (11)-(14) at the values of ML parameter estimators 
0 yield5 the expected information matrix ::T(0). Evaluating the negative of expressions 
(7)-(10) at 0 yields the observed information matrix I(0) . The Cramer-Rao lower bound 
of the estimators' variances is estimated with a reciprocal of these values. 

3.1.4 Prediction in a fine grid 

Regarding the missing values of a number of horses in municipalities, the underlying 
process µ is of our primary interest. The predictors optimal in terms of the minimum 
mean squared error are given by E (µlz). The joint distribution of(µ, Z) is 

(15) 

1 Since the off-diagonal elements of the information n1atrix equal zero, those derivatives are not cal­
culated here. 



The distribution (15) allows for full inference, yielding both the predictor and its error 

E{µj;) 

-Var(µlz) 

x fj + Rcr (N.l + cRd') -1 [z - cxfJ] 

N - NCT (N.l + CNcr) -' CN. 

3.2 A modification: Various regression models in regions 

Next , we adjust the model to reflect possibly diversified regression component across 
regions. In the considered study of national GHG inventory, we will analyse various re­
gn~ion models for 16 voivodeships indexed with l = 1, ... , L. Then, all n municipalities 
are associated with their corresponding voivodeship I, and let n1 denote a number of 
municipalities in a region l 

L 

n=Ln1. 
l= l 

To accommodate the modification, consider a block diagonal matrix of covariates X *, 
where each block corresponds to a region l = 1, ... , L and contains covariates only for 
municipalities of this region 

1 x' 11 
Xl 

Jk 

1 X~l x! k 

X* = 

1 x" 11 xt, 
1 
1 x*IJ x:,Ifi 

Also a vector of regression coefficients needs to be modified into /3*, comprising separate 
sets of regression coefficients for each region 

/3* = 

and the process µ is redefined as 

µ = X*/3* + €, €~Gau,. (0, !1). 

To complete t he setting, variance parameters (ay,1) 2 and (az,1) 2 are introduced for each 
region l = 1, . .. , L. 



4 Results 

First, Table 1 presents estimation results (parameters with their standard errors) for 
models with and without a spatial component, denoted CAR and LM respectively. Note 
that /32 - land use class Arable land turned to be statistically insignificant in this setting. 
Introducing spatial CAR structure increases standard error of estimated parameters, as 
compared with LM model. However, for assessment of goodness of fit for these models 
Table 2 should be referred to. 

Table 1: Maximum likelihood estimates 

CAR LM 
Est. Std.Err. Est . Std.Err. 

f3o 8.525 0.1605 -6.981 0.0389 
/31 3.517 0.0148 1.932 0.0042 
f32 - - - -
/33 0.916 0.0034 1.786 0.0010 
(34 3.912 0.0055 5.032 0.0013 
a} 0.961 0.4052 1.506 0.1202 
T2 1.683 0.1569 - -
p 0.9889 2.62e-06 - -

Table 2 contains the analysis of residuals ( d, = y, - y;, where y; -predicted values) for 
considered models. We report the mean squared error mse, the minimum and maximum 
values of d, as well as the sample correlation coefficient r between the predicted and 
observed values. From here it is obvious that the spatial CAR structure considerably 
improve the results obtained with the model of independent errors LM. For comparison, 
we also include the results obtained with an allocation done proportionally to population 
in municipalities; this approach is called NAIVE. It is a straightforward, commonly used 
approach in this area of application. Here we note that the NAIVE approach provides 
reasonable results, but CAR model outperforms it in terms of all the reported criteria. 
The decrease of the mean squared error is from 3374.4 for NAIVE to 3069.4 for CAR, 
which gives 9% improvement. 

From the maps of predicted values for the models CAR and NAIVE (Figure 4) it is 
difficult to spot a meaningful difference. The map of residuals (Figure 5) and scatterplot 
(Figure 6) arc slightly more informative. 

