
Raport Badawczy

Research Report
RB/36/2007

Design of problem specific
evolutionary operators

J. Stańczak, Z. Nahorski

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

O 1-44 7 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Pracowni zgłaszający pracę:
prof. dr hab. inż. Zbigniew Nahorski

Warszawa 2007

DESIGN OF PROBLEM SPECIFIC EVOLUTIONARY

OPERA TORS

Jarosław Stańczak, Zbigniew Nahorski

Systems Research Institute, Polish Academy of Science,

01-447 Warsaw, ul. Newelska 6, Poland

E-mail: { stanczak, nahorski} @ibspan.waw.pl

Abstract
This paper describes some basie methods of specialized and heuristic genetic operators' design and

shows advantages of approach thai uses specialized methods of solution encoding and heuristic

operators that are exactly adjusted to considered problem. As a computational example a problem of

determining the optima) control signal to estimate parameters of dynamie object is used.

Keywords: evolutionary algorithms, heuristic operators.

1 lntroduction

At the present stage of development of genetic algorithms (GA) it is obvious that applying

traditional genetic operators (mutation or perturbation and crossover) to solve all possible

optimization tasks is useless. Similarly binary encoding of all considered problems is not an

unquestionable dogma. The tendency to use genetic algorithms in a manner as they were

introduced by Holland [8] and Goldberg [6] to solve all problems lasted very long. But

shortcomings of this approach have been seen very clearly since that and genetic algorithms

have been changing from unifo1m method to solve everything to some kind of universal idea

of evolutionary method specialized and adopted to specific problems. The evolutionary

algorithm (EA) is more complicated, but its efficiency is much higher. To assess good results

using EA it is necessary to design some essential elements of it:

• encoding of solutions;

• choosing genetic operators;

• choosing selection method.

Of course, it is possible to use some standard solutions, even the same as in GA, but

specialized methods give significantly better solutions. Especially selection methods are

usually more generał in EA (there are problems that can be efficiently solved only using

specialized selection methods, for instance optimization of non-stationary tasks) but do not

particularly depend on the solved problem. Thai is why they are not considered in this paper.

Designing an efficient EA is a very interesting engineering challenge and a well­

prepared EA will provide good and accurate results. Unfortunately, it is rather difficult to give

some generał algorithms, methods or criterions how to prepare efficient EA. However some

standard approaches can be helpful in designing sufficient encoding and genetic operators for

EA.

2 Encoding solution and designing genetic operators

The process of EA design must begin with accepting some method of encoding solution. It is

obvious that the operators, which modify solutions, must take into account the data structure of the

individuals. It should be emphasized that the accepted method of encoding solutions dete1mines

main properties of the designed EA, especially the accuracy of results and the rate of convergence.

This comes from the fact that genetic operators depend directly on encoding solutions and their

implementation and computational complexity is strictly connected with it. Thus proper encoding of

solutions is ve1y important and it is often necessary to test severa! methods before the best one will

be found. Unfortunately it is usually difficult to foresee properties of EA with accepted encoding

method. Theoretical aspects of this problem were considered in [1] and will not be discussed here.

Only some rules connected with the problem of designing of genetic operators will be desc1ibed.

Arabas in his work [1] gives some strict requirements for encoding methods:

2

• each possible phenotype (solution of the problem) must have its equivalent in genotype

space;

• the encoding method must not introduce additional extremes to the solved problem.

Sometimes it is possible to take into account additional requirements:

• automatically fulfill some constraints of the solved problem using proper encoding

method;

• choose a method which doesn't require a lot of computer memory or big amount of

computations to execute genetic operators or evaluate an encoded solution;

• applying the encoding method, which doesn't artificially enlarge the searching space of

the problem.

It is usually difficult to foresee or to check all properties of designed encoding method

and then it is necessary to verify the methods empirically.

In problems with continuous optimization we have basically two possible methods of

encoding: binary or floating point, used as vectors or matrices, depending on the number of

dimensions of solved tasks. Binary encoding usually gives smaller accuracy of computations (of

course it is possible to use very long binary strings to assure similar accuracy as for floating point,

but it works significantly slower than floating point encoding), thus the floating point encoding is

used more frequently.

The case of discrete optimization is much more complicated, because usually there are

many possibilities to encode the solutions of given problem:

• vectors of binary, integer, floating point values or more complicated data structures,

sometimes of variable length ;

• mallices of similar properties as vectors;

• dynamie lists of different kinds of objects;

• (binary) trees;

• some mixed structures of above mentioned elements.

