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Abstract 

This paper presents a novel approach for allocation of spatially correlated data, such as 
emission inventories, to finer spatial scales, conditional on covariate information observable 
in a fine grid. Spatial dependence is modelled with the conditional autoregressive structure 
introduced into a linear model as a random effect. The maximum Iikelihood approach to 
inference is employed, and the optimal predictors are developed to assess missing values in a 
fine grid. An example of ammonia emission inventory is used to illustrate potentia) 
usefulness of the proposed technique. The results indicate that inclusion of a spatial 
dependence structure can compensate for less adequate covariate information. For the 
considered ammonia inventory, the fourfold allocation benefited greatly from incorporation 
of the spatial component, while for the ninefold allocation this advantage was limited, but 
stili evident. In addition, the proposed method allowed to correct the prediction bias 
encountered for the upper range emissions in the linear regression models. 

Keywords: disaggregation methods; spatial inventory of emissions; statistical modelling. 

1. Introduction 

The development of high-resolution emission inventories is essential for designing 
suitable abatement measures. Spatial distribution of emissions can serve as an input for 
atmospheric dispersion models, which in tum may produce concentration maps ofpollutants 
contributing to the adverse health effects, like ammonia emissions. For other air pollutants, 
such as greenhouse gasses (GHG), spatial pattems become helpful in irnproving identification 
of distributed emission sources. 

Numerous issues underlying preparation of spatially resolved GHG inventory were 
discussed e.g. in Boychuk and Bun (this issue), Bun et al., 2010 or Thiruchittampalam et al. , 
20 I O. In generał, the task crucially depends on availability of spatially distributed activity 
data. For instance, at present in Poland the activity data relevant to GHG emissions for 16 
country regions (voivodships) can be obtained, and no more accurate spatial resolution is 
available. Jnformation ofhigher spatial resolution can be often obtained only for some proxy 
data related to GHG emissions, such as land use and linear emission sources. Recently, also 
satellite observed nighttime Iights have been used for more accurate estimation of spatial 
distribution ofCO2 emissions (Ghosh et al ., 2010; Oda and Maksyutov, 2011 ). 

Typically, the regression models have been applied for spatial allocation of emission 
data (Dragosits et al. , 1998; Oda and Maksyutov, 2011). However, emissions in generał tend 
to be spatially correlated, which gives rise to potential improvements. This idea motivated us 
to develop amore advanced approach for accurate disaggregation of air pollution data. 



Making inference on variables at points or grid cells different from those of the data is 
referred to as the change of support problem (Gelfand, 2010). Severa! approaches have been 
proposed to address this issue. The geostatistical solution for realigmnent ·from point to areal 
data is provided by błock kriging (Gotway and Young, 2002). Areal weighting offers a 
straightforward approach if the data are observed at areal units, and the inference is sought at 
a new level of spatial aggregation. Some improved approaches with better covariate modeling 
were also proposed e.g. in Mugglin and Carlin, 1998 and Mugglin et al., 2000. 

In this study we propose to apply methods of spatial statistics to produce higher 
resolution emission inventory data, taking advantage of more detailed land use information. 
The approach resembles to some extent the method of Chow and Lin (1971), originally 
proposed for disaggregation of time series based on related, higher frequency series. Here, a 
similar methodology is employed to disaggregate spatially correlated data. 

Regarding an assumption on residua! covariance, we apply the structure suitable for 
areal data, i.e. the conditional autoregressive (CAR) model. Although the CAR specification 
is typically used in epidemiology (Banerjee et al., 2004), it was also successfully applied for 
modelling air pollution over space (Kaiser et al., 2002; McMillan et al. , 2010). Compare also 
Horabik and Nahorski (2010) for another application of the CAR structure to model spatial 
inventory of GHG emissions. The maximum likelihood approach to inference is employed, 
and the optima! predictors are developed to assess missing concentrations in a fine grid. 

