

DESIGN OF PROBLEM SPECIFIC EVOLUTIONARY

OPERATORS

Jarostaw Stanczak, Zbigniew Nahorski

Systems Research Institute, Polish Academy of Science,
01-447 Warsaw, u}. Newelska 6, Poland

E-mail: {stanczak, nahorski} @ibspan.waw.pl

Abstract
This paper describes some basic methods of specialized and heuristic genetic operators’ design and

shows advantages of approach that uses specialized methods of solution encoding and heuristic
operators that are exactly adjusted to considered problem. As a computational example a problem of
determining the optimal control signal to estimate parameters of dynamic object is used.

Keywords: evolutionary algorithms, heuristic operators.

1 Introduction

At the present stage of development of genetic algorithms (GA}) it is obvious that applying
traditional genetic operators (mutation or perturbation and crossover) to solve all possible
optimization tasks is useless. Similarly binary encoding of all considered problems is not an
unquestionable dogma. The tendency to use genetic algorithms in a manner as they were
introduced by Holland [8] and Goldberg [6] to solve all problems lasted very long. But
shortcomings of this approach have been seen very clearly since that and genetic algorithms
have been changing from uniform method to solve everything to some kind of universal idea
of evolutionary method specialized and adopted to specific problems. The evolutionary
algorithm (EA) is more complicated, but its efficiency is much higher. To assess good results

using EA it is necessary to design some essential elements of it:

» encoding of solutions;
e choosing genetic operators;
e choosing selection method.

Of course, it is possible to use some standard solutions, even the same as in GA, but
specialized methods give significantly better solutions. Especially selection methods are
usually more general in EA (there are problems that can be efficiently solved only using
specialized selection methods, for instance optimization of non-stationary tasks) but do not
particularly depend on the solved problem. That is why they are not considered in this paper.

Designing an efficient EA is a very interesting engineering challenge and a well-
prepared EA will provide good and accurate results. Unfortunately, it is rather difficult to give
some general algorithms, methods or criterions how to prepare efficient EA. However some
standard approaches can be helpful in designing sufficient encoding and genetic operators for

EA.

2 Encoding solution and designing genetic operators

The process of EA design must begin with accepting some method of encoding solution. It is
obvious that the operators, which modify solutions, must take into account the data structure of the
individuals. It should be emphasized that the accepted method of encoding solutions determines
main properties of the designed EA, especially the accuracy of results and the rate of convergence.
This comes from the fact that genetic operators depend directly on encoding solutions and their
implementation and computational complexity is strictly connected with it. Thus proper encoding of
solutions is very important and it is often necessary to test several methods before the best one will
be found. Unfortunately it is usually difficult to foresee properties of EA with accepted encoding
method. Theoretical aspects of this problem were considered in [1] and will not be discussed here.
Only some rules connected with the problem of designing of genetic operators will be described.

Arabas in his work [1] gives some strict requirements for encoding methods:

3%

* each possible phenotype (solution of the probiem) must have its equivalent in genotype
space;
¢ the encoding method must not introduce additional extremes to the solved problem.

Sometimes it is possible to take into account additional requirements:

» automatically fulfill some constraints of the solved problem using proper encoding
method,

» choose a method which doesn’t require a lot of computer memory or big amount of
computations to execute genetic operators or evaluate an encoded solution;

» applying the encoding method, which doesn’t artificially enlarge the searching space of
the problem.

It is usually difficult to foresee or to check all properties of designed encoding method
and then it is necessary to verify the methods empirically.

In problems with continuous optimization we have basically two possible methods of
encoding: binary or floating point, used as vectors or matrices, depending on the number of
dimensions of solved tasks. Binary encoding usually gives smaller accuracy of computations (of
course it is possible to use very long binary strings to assure similar accuracy as for floating point,
but it works significantly slower than floating point encoding), thus the floating point encoding is
used more frequently.

The case of discrete optimization is much more complicated, because usually there are
many possibilities to encode the solutions of given problem:

e vectors of binary, integer, floating point values or more complicated data structures,
sometimes of variable length;

* matrices of similar properties as vectors;

¢ dynamic lists of different kinds of objects;

e (binary) trees;

e some mixed structures of above mentioned elements.

Additionally individuals may contain some data required by specialized EA — some on-
line tuned parameters of evolutionary computations, some flags or data used by operators, and
data required by encoding method.

A possible encoding methods is to use diploid or polyploidy individuals ([7], [5]) to
increase the flexibility and adaptation abilities of EA. This method is proper rather for simpler
methods of encoding.

As it was mentioned earlier, binary encoding is not a universal method, best for all
cases. It can be noticed that the binary encoding is not even similar to information encoding
used by nature in DNA, where sequences of four, not two, elements are used. Thus the
similarity to natural methods should not be a reason of too frequent application of binary
encoding in EA.