Additionally individuals may contain same data required by specialized EA - same on­

line tuned parameters of evolutionary computations, same flags or data used by operators, and

data required by encoding method.

A possible encoding methods is to use diploid or polyploidy individuals ((7), (5)) to

increase the flexibility and adaptation abilities of EA. This method is proper rather for simpler

methods of encoding.

As it was mentioned earlier, binary encoding is not a universal method, best for all

cases. It can be noticed that the binary encoding is not even similar to information encoding

used by nature in DNA, where sequences of four, not two, elements are used. Thus the

similarity to natura] methods should not be a reason of too frequent application of binary

encoding in EA.

Encodings mentioned in this paragraph probably do not exhaust the list of all possible

methods used in EA. But they show the complexity of the problem of best individual encoding

design to obtain fast and accurate evolutionary method of solving the given problem.

3 Methods of genetic operators design

To obtain a set of efficient operators we must realize that genetic operators and the way of encoding

of the problem must be strictly combined with each other. Thus it is necessary to design these

elements of EA together or taking into account accepted data structure for encoding sol uti on.

Similarly to encoding methods there are same requirements for genetic operators ([I]):

• consistence of genotype space - it should be possible to generale every solution using the

set of prepared genetic operators from any other solution in finite number of iterations;

• unbiasedness - operators should not prefer same directions in the search space 1•

1 This requirement is not always necessary - probably all described in this paper heuristic operators do not ful fi Il this point,
but work very well. lt is likely that this sta1ement should be replaced by: "the set of used genetic operators should be
unbiased" or even weaker "the set of used genetic operators should contain also unbiased operators". This problem will be
discussed later in this section.

4

The main purpose of genetic operators execution is to modify population members -

solutions to search the solution space. Unfortunately, it is impossible to search the whole

solution space in usual problems where EA are used. Thus, a set of genetic operators applied

to salve the problem must be rich and diverse. Two simple operators, crossover and mutation,

are often too weak to efficiently salve the majority of difficult tasks using EA. It is easy to

show expe1imentally thai EA with mare than these two simple operators are almost always

faster or mare accurate. This fact can be easily explained. A set of severa! different operators

modifies the population in the mare diverse way, giving new, better and mare scattered

individuals. Additionally, hemistic operators have significantly higher probability of

generating better offspring than simple, random operators, due to same embedded knowledge

on the solved problem. Heuristic operators usually "know" which directions of searching are

mare promising and they prefer them, but this is what we call the "bias". But I am not sure,

thai the bias effect is always haimful. Of course it can be observed thai same genetic

operators, especially heuristic, loose (or exhaust) their searching abilities (they are biased i.e.

limited to same directions of searching), when they are too intensively exploited, but a higher

number of operators and/or a mixture of heuristic and random ones (mainly unbiased)

manages this situation.

Let's conduct a simple experiment. Suppose that we want to salve a traditional TSP

problem using EA. We have two genetic operators in our EA. One randomly changes the list

of cities to be visited. The second (heuristic and biased) modifies the cities on the list in the

manner that following cities are chosen from the nearest neighborhood of the severa! closest

cities. If we use only the first operator in genetic computations, finding acceptable solutions

would take a very long time. On the other hand if we use only the second one, we would

obtain good solutions quite fast (probably better than using the first one in acceptable time),

but after same very intensive progress in the beginning, the improvement of obtained results

would almost stop. This is the effect of exhaustion of heuristic operator due to limitations of

5

its search space. But if we use both of them, the results would be better than in the second case

and the effect of exhaustion of heuristic operator won 't appear, because of random

modifications introduced by the first operator, which enable to escape from the trap of !ocal

search. Thus it is very important to have a set of different kinds of operators with heuristic -

mainly biased and random - mainly unbiased ones.

Traditional genetic operators are divided into two groups with exploitation (crossover

operation) or exploration (mutation/perturbation operation) properties. Specialized and

heuristic operators are often hard to altach to one of these groups. The behavior of specialized

operators is difficult to formalize and describe scientifically using mathematic formulae, but

experiments show that they work very well.

It is also difficult to foresee what should be the probabilities of operator choice,

because it is often not easy to realize what is a character of an actual operator (more

exploratory or more exploitative). There are two ways to overcome this problem:

• experimental tuning of probabilities

• making them self-adaptive.

An exhaustive survey of methods used in parameter control in EA can be found in [3,

4, 9, 11, 14, 15, 16, 17) and also a short summary in the section 4.4 ofthis paper.