The application part of the study concems an ammonia (NH3) emission inventory in a 
region of Poland. Ammonia is emitted mainly by agricultural sources such as livestock 
production and fertilized fields. lts high concentrations can lead to acidification of soils, 
forest decline, and eutrophication ofwaterways. Ammonia emissions are also recognized for 
their importance in contributing to fine particulate matter; hence its spatial distribution is of 
great importance. However, agricultural emission sources cannot be measured directly, and 
spatial emission pattems need to be assessed otherwise. This issue was addressed, among 
others, by Dragosits et al., 1998, where agricultural and land cover data were used to 
disaggregate the national NH3 emission totals across Great Britain. We demonstrate that the 
straightforward approaches based on linear dependences might be improved by introducing a 
spatial random effect. 

Nevertheless, the proposed approach is of wider applicability, and can be used in 
numerous situations where higher resolution of spatial data is needed. In the context of the 
greenhouse gasses, the method might be particularly adequate to improve resolution of these 
activity data which tend to be spatially correlated. The plausible sectors include agriculture, 
transportation and forestry. lmproved resolution may in tum contribute to limitation of 
uncertainties underlying GHG inventories. 

The format of the article is as follows. Section 2 describes the disaggregation model, its 
estimation in a coarse grid, and prediction of the value of interes! in a fine grid. Section 3 
presents the ammonia inventory case study. Here, the sensitivity of the proposed method is 
examined in various ways. We compare the models with different sets of covariates, the 
models with and without the spatial component, as well as instances offourfold and ninefold 
disaggregation. Conclusions are given in Section 4. 

2. Disaggregatioo framework 

This section presents the statistical approach to the issue of spatial disaggregation. The 
goal of the method is as follows. We have available data on a spatially distributed variable 
(inventory emissions) integrated in a coarse grid. The aim is to estimate a distribution ofthis 
variable in a finer grid, conditional on some explanatory variables observable in the fine grid. 
lt is assumed that the variable of interes! is spatially correlated. lts residual covariance 
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structure is set and the conditional autoregressive model is applied. An additional important 
assumption of the method is that the covariance structure of the variable at a coarse grid is the 
same as that at a fine grid. 

Below we specify the model and provide details on its estimation in the coarse grid as 
well as on prediction in the fine grid. 

2.1. Model 

Fine grid. We begin with the model specification in a fine grid. Let Y; denote a random 
variable associated with a missing value of interest y; defined at each cell i for i= 1, ... ,n of a 
fine grid (n denotes the overall number of cells in a fine grid). Assume that each random 

variable Y; follows Gaussian distribution with the mean µ; and variance a} 
Y; Iµ, - Gau(µ,,an (1) 

Given the values µ, and a} , the random variables Y; are assumed independent, thus the 

joint distribution of Y=(h ... , Y.)T conditional on the mean process µ = (µ ,, .,µ,J is 
Gaussian 

Y I 11 - Gau,, (µ ,a;I,,), (2) 

where J " is the n x n identity matrix. 
The mean µ represents the true process underlying emissions, and the (missing) 

observations are related to this process through a measurement error with the variance a-; . 
The model for the mean process is formulated as a sum of the regression component with 
available covariates, and a spatially varying random effect. For this, the conditional 
autoregressive model is used. The CAR model is given through the specification of the full 
conditional distribution functions ofµ, for i=l , ... ,n (Cressie, 1993; Banerjee et al ., 2004) 

µ,lµ _,-Gau[x;p+p''[. w ij (µ1 -x;pi ..c],, 
/=I Wi+ W;+ 
j# 

(3) 

where µ _, denotes all elements in µ butµ;, wu are the adjacency weights ( w ij = 1 ifj is a 

neighbour of i and O otherwise, also w,, =O); w,+ =~Jw" is the number of neighbours of 

area i ; x, is a vector containing 1 as its first element (for the intercept /30 ) and k explanatory 

covariates of area i as the next elements; P = (/30, /Jp-· ·• /Jk Y is a vector of regression 
coefficients. The CAR structure follows an assumption of similar random effects in adjacent 
cells; this is reflected in the second summand of the conditional expected value of J-1, , which 

is proportional to the average values of remainders p1 - < P for neighbouring sites (i.e. 

when w ij = I). This proportion is calibrated with the parameter p. Tuus p reflects strength 

of spatial association. The variance of the full conditional distribution of µ, is inversely 

proportional to the number of neighbours wi+, and r 2 is a variance parameter. 