Encodings mentioned in this paragraph probably do not exhaust the list of all possible
methods used in EA. But they show the complexity of the problem of best individual encoding

design to obtain fast and accurate evolutionary method of solving the given problem.

3 Methods of genetic operators design

To obtain a set of efficient operators we must realize that genetic operators and the way of encoding
of the problem must be strictly combined with each other. Thus it is necessary to design these
elements of EA together or taking into account accepted data structure for encoding solution.
Similarly to encoding methods there are some requirements for genetic operators ([1]):
e consistence of genotype space — it should be possible to generate every solution using the
set of prepared genetic operators from any other solution in finite number of iterations;

o unbiasedness — operators should not prefer some directions in the search space’.

' This requirement is not always necessary — probably all described in this paper heuristic operators do not fulfill this point,
but work very well. It is likely that this statement should be replaced by: “the set of used genetic operators should be
unbiased” or even weaker “the set of used genetic operators sbould contain also unbiased operators”. This problem will be
discussed later in this section.

The main purpose of genetic operators execution is to modify population members —
solutions to search the solution space. Unfortunately, it is impossible to search the whole
solution space in usual problems where EA are used. Thus, a set of genetic operators applied
to solve the problem must be rich and diverse. Two simple operators, crossover and mutation,
are often too weak to efficiently solve the majority of difficult tasks using EA. It is easy to
show experimentally that EA with more than these two simple operators are almost always
faster or more accurate. This fact can be easily explained. A set of several different operators
modifies the population in the more diverse way, giving new, better and more scattered
individuals. Additionally, heuristic operators have significantly higher probability of
generating better offspring than simple, random operators, due to some embedded knowledge
on the solved problem. Heuristic operators usually “know” which directions of searching are
more promising and they prefer them, but this is what we call the “bias”. But I am not sure,
that the bias effect is always harmful. Of course it can be observed that some genetic
operators, especially heuristic, loose (or exhaust) their searching abilities (they are biased i.e.
limited to some directions of searching), when they are too intensively exploited, but a higher
number of operators and/or a mixture of heuristic and random ones (mainly unbiased)
manages this situation.

Let’s conduct a simple experiment. Suppose that we want to solve a traditional TSP
problem using EA. We have two genetic operators in our EA. One randomly changes the list
of cities to be visited. The second (heuristic and biased) modifies the cities on the list in the
manner that following cities are chosen from the nearest neighborhood of the several closest
cities. If we use only the first operator in genetic computations, finding acceptable solutions
would take a very long time. On the other hand if we use only the second one, we would
obtain good solutions quite fast (probably better than using the first one in acceptable time),
but after some very intensive progress in the beginning, the improvement of obtained results

would almost stop. This is the effect of exhaustion of heuristic operator due to limitations of

its search space. But if we use both of them, the results would be better than in the second case
and the effect of exhaustion of heuristic operator won’t appear, because of random
modifications introduced by the first operator, which enable to escape from the trap of local
search. Thus it is very important to have a set of different kinds of operators with heuristic ~
mainly biased and random — mainly unbiased ones.

Traditional genetic operators are divided into two groups with exploitation (crossover
operation) or exploration (mutation/perturbation operation) properties. Specialized and
heuristic operators are often hard to attach to one of these groups. The behavior of specialized
operators is difficult to formalize and describe scientifically using mathematic formulae, but
experiments show that they work very well.

It is also difficult to foresee what should be the probabilities of operator choice,
because it is often not easy to realize what is a character of an actual operator (more
exploratory or more explottative). There are two ways to overcome this problem:

e experimental tuning of probabilities
e making them self-adaptive.

An exhaustive survey of methods used in parameter control in EA can be found in [3,
4,9,11, 14, 15, 16, 17] and also a short summary in the section 4.4 of this paper.

For the designing purposes genetic operators can be divided into two classes differing
in the operation methods. The first class contains random operators, which do not have
additional information about the solved problem. Of course, they must fulfill requirements of
solved problem and encoding method, but they base on simple random changes of solutions.
This group covers operators similar to the following:

e mutation - the action, which changes a value of a randomly selected position to another
one from the set of possible values;
e crossover — the action, which exchanges parts of genotype between two or more

individuals;

* inversion — the action, which places elements of solution in reverse order;

¢ concatenation, exchange, movement (or similar actions) of randomly chosen fragments of
solutions within one individual;

e multiple versions of the mentioned operators

Random operators in most cases are very universal and can be applied in many
problems without bigger changes. EA, which use exclusively random operators, are rather
slow and sometimes cannot efficiently solve difficult problems {19].

The second group covers heuristic methods, which use an advanced knowledge
about solved problem, or use simple optimization methods (hybrid optimization methods, like
2-opt, greedy or similar), sometimes with some randomly chosen parameters. Heuristic
operators are almost always biased — they prefer some search directions and they “know” that
this leads to better solutions. This is the main advantage in applying this kind of operators.