For the designing purposes genetic operators can be divided into two classes differing

in the operation methods. The first class contains random operators, which do not have

additional information about the solved problem. Of course, they musi fulfill requirements of

solved problem and encoding method, but they base on simple random changes of solutions.

This group covers operators similar to the following:

• mutation - the action, which changes a value of a randomly selected position to another

one from the set of possible values;

• crossover - the action, which exchanges parts of genotype between two or more

individuals;

6

• inversion - the action, which places elements of solution in reverse order;

• concatenation, exchange, movement (or similar actions) of randomly chosen fragments of

solutions within one individual;

• multiple versions of the mentioned operators

Random operators in most cases are very universal and can be applied in many

problems without bigger changes. EA, which use exclusively random operators, are rather

slow and sometimes cannot efficiently solve difficult problems [19].

The second group covers heuristic methods, which use an advanced knowledge

about solved problem, or use simple optimization methods (hybrid optimization methods, like

2-opt, greedy or similar), sometimes with some randomly chosen parameters. Heuristic

operators are almost always biased - they prefer some search directions and they "know" that

this leads to better solutions. This is the main advantage in applying this kind of operators.

Severa! groups of heuristic operators can be selected:

• operators, which depend on current and/or former values of quality function of the solved

problem;

• methods, which base on some common and simple or greedy methods of optimization;

• above methods specific for the solved problem.

The above mentioned methods probably do not exhaust all possibilities, but cover the

most popular groups of heuristic genetic operators. Operators which use values of quality

functions of the problem or can value committed modifications of solution genotype are rather

universal and can be applied in many problems, except these ones, where a limitation on

number of fitness function execution is imposed or valuation of solutions is computationally

very expensive.

If it is possible to compare the values of fitness/quality function before and after

modification of the solution, then it is possible to design an operator, which makes

modifications severa! times. Each of them is valued and then the best one is accepted. If it is

7

impossible to value modifications on line, sometimes it is possible to build operator which

analyses old stored values of fitness function and committed movements and then prepare a new

movement, better than a pure random one.

Another universal method of genetic operator design is to use elements of a simple

optimization method. In the case of continuous optimization it can be severa] iterations of a

gradient or similar optimization method. For discrete case we may use for instance "tabu­

search", "simulated annealing", k-opt, some methods of loca] search or other "greedy"

methods.

Methods designed for the actual solved problem are difficult to specify, because this class of

operators may be very large and the only limitation for using them are very high

computational complexity and Jack of sufficient imagination of a designer.

Another issue is to design operators to make it possible to automatically consider limitations

of the problem, or in different words to find operators that always generate feasible solutions.

Probably this is not possible in every situation, but EA without applying expensive repair

algorithms or punishment functions for constraints violation can work faster and more

efficiently.

It is important to remember that it is always profitable to apply operators enriched with

simple heuristic rules, which can increase the probability of achieving better solutions than in

the case of pure random methods. But random methods are also necessary and the best results

can be obtained combining both types of operators.

Next paragraph contains a simple example than can illustrate the idea of specialized

EA with a designed set of heuristic and random operators.

4 EA designing example - determining the optimal „hang-hang"
signal to estimate parameters of a dynamie ohject

8

.. ..

In this example the aim is to find the optima! control signal, which enables to estimate the

unknown parameter of a first-order dynamie object with the minimal error. The below sketch

of the method is included to understand the role of EA in solving it. More details about this

problem can be found in the papers [12] and (13].

4.1 Description of the problem

The considered first-degree dynamie object is described by the following differentia! equation:

dx
T-+x(t)=u(t-td), with x(t0)= O (1)

dt

where:
T - unknown estimated parameter, u(t) - input signal, td - pure delay, x(t) - output
signal.

A generał solution of equation (1) has the following f01m:

(2)

In this problem we would use discrete, partially constant signals, which can change

only in discrete moments, thus the solution (2) can be transformed to formula (3), conside1ing

zero initial condition (C=O):

x,1 = m,r-J + bun-k

where:

x,,=x(t,,), Ll=t,,-t,,_1, a=e·ur, k=td/Ll+l, b=l-a.

The output signal is measured with some error E,,:

(3)

(4)

It is assumed that E,, is a sequence of independent random valiables with distlibution

N(O, a- 2). Using the z transform it is possible to obtain the formula (5), which desclibes the

model error:

1-a
ell = Y,, __ l ____ l un-k

-az
(5)

where:

9

the model error e„ corresponds to the measurement error E,, .