Given (3), the joint probability distribution of the process µ is as follows, see e.g. 
Banerjee et al. (2004) 

(4) 

where X is the matrix whose rows are the vectors x; 
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X = : : ·. : . [
l X11 ... X/kl 

~ x:, 1 .. : x:,, , 
D is an n x n diagonal matrix with W;+ on the diagonal ; and W is an n x n matrix with 

adjacency weights w,1 . Equivalently we can write ( 4) as 

µ = xp+e, e-Gau,,(o,n) , (5) 

where Q = , 2 (D-pWt'. 

Coarse grid. The model for a coarse grid (aggregated) observed data is obtained by 
multiplication of (5) with the N x n aggregation matrix C consisting of O' s and l ' s, 
indicating which cells have to be aggregated together 

Cµ = CXp+ee ee- GauAo,ener) (6) 

where N is the number of observations in a coarse grid. Now, suppose that the random 

variable ). = eµ is the mean process for random variables Z = (z1 , ••• ,ZN Y associated with 

observations z = (=1, ... ,=N Y of the aggregated model 

Z I A - GauN (2, o-; l .v ). (7) 

Tuus, random variables Z,, i = 1, .. . , N are conditionally independent 

Z; I ,1.; - Gau(,1.;, o-; ) (8) 

where A, is the i-th element of the vector .l. . 

2.2. Estimation and prediction 

Having available observations of Z; in the coarse grid, we can estimate parameters 

p,o-;, , 2 and p with the maximum likelihood (ML) method. First, from (6) and (7) the joint 
unconditional distribution of Z is derived 

z - GauN(exp,M +me'"), (9) 

where M = o-;J N , 1.v is the NxN identity matrix; see e.g. Lindley and Smith (1972). Next, 

we formulate the log likelihood function associated with (9) 

L(p,o-;, , 2 ,p)= - ½IoglM +enc' l-~ log(2n-) 

_.!. (z-cxp)' (M +ene1 t1(z-exp), 
2 

where J•J denotes the determinant. With fixed o-;, , 2 and p , the above log likelihood is 

maximised for 

p(o-; , , 2 , p)= [(exY(M + me' tex r (ex)' (M + mer t z, 
which substituted back into the function LVJ, o-;, , 2 , p) provides the profile log likelihood 
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L(a-i, r ', p) = -½ log/M + cncr/-f log(21r) 

-i[z-cx[(cxY(M +cncrtcxj'(cxY(M +cncrtzT 

x(M +Cncrt 

x [ z -cx[(cxY (M + cncr tex J1 (cxy (M + cncr t z] 
Further maximisation of L(a-;,r', p) is performed numerically, including checks on p to 
ensure that the matrix D- pW is non-singular, see Banerjee et al. (2004). 

To obtain the standard errors of estimated parameters, one needs to derive the Fisher 
information matrix. The asymptotic variance-covariance matrix of the ML estimators is 
obtained by inverting the expectation of the negative of the second derivatives (the Hessian) 
of the log likelihood function, and the expectation is evaluated at the ML estimates. In other 
words, the expected Fisher information matrix is used to obtain the standard errors of 
parameters. Calculation of the Hessian with respect to the regression coefficients is relatively 
straightforward, but it becomes more burdensome for the covariance parameters. Detailed 
derivation of the explicit forrnulas for the expected Fisher information matrix will be 
provided elsewhere; here we report the standard errors of parameter estimators obtained in 
the case study. 

To estimate the required values in a fine grid, we apply the following prediction 
procedure. Note that our primary interest is the underlying emission inventory process µ. The 
predictors optima) in the minimum mean squared error sense are given by E(µ I z). The joint 

distribution of ( 11, z) is given by 

[;]-cauN+n ([:i], [c~ M ~~~er]} (JO) 

The distribution (10) allows for full inference, yielding both the predictor µ. = E( µIz) and 

its error ui = Var(µ I z) 
µ. = xp + ficT(M + cficTf1 [z - cxp] 
ui = fi - ficT(M + cficrr1 cfi, 

where denotes the estimated values. 