Next, we considered the models with various regression coefficients in voivodeships 
but having the same same set of covariates ((30,/31, /33 and /34); the models are denoted 
CAR* and LM*, respectively. Note that the model CAR* gives much worse results than 
the models CAR and NAIVE. 

Further, considered were the models with varying across regions both the coefficients 
and sets of covariates. Only statistically significant covariates were chosen. Table 3 
includes regression coefficients along with their standard errors for all the considered 
regions (voivodeships), indexed with I. A reference list with the voivodship names is 
included in the Appendix I. 



Table 2: Analysis of residuals (d; = Y; - y;) 

rnse min(d,) max(d;) r 
CAR 3069.4 -275 469 0.784 
LM 5641.2 -357 522 0.555 
CAR* 3437.0 -258 512 0.763 
LM* 4876.l -374 546 0.651 
CAR** 3124.9 -256 446 0.783 
LM** 4427.6 -352 472 0.674 
NAIVE 3374.4 -475 403 0.766 

NAJVE prediction 

Model CAR 

Figure 4: Original data in municipalities and predicted values for the models NAIVE and 
CAR 



Figure 5: Residuals from predicted values for the models NAIVE and CAR 

Table 3: Maximum likelihood estimates of the models CAR** and LM** 

CAR** LM** CAR** LM** 
Est. Std.Err. Est. Std.Err. Est. Std.Err. Est. Std.Err. 

l= l 1= 2 

f3o - - - - - - - -
f3i 3.514 0.0528 1.289 0.0098 5.227 0.0592 3.431 0.0099 
{3; - - - - - - - -
f3i 1.593 0.0221 2.063 0.0060 0.588 0.0194 1.032 0.0044 

f3! 1.344 0.0322 3.049 0.0052 4.759 0.0288 2.909 0.0048 
(ahl2 1.281 1.1759 0.559 0.1552 1.0905 1.6542 0.368 0.1194 

1= 3 1= 4 

f3o - - - - - - - -
f3i 23.849 0.0966 24.729 0.0331 -3.349 0.0967 -2.611 0.0301 
{3; -1.546 0.0085 -1.679 0.0033 - - - -
f3i 4.632 0.0196 4.308 0.0043 3.056 0.0164 2.447 0.0043 

f3! 1.622 0.0187 2.119 0.0051 6.271 0.0512 5.129 0.0150 
(ah)2 0.974 2.2569 2.616 0.8273 0.852 1.7905 0.614 0.2509 

1= 5 1= 6 

f3o - - - - - - - -
f3i 6.392 0.0678 6.409 0.0272 0.729 0.0407 -2.221 0.0122 
f3; - - - - - - - -
f3! - - - - 1.662 0.0205 4.276 0.0066 

f3! 1.726 0.0253 2.122 0.0117 4.080 0.0199 5.117 0.0062 
(ah)2 0.938 1.6488 2.0944 0.6463 1.382 2.7181 2.723 0.8835 

1= 7 1= 8 



Table 3: (continued) 

CAR** LM** CAR** LM** 
Est. Std.Err. Est. Std.Err. Est . Std.Err. Est. Std.Err. 

fib - - - - - - - -
fii 2.332 0.0348 4.452 0.0250 3.739 0.0648 3.491 0.0145 

fi~ - - - - - - - -
fii - - - - 0.731 0.0438 0.489 0.0122 

fii 7.698 0.0148 8.459 0.0111 - - - -
(O"k)2 1.127 1.4045 7.5264 1.749 0.955 2.134 0.640 0.2731 

1= 9 1= 10 

fi~ - - - - - - - -
fii - - - - - - - -
fi~ 0.652 0.0078 0.686 0.0021 0.956 0.0038 0.897 0.0013 

fii 2.543 0.0166 1.865 0.0056 - - - -
fii 3.660 0.0157 3.135 0.0039 2.857 0.0101 4.322 0.0035 