Several groups of heuristic operators can be selected:

e operators, which depend on current and/or former values of quality function of the solved
problem;

e methods, which base on some common and simple or greedy methods of optimization;

* above methods specific for the solved problem,

The above mentioned methods probably do not exhaust all possibilities, but cover the
most popular groups of heuristic genetic operators. Operators which use values of quality
functions of the problem or can value committed modifications of solution genotype are rather
universal and can be applied in many problems, except these ones, where a limitation on
number of fitness function execution is imposed or valuation of solutions is computationally
VEry expensive.

If it is possible to compare the values of fitness/quality function before and after
modification of the solution, then it is possible to design an operator, which makes

modifications several times. Each of them is valued and then the best one is accepted. If it is

impossible to value modifications on line, sometimes it is possible to build operator which
analyses old stored values of fitness function and committed movements and then prepare a new
movement, better than a pure random one.

Another universal method of genetic operator design is to use elements of a simple
optimization method. In the case of continuous optimization it can be several iterations of a
gradient or similar optimization method. For discrete case we may use for instance “tabu-
search”, “simulated annealing”, k-opt, some methods of local search or other “greedy”
methods.

Methods designed for the actual solved problem are difficult to specify, because this class of
operators may be very large and the only limitation for using them are very high
computational complexity and lack of sufficient imagination of a designer.

Another issue is to design operators to make it possible to automatically consider limitations
of the problem, or in different words to find operators that always generate feasible solutions.
Probably this is not possible in every situation, but EA without applying expensive repair
algorithms or punishment functions for constraints violation can work faster and more
efficiently.

It is important to remember that it is always profitable to apply operators enriched with
simple heuristic rules, which can increase the probability of achieving better solutions than in
the case of pure random methods. But random methods are also necessary and the best results
can be obtained combining both types of operators.

Next paragraph contains a simple example than can illustrate the idea of specialized

EA with a designed set of heuristic and random operators.

4 EA designing example — determining the optimal ,,bang-bang”
signal to estimate parameters of a dynamic object

In this example the aim is to find the optimal control signal, which enables to estimate the
unknown parameter of a first-order dynamic object with the minimal error. The below sketch
of the method is included to understand the role of EA in solving it. More details about this

problem can be found in the papers [12] and [13].

4.1 Description of the problem
The considered first-degree dynamic object is described by the following differential equation:

dx
T—(—i—+x(t)=u(t~t{,), with x(z,)=0 (1
t
where:
T — unknown estimated parameter, u(¢) - input signal, ¢; — pure delay, x(z) — output
signal.

A general solution of equation (1) has the following form:

-r

,LlN_
ﬂn:CeT+?Le T u(r—t,)dr Q)

In this problem we would use discrete, partially constant signals, which can change
only in discrete moments, thus the solution (2) can be transformed to formula (3), considering

zero initial condition (C=0):

X, = ox,, +bu, (3}
where:
: AT
Xp=x(ty), A=ty —t,y, O=€ ", k=ty/4+1, b=1-.
The output signal is measured with some error &,:
Yo =%, +E,)

It is assumed that &, is a sequence of independent random variables with distribution
N(O,a‘z). Using the z transform it is possible to obtain the formula (5), which describes the

model error:

e =y, -, (5)

where:

the model error e, corresponds to the measurement error &,.
To minimize the variance of the parameter estimation error the following Fisher

information should be maximized or its inverse should be minimized {10], {20]. In this case
the Fisher information matrix reduces to a scalar value, because the vector of estimated

parameters contains only one parameter. After some transformations the following form of

) >
A da

Uk (8)

informational is obtained:

1

2

M) =

M=

i
=

n

where:

de, -z

da 1-2az7'+a’z?

and N — number of measurements.
Finally, solving the differential equation (8) and putting it into (7), the following

formula for the quality function of considered problem is arrived at:

max F(a) = max M (&) - 6% = max i {a”- ia”[1+(n—l).(l—a“)]-u,_k}_(9)

M-k p=ftd I=k+1

where:

n — control step (n=1,2....N-k), u, — control signal at the step n.

A
u

—
8

—
3]
w
o
wn
(o)
g

Fig. 1. The control signal.

It can be proved [12] that the optimal contro] signal is a square wave and without loss
of generality of solution, minima} and maximal values can be accepted as “0” and “1” (Fig. 1).
Optimal sequences of controls can be now found by minimizing function (9). It is impossible

to find the optimal solution testing all possible combinations of “0” and “1” even for very

10

n

V*:max(Vn), %8 :En{i}/km“,} (10)
k=0

where:
77- strategy of the agent, V'™ discounted cumulative reward obtained using strategy I1,

Er7 - expected value of reward using strategy I, y — represents discount factor, k —
represents following time steps, 7 - represents current time.