3. Case study 

3.1. Data 

(11) 

(12) 

The proposed procedure is illustrated using a real dataset of gridded inventory of NH3 

(animonia) emissions from fertilization (in toooes per year) reported in a northem region of 
Poland (the Pomorskie voivodship). The inventory grid cells are of regular 5kmx5km size, 

and the whole of cadastral survey compiles n=800 cells, denoted y = (y1>··· ,YJ r, see 
Figure I. For explanatory information we use the CORINE Land Cover Map for this region, 
available from the European Environment Agency (201 I). Specifically, for each grid cell we 
calculate area of these land use classes, which are related to ammonia emissions. The 
following CORINE classes were considered (the CORINE class numbers are given in 
brackets): 



Non-irrigated arabie land (211), denoted x, = (xu ,···, x,,_, Y; 
Fruit tree and berry plantations (222), denoted x 2 = (xu ,·· ·, x,,_2 )'; 

Pastures (231), denoted x, = (x,.,, ... ,x,,_, Y; 
Complex cultivation patterns (242), denoted x, = (x, ,4 , ••• ,x,,_4 )'; 

Principally agriculture, witb natura! vegetation (243), denoted x5 = (x„5 , .•. ,x,,.,Y. 
Performance of tbe proposed disaggregation framework depends on a few factors. 

Perhaps tbe most crucial ones are tbe following two: (i) explanatory power of covariates 
available in tbe fine grid, and (ii) an extent of disaggregation, which is connected witb 
preservation of tbe spatial correlation. An impact of botb tbese features will be evaluated in 
our case study. 

Regarding tbe first factor, we will examine models witb all tbe above land use classes 
(set 1 ), and compare tbe results witb models including only two of them: non-irrigated arabie 
land and complex cultivation pattems (set 2). This subset ofland use classes was chosen on a 
basis of explanatory power. When limiting a number of explanatory variables, tbese two 
covariates provided tbe best results . Second.ly, we compare a linear regression witb 
independent (iid) errors versus spatially correlated errors modelled by tbe CAR process. We 
consider tbe following models: 

Model CARi: - CAR errors, set I ofcovariates; 
Model LM I: - iid errors, set I of covariates; 
Model CAR2: - CAR errors, set 2 of covariates; 
Model LM2: - iid errors, set 2 of covariates. 

This setting of four models is intended to enable tbe analysis of extent to which a limited 
number of explanatory information can be compensated by spatial modeling. 

Regarding tbe second factor, we test tbe disaggregation from JOkmx 10km and 
15kmxJ5km (coarse) grids into a 5kmx5km (fine) grid. To examine performance of tbe 
disaggregation procedure, first we aggregate tbe original fine grid emissions into respective 
coarse grid cells. Next, we fit tbe proposed model and predict ammonia emissions for a 
5kmx5km (fine) grid. Finally, we check tbe obtained results witb tbe original inventory 
emissions of a 5kmx5km (fine) grid. Tuus, our simulation study tests tbe cases of a fourfold 
and ninefold disaggregation. The aggregated values of tbe two coarse grids as well as tbe 
actual inventory data in tbe fine grid are shown in Figure I. 

Figure 1. Ammonia emissions: inventory data in 5km grid, and aggregated values in 10km 
and 15km grids 
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3.2. Results of disaggregation from a 10km grid 

This subsection presents the model testing results for disaggregation from a I 0km grid. 
Table I displays the maximum Iikelihood estimates (denoted by Est.) and standard errors 
(denoted by Std.Err.) of the parameter estimators for each model. Note that in the models 
with set I of covariates (CAR I, LM I) the regression coefficient Po was dropped as it was 
statistically insignificant. In the table, we can observe that the ML estimates of the regression 
coefficients are similar for all the models. From the ratio of regression coefficients and its 
respective standard errors (i.e. the t-test statistic), we can roughly conclude that all the 
considered land use classes are statistically significant; in fact, in each case respective p­
values proved to be less than 0.05 (not shown). Next, !et us tum our attention to the error part 

of the models. Significantly !ower values of O"i estimates under both the CAR models, as 
compared with their linear regression counterparts, indicate that greater variability is 
explained by the models with spatially correlated errors than by the corresponding models 
with independent errors. As expected, among the spatially correlated models, both variance 

parameters O" i and , 2 are high er for CAR2 than for CAR I model with five land use classes as 
explanatory variables. Furthermore, the parameter p retlects strength of the spatial 
correlation. Note that p = O corresponds to a model with independent errors, see also Banerjee 
et al. (2004) for more details. A value of parameter p is higher for CAR2 model, which 
illustrates that in the models of limited explanatory power, importance of spatial correlation 
becomes more pronounced. 