To minimize the variance of the parameter estimation error the following Fisher

information should be maximized or its inverse should be minimized [10), [20). In this case

the Fisher information matrix reduces to a scalar value, because the vector of estimated

parameters contains only one parameter. After some transformations the following form of

informational is obtained:

M(a) = J,- ±(ae,,)2
(Y- n=k aa (7)

where:

cle„ 1- z-1

--=--------u cla l-2az -l +a 2z-2 n- k
(8)

and N - number of measurements.
Finally, solving the differentia! equation (8) and putting it into (7), the following

formula for the quality function of considered problem is arrived at:

max F(a) = max M (a). cr 2 = ~~,x „t,, { a" • J.~-1 [1 + (11 -1). (1- a -1)]. u,_,} 2
(9)

where:

11 - control step (11= 1,2 N-k), u,, - control signal at the step 11.

u

-

1 - - - - - - -
m

LI
>----<
I I I I I I n
1 2 3 4 5 6 7 8 9

Fig. 1. The control signal.

It can be proved [12) that the optima! control signal is a square wave and without loss

of generality of solution, minimal and maxima! values can be accepted as "O" and "l" (Fig. 1).

Optima! sequences of controls can be now found by minimizing function (9). It is impossible

to find the optima! solution testing all possible combinations of "O" and "l" even for very

JO

I •

)

short sequences. For example, for N=lOO it would be necessary to compare zIOO values of

function (9). Thus evolutionary algorithm seems to be a good method to solve this problem.

4.2 Evolutionary method with binary encoding

Sequences of controls contain only "O" and "I", thus it seems natura! to accept a binary

encoding method and such a method has been applied. Fig. 2 presents a member of population

in the binary encoded individuals with N controls, always beginning from value "l".

population

member

+--

I

+--
3.45

sequence of contro Is

I o o o I I I o o o I

t
values of control signals

number of genetic operators

0.46 1.24 6.01 4.15

t

3

t

4.17 2.08

genetic operator chosen
to modify the solution

Fig. 2. Binary encoding of a population member.

I o

•

1.11

Also a set of problem specialized genetic operators has been prepared:

• mutation I - typical binary mutation;

•

o o

• mutation II - searches for places where contro Is change from "O" to "l" or "l" to "O"

and pe1forms negation of bits;

• exchange - random exchange of code fragments;

• operation 2-opt - uses a method of greedy optimization, called 2-opt ([18]) to improve

the solution;

• ,,intelligent" exchange - random exchange of code fragments but pe1formed only whet it

gives an improvement of fitness function value;

li

• operation „cycle detection" - searches for the most frequent periods of cycles in the

solution and modifies it to obtain a solution that consists only of these frequent values of

periods.

Computer simulations showed that accepted encoding method with prepared set of

genetic operators has severa) shortcomings. Computations lasted very long and results were

rather inaccurate because long time of simulation caused stopping the alg01ithm at the

maxima) allowed computation time. This situation was caused by the fact that results obtained

were nearly periodic with small perturbations and only changes of controls at ends of the

adjacent periods introduced new important features . Modification of sequences of "O" or "l"

in the middle of a period were mostly useless. Additionally, computing the values of fitness

function with controls equal O is useless, because the result is always O. Of course this

computations can be easily eliminated, but the whole solution must be anyway checked bit by

bit. Another disadvantage of presented approach is that binary encoding is also memory

consuming for longer sequences of controls.

4.3 EA with integer encoding

Shortcomings of binary encoded EA directed our interest to other method. The conducted tests

for integer encoding showed that this method gives similar results, but significantly faster. In

this encoding the consecutive num bers of integers denote altemately periods of "O" and "l"

sequences, always beginning with the sequence of "l" (it is useless to begin the identification

experiment with signal "O", because it only causes additional delay). A scheme of population

member with integer encoding is presented in Fig. 3. This encoding is a little more difficult than

binary, because the length of encoding string is not

constant, and genetic operators must ensure that the number of controls equals N. But integer

encoding brings some advantages. Encoding strings are usually shorter than in the binary case

(only solution with all periods equal 1 would have the same length as binary version, longer

periods would give shorter encoding strings), thus the algorithm uses less memory and works

12

faster. Each modification in the solution changes only the period of some control sequence

without inse11ing unnecessary values in the middle of the control sequence. It is also easy to skip

computations of fitness function w hen a sequence of "O" is encountered.