The following formula can be derived from (10) and is used for the evaluation

purposes. In the presented experiments the values of /' and y were set to 0.1 and 0.2,

respectively.
V(‘Yl+1):v(‘r/)+ﬂ["r+l +W‘(J‘z+l)—v(‘yl)] (11)

where:

V(st) - is a quality factor or discounted cumulative reward, £ - is a learning factor, 7,
- represents the reward for the best action, which is equal to the improvement of the
quality of a solution after execution of the evolutionary operator, 7 - current moment in
time.

The quality coefficients can be easily converted into a vector of probabilities of

evolutionary operators’ execution, using simply normalization of its elements.

4.5 Results of computer simulations

Computer simulations proved that new version of EA with integer encoding works about 10
times faster than that using binary encoding, obtaining better solutions. This impressive
increase of computation speed resulted from several factors:

¢ smaller encoding strings - less memory and operations needed to manipulate them;

o easy method to skip unnecessary computations;

e simpler and faster genetic operators;

¢ elimination of unnecessary degrees of freedom in encoding method.

The comparison of results of computer simulations (+) and the approximate analytical
estimations of control signal period (x) are presented in Tab. 1. The values of x and # show
periods of consecutive “0” and “1” in the control signal. As it can be noticed in the Tab. 1,

they show good similarity between approximate analytical estimations presented in [12] and

15

(2]
[3]

(4]
(5]

6

—_

{7

[8]

[9]

Cichosz P. (2000). Systemy uczgce sig, WNT, Warszawa, (in Palish).

Davis L. (1989). Adapting Operator Probabilities in Genetic Algorithms, Proc. of the 3™
ICGA.

Davis L. (1991). Handbook of Genetic Algorithms, Van Nostrand Reinhold.

Goldberg D. E., Smith R. E. (1987). Non-stationary Function Optimization Using Genetic
Algorithms with Dominance and Diploidy, Il ICGA, Lawrence Erlbaum Associates.
Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley.

Hadad B. S,. Eick C. F. (1997). Supporting Polyploidy in Genetic Algorithms Using
Dominance Vectors, EP’97, vol. 1213 LNCS, Springer.

Holland J. (1975). Adaptation in Natural and Artificial Systems, Ann Arbor, The Univ. of
Michigan Press.

Julstrom B. A. (1995). What Have You Done for Me Lately? Adapting Operator
Probabilities in a Steady-State Genetic Algorithm, Proc. of the 6™ ICGA, University of

Pittsburgh, 1995.

{10} Kacprzynski B. (1974) Planowanie eksperymentéw. Podstawy matematyczne, WNT,

Warszawa (in Polish).

{11} Mulawka J. Stanczak J. (1999). Genetic Algorithms with Adaptive Probabilities of

Operators Selection, Proceedings of [CCIMA'99, New Dethi, India.

[12] Nahorski Z. (1994). Planowanie eksperymentu dla identyfikacji modeli elementéw

hydraulicznych w oczyszczalni sciekdw w Rzeszowie, Raport 19/9/5-10/96. IBS PAN,

Warszawa (in Polish).

{13] Nahorski Z. Stanczak J. (2005). Optymalny sygnat typu bang-bang do estymacji parametréw

w obiekcie pierwszego rz¢du, Z. Bubnicki, R. Kulikowski, J. Kacprzyk, XV KKA, Tom 1, IBS

PAN, Warszawa (in Polish).

i7

[14] Niehaus J. Banzhaf W. (2001). Adaptation of Operator Probabilities in Genetic
Programming, Proc. of 4™ EmoGP Conference, Como 2001, Springer, Berlin, 325-336.

[15] Stanczak J. (1999). Rozwdj koncepcji i algorytméw dla samodoskonalacych sie
systeméw ewolucyjnych, PhD, PW (in Polish).

[16] Stanczak J. (2000). Algorytm ewolucyjny z populacjg "inteligentnych" osobnikdw,
Materiaty IV KAEIOG, Ladek Zdrdj (in Polish).

[17] Stanczak J. (2003). Biologically inspired methods for control of evolutionary algorithms,
Control and Cybernetics, 32(2), 411-433.

[L8] Systo M. M., Deo N., Kowalik J. S. (1983). Discrete Optimization Algorithms with
Pascal Programs, Prentice-Hall Inc.

[19] Stanczak J. (2005). Optimal control of multistage deterministic, stochastic and fuzzy
processes in the fuzzy environment via an evolutiopary algorithm, Control and
Cybernetics, vol. 34 No. 2, 525-552.

{20] Zarrop M.B. (1979). Optimal Experiment Design for Dynamic System Identification,

Springer, Berlin.

18