Table 1. Maximum Iikelihood estimates for the I 0km grid 

CARi LMI CAR2 LM2 
Est. Std.Err. Est. Std.Err. Est. Std.Err. Est. Std.Err. 

130 - - - - 0.386 9.29e-02 0.452 5.45e-02 

13, 1.13e-07 3.26e-09 J.09e-07 2.46e-09 l.06e-07 5.03e-09 9.58e-08 4.43e-09 

13, 2.56e-07 l.94e-07 4.48e-07 l.97e-07 - - - -

13, 9.77e-08 I.l 9e-08 l.08e-07 l.08e-08 - - - -

13, l.18e-07 2.13e-08 l.2le-07 l.76e-08 l.27e-07 2.72e-08 l.60e-07 2.22e-08 

13s l.27e-07 l.32e-08 l.35e-07 I. lle-08 - - - -

(j: 0.334 0.073 1.165 0.109 0.522 O.li I 1.95 0.184 

't 
2 0.536 0.082 - - 0.807 0.124 - -

p 0.948 9.98e-04 - - 0.972 9.98e-04 - -

Results of the four models are also summarized using the Akaike criterion (AIC). The 
idea of AIC is to favour a model with a good fit and to penalize for a number ofparameters; 
models with smaller AIC are preferred to models with Iarger AIC. Table 2 (the upper part) 
displays AIC for each model, and additionally it reports the negative log Iikelihood (-L). 
Naturally, the models with set I of covariates provide much better results than the models 
with another set. Among these respective sets, the models with the spatial structure 
considerably improve results obtained with the models of independent errors. Note, that this 
improvement is higher for the models with set 2 of covariates (797.6-742.8 = 54.8) than for 
the models with set I ofcovariates (685. 1-640.7 = 44.4). 
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Table 2. Model comparison 

Model -L AIC 
10km grid 

CARi 312.3 640.7 
LM! 336.5 685.1 
CAR2 365.4 742.8 
LM2 394.8 797.6 

15km grid 
CARi 220.6 455.3 
LM! 222.9 455.9 
CAR2 240.4 492.8 
LM2 248.1 504.4 

The values of ammonia emissions predicted in a 5kmx5k:m grid (y;) are featured in 
Figure 2. Differences between the four models are negligible, although a visual comparison 
with the original emissions in Figure I (the left-hand-side plot) suggests that the both models 
based on set I of covariates (CARi , LM!) provide slightly better results. Since the mapped 
emission values are classified into just 9 bios, therefore some features might not be easily 
distinguishable on the maps in Figure 2. To remedy this, Figure 3 presents the model 
residuals (d; = Y; - y•) . Now the difference in prediction results among the models is evident 
- the best results are obtained for CAR I model and the worst for LM2 model. 

At this point we stress that the values predicted in a fine grid ( y") are calculated with 

the formula (11) based on the aggregated values of 10 km grid; the calculations are made as if 
the true emissions were unknown. On the other hand, recall that these true emissions in fine 
grid (y;) are available; see the left-hand-side map in Figure I. From now on, our analysis is 
based on comparison between the prediction results obtained with the proposed technique and 
the original fine grid ammonia emissions (observations). 
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• over2.7 

CAR1 LM1 

CAR2 LM2 

Figure 2. Amrnonia emissions predicted in a fine grid- disaggregation from I O km grid 

Figure 4 presents, for each model, a scatterplot of predicted values y; versus 
observations y;. The straight line has slope I, thus if the predicted values are close to the 
original data, points are close to the straight line. This setting, once again, illustrates much 
better explanatory power of models based on all the land use classes (set I of covariates). It 
also illustrates importance of the spatial structure component. In the case of models CAR2 
and LM2, introduction of spatial dependence evidently improved accuracy of prediction. 
Whereas in the case of models CAR! and LMI, the applied spatial structure allowed to 
considerably limit a number of highly overestimated predictions (points below the straight 
line). Furthermore, we note thai the linear regression LMI provides biased predictions (for 
the prevailing number of cases) of upper range emission values (emissions over 1.5 tonnes), 
while CAR! model allows to overcome this deficiency. The dotted line for LM2 seems to 
have slightly higher slope than 1, while this effect is rather not visible for CAR2 model. 
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Figure 3. Residuals from predicted values - disaggregation from 1 O km grid 