Improved version of EA possesses also a different set of genetic operators:

• exchange (single and multiple) - random exchange of cycles;

• movement (single and multiple) - increases the length of one cycle at the cost of its

neighbor;

• insertion of new cycle;

• deletion of randomly chosen cycle;

• introduction of new individual with randomly chosen lengths of cycles;

• "intelligent" introduction - severa! possible new individuals are prepared and the best

one is accepted.

population

member

..- sequence of controls •

4 3 4' 3 4, 3 4 4 4 4)I 4 4 4 4 4 4 3

I n!mber of consecutive "O"

number of consecutive "1"

..- number of genetic operators •

3.45 0.46 1.24 6.01 4.15 4.17 2 .08 1.1 I

i
quality coefficient of genetic operator

3

i
genetic operator chosen

to modify the solution

Fig. 3. Integer encoding of a population member.

13

The advantages of integer encoding are unquestionable, as compared to the results and

shortcomings of the binary encoding. So it seems that traditional binary encoding or similar

simple methods may be mainly useful at the first stage of designing efficient evolutionary

method.

4.4 Management of genetic operators

Bigger number of specialized genetic operators requires applying some method of choosing

among them in an iteration of the algorithm. In the approach used in [11, 15, 16, 17] il is

assumed that an operator thai generates good results should have bigger probability of

selection and more frequently effect the population. But il is very likely thai the operator, that

is good for one individual, gives worse effects for another, for instance because of its location

in the domain of possible solutions. So every individual may have its own preferences. Thus,

every individual has been given a vector of floating point numbers , beside encoded solution.

Each number coITesponds to one genetic operation. It is a measure of quality of the genetic

operator (a quality factor). The higher the factor is, the higher is the probability of the

operator. The ranking of qualities forms a base to compute the probabilities of appearance and

execution of genetic operators. This set of probabilities can be treated as a "private" base of

experience of genetic operators' efficiency of every individual and according to it, an operator

is chosen in each epoch of the algorithm. Due to the gathered experience one can increase

chances of its offspiing to survive.

The method of quality factor computing is based on reinforcement learning [2] (an

algorithm used in the machine learning). An individual is treated as an agent whose role is to

select and call one of the evolutionary operators. Selection of the i-th operator can be

regarded, as an agent's action a; leading him to a new state s;, which in this case is a new

solution, modified by executed genetic operator. Agent receives reward or penalty

respectively to the quality (fitness function) of the new state (solution). The aim of the agent is

to perform the actions, which give the highest long term discounted cumulative reward V*.

14

where:

V*=max(vn),
n

(10)

Il- strategy of the agent, vn_ discounted cumulative reward obtained using strategy IT,
En - expected value of reward using strategy IT, y- represents discount factor, k -
represents following time steps, t - represents current time.

The following fo1mula can be derived from (10) and is used for the evaluation

purposes. In the presented expe1iments the values of /J and y were set to 0.1 and 0.2,

respectively.

(11)

where:

V(st) - is a quality factor or discounted cumulative reward, /J- is a learning factor, r,+ 1

- represents the reward for the best action, which is equal to the improvement of the
quality of a solution after execution of the evolutionary operator, r - cu1Tent moment in
time.

The quality coefficients can be easily converted into a vector of probabilities of

evolutionary operators' execution, using simply normalization of its elements.

4.5 Results of computer simulations

Computer simulations proved thai new version of EA with integer encoding works about 10

limes faster than thai using binary encoding, obtaining better solutions. This impressive

increase of computation speed resulted from severa! factors:

• smaller encoding st1ings - less memory and operations needed to manipulate them;

• easy method to skip unnecessary computations;

• simpler and faster genetic operators;

• elimination of unnecessary degrees of freedom in encoding method.

The comparison of results of computer simulations (111) and the approximate analytical

estimations of control signal period (x) are presented in Tab. l. The values of x and 111 show

periods of consecutive "O" and "l" in the control signal. As it can be noticed in the Tab. l,

they show good similarity between approximate analytical estimations presented in [12) and

15

results obtained using EA for higher values of NT, starting from NI'=0.3 . Bigger differences

for longer periods are probably caused by nume1ical errors - for higher values of m

extremely small numbers appear in computations, according to formula (9).