(O"k)2 1.227 1.7052 0.998 0.3080 0.809 2.1353 2.145 0.8106 
1= 11 1= 12 

fib - - - - - - - -
fii 11.063 0.0655 14.421 0.0200 2.562 0.0543 1.170 0.0097 

fi~ -0.456 0.0045 -0.625 0.0013 0.1315 0.0097 0.523 0.0013 

fii - - - - - - - -

fii 5.397 0.0163 4.034 0.0053 2.595 0.0390 2.142 0.0069 
(O"k)2 1.139 1.8027 1.301 0.4602 1.016 2.6822 0.636 0.2182 

1= 13 1= 14 

fib - - - - - - - -
Pi - - - - 16.235 0.0585 14.090 0.0318 

fi~ -0.114 0.0056 -0.073 0.0021 - - - -
fJ! - - - - - - - -

fJ! 7.445 0.0229 7.368 0.0070 1.569 0.0147 3.273 0.0107 
(O"k)2 0.515 1.7805 1.735 0.6805 0.858 1.1953 3.189 1.0349 

1= 15 1= 16 

fio - - - - - - - -
fii 2.367 0.0312 2.001 0.0100 13.159 0.0630 10.993 0.0189 

/J~ 0.615 0.0031 0.458 0.0012 - - - -
fii 1.652 0.0095 1.793 0.0038 - - - -

fi! - - - - 0.379 0.0237 -0.160 0.0089 
(O"k)2 0.627 0.993 1.303 0.3311 0.634 1.4092 1.018 0.339 

T" 1.647 0.1536 - -
p 0.9913 l.59e-06 - -

The reported values of estimated parameters for CAR** and LM** show considerable 
differences across the voivodeships, not only in terms of estimated values of regression 
coefficients, but also in terms of their significance. Moreover, from Table 2 we note that 
this setting (CAR**) provides comparable results to CAR. 



0 0 : 

Figure 6: Scatterplot of predictions (y:) against observations (y,) for the models NAIVE 
(left) and CAR (right) 

5 Concluding remarks and discussion 

The study presents the first attempt to apply the spatial scaling model for the GHG 
inventory in Poland. The task was to allocate spatially correlated data to finer spatial 
scales, conditional on covariate information observable in a fine grid. Spatial dependence 
is set and it is assummed not to change with the change of grid. It is modelled with the 
conditional autoregressive structure introduced into a linear model as a random effect. 
The maximum likelihood approach to inference is employed, and the optimal predictors 
are developed to assess missing values in a fine grid. The usefulness of the proposed 
technique is shown on an example of allocation of livestock data (a number of horses) 
from district to municipality level. 

The results of the disaggregation with the proposed procedure were compared with 
the allocation proportional to population of municipalities. An improvement over the 
naive, proportional approach of 9% in terms of the mean squared error was reported. In 
addition, we extended the model to allow for various regression models in regions (here 
voivodeships). Numerous features of the proposed method require further investigation. 

The proposed method provided good results for livestock activity data of agricultural 
sector. Apart from the reported above study, the approach was also applied in a residen­
tial sector for disaggregation of natural gas consumption in households. In that case, with 
disaggregation featured from voivodeships into municipalities, the results turned to be 
quite modest. This was partly due to limited spatial correlation of the analysed process 
and too large extent of disaggregation. The method is feasible for disaggregation from 
districts into municipalities, but not from voivodeships into municipalities. 



It should be stressed that the primary asset of the proposed approach is the possibility 
to asses significance of considered regression coefficients. The widely used proportional 
distribution of activity data can be based only on expert judgements, providing no means 
for outcome verification. 
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Appendix I 

Table 4: List of voivodships 

Voivodship 
1 Dolnosllj_Bkie 
2 Kujawsko-Pomorskie 
3 Lubelskie 
4 Lubuskie 
5 L6dzkie 
6 Malopolskie 
7 Mazowieckie 
8 Opolskie 
9 Podkarpackie 
10 Podlaskie 
11 Pomorskie 
12 Slll,5kie 
13 Swi'<tokrzyskie 
14 Warminsko-Mazurskic 
15 Wielkopolskie 
16 Zachodniopomorskie 
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