The residuals d; are further analysed in Table 3 (the upper part). Namely, we calculate 
the mean squared error (MSE) 

MSE=_!_ L(y;-Y,°J , n , 
which should be as low as possible. The mean squared error reflects how well a model 
predicts data. In Table 3 we report also the minimum and maximum values of d;, and the 
sample correlation cofficient r between the predicted y ;· and observed y; values. In terms of 

both the mean squared error and the coefficient r, the best model is CARi and the poorest 
one is LM2, following the previous assessments. lnterestingly, the remaining two models 
changed their ranks compared with the AIC criterion. That is, CAR2 model has lower 
MSE = 0.158 and higher coefficient r = 0.901 than the linear model based on set I of 
covariates (LM! model with MSE = 0.186 and r = 0.882). This proves that the model with a 
limited number of covariates but having a spatial component (CAR2) can provide better 
disaggregation results than the model based solely on a linear regression, even though its 
covariate information is richer (LMI). Note that the analysis based on residuals is more 
robust than the AIC rating, which basically tests a model fit to the aggregated data. 

Table 3. Analysis of residuals (d, = Y; - / ) 

Model 

CARi 
LMI 
CAR2 
LM2 

Disa re ation from 15km 

IO 

r 

0.961 
0.882 
0.901 
0.808 



CARi 0.136 -2.428 0.646 0.915 
LM! 0.189 -2.600 0.516 0.880 
CAR2 0.190 -2.132 1.446 0.880 
LM2 0.295 -2.511 1.746 0.807 

CAR1 LM1 
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Figure 4. Predicted (y*) versus observed (y) values - d.isaggregation from I O km grid 

Following the formula (12), we calculate also the prediction error. Since in the present 
case study the correct values of pred.icted emissions are known, we are in a position to 
compare the prediction error with actual residuals (more precisely, with its absolute values). 
In Figure 5 these values are presented for CAR2 model. lt is noticeable that the prediction 
error is significantly underestimated, and moreover, it does not reflect d.iversification of 
actual residuals properly. Note that in both the rnaps the higbest errors are reported on the 
border of the domain; this fact is known as the edge effect in spatial modelling. 
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Abs(l!Hldual) 

O l.nder0.23 
• 0.23 - 0.45 
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• 1.13 - 136 
• (J'lff f .36 EP 

Figure S. Prediction error and absolute values of residuals for CAR2 model. Note that the 
maps are drawn in different scales. 

3.2 Results of disaggregation from a 15km grid 

Next, the results of disaggregation from a I 5km grid are presented. The conducted 
analysis is similar to the one of I 0km grid, and, where appropriate, both settings are being 
compared. 

Table 4 contains the maximum lik:elihood estimates for , the I 5km grid data. In the 
models with set 1 of covariates, again the regression coefficient Po was dropped. Moreover, in 
all the models at this level of aggregation land use class "Fruit tree and berry plantations" (P2) 

was statistically insignificant, and thus it was also dropped from the considered models. The 
remaining land use classes were informative, with respective p-values lower than 0.05. 

With regards to the error part of Table 4, all the comments reported for 1 O km 
disaggregation (see Table I) remain valid also here, although their degree is significantly 

lower. Both the CAR models provide lower values of er; then their linear regression 

counterparts. However, the reduction of unexplained variability between the models, for 
instance, LMI and CARi is only 1.5 (3.5/2.339), while it was over 3 (1.165/0.334) for 
respective models of IO km disaggregation. This suggests that the spatial correlation strength 
of the 15km grid model is smaller than the 10km grid one. Tuus, here the CAR models are 
less competitive than the LM models, as compared to the former grid. 

Table 4. Maximum likelihood estimates for the 15km grid 

CARi LMI CAR2 LM2 
Est. Std. Err. Est. Std.Err. Est. Std.Err. Est. Std. Err. 

Jlo . . . . 0.424 l.04e-0I 0.476 6.82e-02 

Jl, 1.12e-07 3.95e-09 l.09e-07 3.42e-09 1.00e-07 7.0le-09 9.35e-08 5.79e-09 

Jl, . . . . . . . . 