,1/T a X 111

O,Q2 0,98 324,64 141
0,1 0,90 46,27 32
0,2 0,82 19,22 15
0,3 0,74 11,40 11
0,4 0,67 7,90 8
0,5 0,61 5,95 6
0,6 0,55 4,74 5
0,8 0,45 3,37 4
1,0 0,37 2,65 3
1,2 0,30 2,41 2
1,5 0,22 1,88 2
2,0 0,14 1,50 1

Tab. l. Experimental results of the problem quality function optimi zation (a, NT - like in
fonnula (9), x - result of an approximate analytical estimation of control signal period, ,,, -
the results of length of periodic control sequence obtained using EA optimization).

S Conclusions

It can be clearly seen that the performance of EA depends mainly on accepted data structure in

solutions encoding and also its consequences - specialized genetic operators. It is not always

possible to design the best encoding method without experiments, because it is often difficult to

foresee all properties of EA theoretically, without experimenls and comparisons with other EA

methods. Unfortunately, even simple specialized solution encoding with adjusted random and

heuristic genetic operators are too difficult for theoretical analysis. The example presented in this

paper shows that using binary encoding (or different simply method) to solve problems, even

where it seems to be fully justified, may be misleading. But it may be treated as a universal "first

step" to leam prope1ties of the considered problem, which helps in finding better solutions.

Sometimes severa! stages must be done, before good results are discovered.

References

[I] Arabas J. (2001). Wykłady z algorytmów ewolucyjnych, WNT, Warszawa, (in Polish).

16

[2] Cichosz P. (2000). Systemy uczące się, WNT, Warszawa, (in Polish).

[3] Davis L. (1989). Adapting Operator Probabilities in Genetic Algorithms, Proc. of the 3rd

ICGA.

[4] Davis L. (1991). Handbook of Genetic Algo1ithms, Van Nostrand Reinhold.

[5] Goldberg D. E., Smith R. E. (1987). Non-stationary Function Optimization Using Genetic

Algo1ithms with Dominance and Diploidy, II ICGA, Lawrence Erlbaum Associates.

[6] Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley.

[7] Hadad B. S,. Eick C. F. (1997). Supp011ing Polyploidy in Genetic Algorithms Using

Dominance Vectors, EP'97, vol. 1213 LNCS, Sp1inger.

[8] Holland J. (1975). Adaptation in Natura! and Artificial Systems, Ann Arbor, The Univ. of

Michigan Press.

[9] Julstrom B. A. (1995). What Have You Done for Me Lately? Adapting Operator

Probabilities in a Steady-State Genetic Algorithm, Proc . of the 6th ICGA, University of

Pittsburgh, 1995.

[10] Kacprzyński B. (1974) Planowanie eksperymentów. Podstawy matematyczne, WNT,

Warszawa (in Polish).

[l l] Mulawka J. Stańczak J. (1999). Genetic Algorithms with Adaptive Probabilities of

Operators Selection, Proceedings of ICCIMA'99, New Delhi, India.

(12] Nahorski Z. (1994). Planowanie eksperymentu dla identyfikacji modeli elementów

hydraulicznych w oczyszczalni ścieków w Rzeszowie, Rap011 19/9/S-10/96. IBS PAN,

Warszawa (in Polish).

(13] Nahorski Z. Stańczak J. (2005). Optymalny sygnał typu bang-bang do estymacji parametrów

w obiekcie pierwszego rzędu, Z. Bubnicki, R. Kulikowski, J. Kacprzyk, XV KKA, Tom I, IBS

PAN, Warszawa (in Polish).

17

I
[14] Niehaus J. Banzhaf W. (2001). Adaptation of Operator Probabilities in Genetic

Programming, Proc. of 4 th EmoGP Conference, Como 2001 , Springer, Berlin, 325-336.

[15] Stańczak J. (1999). Rozwój koncepcji i algorytmów dla samodoskonalących się

systemów ewolucyjnych, PhD, PW (in Polish).

[16] Staóczak J. (2000). Algorytm ewolucyjny z populacją "inteligentnych" osobników,

Materiały IV KAEiOG, Lądek Zdrój (in Polish).

[17] Stańczak J. (2003). Biologically inspired methods for control of evolutionary algorithms,

Control and Cybemetics, 32(2), 411-433 .

(18] Sysło M . M., Deo N. , Kowalik J. S. (1983). Discrete Optimization Algorithms with

Pascal Programs, Prentice-Hall Inc.

(19] Stańczak J. (2005). Optima! control of multistage detenninistic, stochastic and fuzzy

processes in the fuzzy environment via an evolutionary algotithm, Control and

Cybemetics, vol. 34 No. 2, 525-552.

(20] Zan-op M.B. (1979). Optima! Experiment Design for Dynamie System ldentification,

Springer, Berlin.

18