Jl, l.07e-07 l.84e-08 l.16e-07 l.55e-08 . . . . 

Jl, l.24e-07 2.77e-08 l.29e-07 2.34e-08 l.56e-07 3.65e-08 l.75e-07 2.79e-08 
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p, l.27e-07 l.65e-08 l.33e-07 l.49e-08 - - - -
a; 2.339 0.424 3.50 0.474 2.681 0.548 5.55 0.753 

i 0.214 0.088 - - 0.414 0.088 - -

p 0.966 4.9 1e-04 - - 0.982 5.55e-05 - -

The values of AJC criterion and of the negative log likelihood (-L) are reported in the 
tower part of Table 2. Similarly as for the disaggregation from a I 0km grid, also in this case 
the models based on set 1 of covariates provide better results. The CAR structure improves 
obtained linear regression results of both respective covariate sets. Note, however, that in the 
setting of 15km disaggregation, an impact of the spatial component is not that substantial 
anymore as it was previously. Again, a higber improvement is noted for the models with a 
limited number of covariates (504.4 - 492.8 = 11.6 in terms of the AIC criterion), and the 
gain from incorporation of the spatial component is onJy marginal for the models with set I 
of covariates (455.9 - 455.3 = 0.6). 

• undłł'O.J 
• 0.3•0,7 
O 0.7• 1 
C 1-1.3 
m 1.J-1.1 
• 1.7-2 
• 2-2.3 
• 2.3-2.7 
• OV9r2.7 

CAR1 Uo11 

CAR2 LM2 

Figure 6. Ammonia emissions predicted in a fine grid - disaggregation from 15 km grid 

The values of ammonia emissions disaggregated from 15 km cells and predicted in a 
fine grid are sbown in Figure 6; respective residuals are featured in Figure 7. While for the 
I O km disaggregation the residua! maps clearly indicated discrepancies among the models, 
this is not so easily visible in Figure 7. The models based on set 1 ofcovariates (CARi , LM!) 
provide smaller residuals. However, the differences between the spatial models and its linear 
regression counterparts seem to be negligible. 
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Table 3 (the !ower part) provides further, more quantitative analysis of residuals. The 
mean squared error MSE and the correlation coefficient r yield a consistent ranking of the 
models. Obviously the best model is CARi with r =0.915 and MSE=0.136, while the 
poorest one is LM2 with r = 0.807 and MSE = 0.295. When it comes to the remaining two 
models, LMI slightly outperforms CAR2 (only in terms of the mean squared error). Note that 
this order is reversed when compared with the results of I O km grid disaggregation (the upper 
part of the table). Therefore, when disaggregating from I O km grid, the spatial structure is 
more informative than some of the covariates, but this is not true anymore when 
disaggregating from 15 km grid. From this we conclude that in this particular case study, the 
proposed framework offers an efficient tool for a quadruple and nine-times disaggregation, 
but it may become less adequate for higher order allocations. 

• under-2.1 
• •2.1 · ·1 .7 
C -1 .7--U 
C ·1.4--1 .1 
C -1 .1--0.7 
C -0.7--0.4 
C -0.4 • 0 
• 0-0.3 
• over0.3 

CAR1 

CAR2 

LM1 

LM2 

. ..,.. .. 
" -'"H•·'" • •• . ... . . . ....• .. -~-. ~- ..... ~ ...... .. -~-- ~·•· . .... . ...... .. ... ~.,,... ... . .... .. •..... ·• . , ... ~-• .. . ... .. .. . ................ 

• ............. . 
· · --~~- ~- ~ « • ., .. ~ 

I ~ : .. ••• " • • • •_..• • ,,•,~~ • A l • "" ··-~ ....... ...,,... . 
i:::.:::::, ..... =··--::·:.:·.::" 

Figure 7. Residuals from predicted values - disaggregation from 15 km grid 

The actual interplay among the four models is further illustrated on the scatterplots in 
Figure 8. We note that the 15 km disaggregation, in generał, preserves the features reported 
previously - the performance of respective models is quite analogous as for the 10 km 
disaggregation. It means that for the models based on set 2 of covariates, the spatial 
correlation significantly improves prediction quality. Also for the other two models, 
introduction of spatial structure is stili beneficial as it allows to correct the prediction bias and 
to slightly reduce a number of overestimates. We highlight the difference between the models 
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CAR2 and LMl , which yield almost the same MSE and coefficient r, but provide completely 
distinct plots, as shown in Figure 8. The residuals ofCAR2 model are more dispersed owing 
to a limited set of explanatory covariates. On the other hand, improved covariate modeling of 
LMl leads to the residuals gathered close to the diagonal, but a lack of spatial averaging 
result in much more overestimated values. Altogether, assessment of residuals of both the 
models, surprisingly becomes the same. 
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" .,. 
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2 O 25 3.0 

2.5 3.0 

Figure 8. Predicted (y ') versus observed (y) values - disaggregation from 15 km grid 

A comparison of 10 km and 15 km disaggregation is presented in Figure 9, which 
shows the scatterplots for CAR! models. As to be expected, performance of IO km 
disaggregation is definitely better. This is especially visible for the overestimated emissions 
(points below the straight line) in the 15 km disaggregation model. In the left-hand-side plot, 
a number of overestimated predictions is significantly lower. 
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Figure 9. Predicted (y') versus observed (y) values for CAR I model of disaggregation from 

10 km and 15 km grids 

4. Discussion and conclusions 

The major objective of this study was to demonstrate how a variable of interes! ( e.g. 
emissions) available in a coarse grid plus information on some related covariates available in 
a finer grid can be combined togetber to provide the variable of interest in a finer grid, and 
therefore to improve its spatial resolution. We proposed a relevant disaggregation model and 
illustrated the approach using a real dataset of ammonia emission inventory. The idea is 
conceptually similar to the metbod of Chow and Lin (1971), originally designed for time 
series data; see also Po lasek (201 O). lt was applied to tbe spatially correlated data, and a 
spatial dependence was modelled with the conditional autoregressive structure introduced 
into a linear model as a random effect. 

The concept of the model lies in accounting for tbis part of spatial variation, which has 
not been explained by available covariates. Tuus, iftbe covariate information do not correctly 
reflect a spatial distribution of a variable of interest, tbere is potentia) for improving tbe 
approach witb a relevant model of spatial correlation. The underlying assumption of tbe 
method is tbat tbe covariance structures of tbe variable at a coarse grid and at a fine grid are 
tbe same. In tbe present study of ammonia emissions examined at 5 km, I O km, and 15 km 
grids, this assumption proved to be reasonable. 

Performance of tbe proposed framework was evaluated witb respect to tbe following 
two factors: explanatory power of covariates available in a fine grid, and an extent of 
disaggregation. The results indicate that inclusion of a spatial dependence structure can 
compensate for less adequate covariate information. For tbe considered ammonia inventory, 
the fourfold allocation benefited greatly from an incorporation of tbe spatial component, 
while for tbe ninefold allocation this advantage was limited, but stili evident. In addition, the 
proposed method allowed to correct the prediction bias encountered for upper range 
emissions in the linear regression models. 

We note tbat in this case study we used the original data in a fine grid to assess tbe 
quality ofresulting predictions. For the purpose of potentia) applications, we developed also a 
relevant measure of prediction error (the formula 12). Altbough not entirely faultless, it is tbe 
first attempt to quantify the prediction error in situations, where original emissions in a fine 
grid are not known. 

lt should also be mentioned that other approaches, such as a geostatistical model, might 
be potentially used for tbe problem of spatial allocation. Application of the geostatistical 
approach brings us to the concept ofhlock kriging (Gelfand 2010). We stress, however, tbat 
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geostatistics is more appropriate for point referenced data, while our proposition is dedicated 
to the case of emission inventories which involve areał data. Tuus, the choice between these 
two options should be considered on a case by case basis. 

Another possibility to attack the issue of spatial disaggregation could be to use some 
expert knowledge and logical inference; compare Verstraete (this issue) for a fuzzy inference 
system to the map overlay problem. 

The method ofimproving resolution opens the way to uncertainty reduction ofspatially 
explicit emission inventories, hence the future work will also include testing the proposed 
disaggregation framework for inventories of greenhouse gasses. 
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