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Abstract. In this paper we apply a linear regression with spatial random effect 1o
model spatially distributed emission inventory data. The topic is related to the issuc
of disaggregation of national greenhouse gas emissions into fine spatial grid. Emission
maps are typically produced from information on spatially explicit activities con-
tributing to emissions, which are multiplied by emission factors. In our case study we
have available N2O emission assessments for municipalities of southern Norway, as
well as three kinds of covariate information for each region. Thus a regression model
can be fitted to these data. We use conditionally autoregressive model to account
for spatial correlation between municipalities. Estimation of parameters is based
on the Bayes Theorem and the Gibbs sampler algorithm. The results suggest that
one of initially considered covariates should be excluded from further analysis, and
instead presence of another, spatially correlated factor(s) is suggested. Moreover,
the model was capable to capture an outlier point source emission from nitric acid
plant. The point of the contribution is that including spacial information helps in
fnding right explanatory variables. This way improved emission assessments can be
provided based on future covariate data.

1. Introduction

Our contribution is focussed on a spatial aspect of inventories for at-
mospheric pollutants. The study is motivated with situations when two
kinds of inventories for the same area and for the same pollutant are
available: (1) based on detailed information on emissions (sometimes
referred to as a bottom-up approach) and (ii) based on spatial activity
information (e.g. land use, traffic etc.) multiplied by appropriate emis-
sion factors. Provided both data sets were obtained independently, one
may compare two maps and try to conclude on the relevance of activity
data used. To this end we take a statistical approach.

This kind of analysis has been already performed in some studies.
Specifically, we were motivated with the publication of (Winiwarter et
al., 2003). In that article two sets of data on NOx (Nitrogen oxides)
emissions over the same spatial grid for the Greater Athens, Greece
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were compared. The authors examine significance of area, line and point
emission sources on the basis of statistical exploratory tools and a visual
comparison of maps.

In the case of greenhouse gasses, spatial resolution is not crucial
for the emission effect as such. However, there are several situations
when spatial dimension is needed. In elaborated models of climate
change, like British Meteorological Office model HadAM3 (Pope et al.,
2000), transport of greenhouse gasses is modelled similarly to other
pollutants, like SO, and NO,. With growing resolution, for instance
in national models of this type, the need for finer mesh of inventory
data becomes important. The proposed method can be used for this
purpose. Other examples include validations of regional inventories by
field measurements or by inverse modelling of satellite data.

The topic of spatial heterogeneity of greenhouse gas emissions and
sequestration can be addressed in various ways. For instance, the spatial
distribution of greenhouse gas emissions for Ukraine has been presented
in (Bun et al., 2007). (Theloke et al., 2007) develop a methodology for
spatial (and temporal) disaggregation of greenhouse gas annual country
totals. (Oijen and Thomson, 2007) consider using a process-based forest
model which accounts for spatial distribution of climate and soil; a
Bayesian calibration is employed to quantify uncertainties.

When performing a statistical inference of spatial inventory data, we
account for the fact that values at proximate locations tend to be more
alike. This motivates use of spatial statistics. Moreover, since for each
grid cell we have information on aggregated emission values, these are
arcal data (also known as lattice data). A popular tool for incorporating
this kind of spatial information is conditionally autoregressive (CAR)
model proposed by (Besag, 1974). As opposed to geostatistical models
with spatially continuous data, CAR models have been developed to
account for the situation where the set of all possible spatial locations
is countable. The idea is to define a model in terms of the conditional
distribution of the observation at one location given its values at other
neighbouring locations. Applications of CAR model include among oth-
ers mapping diseases in counties and modelling particular matter air
pollution in space and time (Kaiser et al., 2002).

The aim of the present paper is to demonstrate the usefulness of
CAR model to analyse data from spatially distributed emission in-
ventory. With available data on factors contributing to emissions and
an independent set of emission assessments one may build a suitable
regression model. Inclusion of a spatial component is intended to help
in finding right explanatory variables, and thus provide more robust
emission assessments in situations when only covariate information is
available. The outline of the study is the following. Section 2 presents
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our illustrative data set and an initial non-spatial model is suggested.
Next, it is enriched with a spatial random effect. We use a condition-
ally autoregressive structure to account for spatial correlation between
neighbouring areas (municipalities, in our case). The model is described
in Section 3. Results are presented in Section 4 - we fit the spatial model
and compare various combinations of covariates. Section 5 contains final

remarks.

2. Preliminary explorations

Our illustration is provided with data set on NoO (nitrous oxide) emis-
sions (in tonnes) reported in municipalities (counties) of southern Nor-
way. The data come from StatBank (available at http://www.ssb.no)
n Statistics Norway. The map covers 259 municipalities. For each mu-
nicipality three kinds of covariate information are available. We assume
that the NoO emissions, denoted F, may depend on: population P
(number of residents in a municipality), area covered by roads R (in
km?) and the total area of a municipality 4 (in km?).
Our original model on municipality emissions has the form

E; = cAP PP RP (1)

where ¢ and f;,7 = 1,2,3 are coefficients to be estimated and ¢ =
1,...,259 indexes municipalities.

We use a log-transformation on the emission data and covariates.
The log-transformation of the emission data and the covariates enables
simpler estimation approach - the linear regression can be used. Let us
denote:

yi - logarithm of NoO emissions E;, y = (v1,...,¥a)
z;; - logarithm of total area A;, ©3 = (z11,...,Tny)
x;9 - logarithin of population 7, zg = (z1,2,...,Zn2)
2;3 - logarithm of area covered by roads f2;,

z3=(T1,3-..,%n3)"

Figure 1 shows histograms of these log-transformed data and Fig-
ure 2 presents the respective scatterplot matrix. We notice that the
relationship between y and zy as well as between y and z3 resembles
the linear one. This is not the case for the (log) total area 1. To begin
with, we check a multiple regression with all three covariates:

Yi = 0o+ Przi1 + Oazio + Bazi3 + &5, (2)

where ¢; are independent random variables following normal distri-
bution with mean equal 0 and variance 2. We distinguish between an
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Figure 1. Histograms of log-transformed data on: N2O emissions (y), total area (z1),
population (z2) and roads (z3) in municipalities.

observation éyi) and a random variable (Y;) generating this observation.
Note that e” = ¢ and the formula arises from log-transformation of
().

As to be expected, estimation results, see Table I, showed that the
covariate on municipality area x; is not significant. Regression coeffi-
cients of the remaining two covariates zo and z3 have p-value equal
0.04 and 9.82¢-08, respectively. The model explains 47% of variability
in log(emissions) - coefficient of determination is R? = 0.47. Thus,
we drop the insignificant variable z;. We obtain the same coefficient

2 = 0.47 and now both regression coefficients £z and f3 are highly
significant (p-value equal 3.14e-08 and 2.53e-15, respectively). Coeffi-
cient of determination R? for other regression models (i.e. with other
combinations of covariates) are lower, which supports the choice of the
model with explanatory variables zo and x3 as the best one - at least
on this stage of analysis.
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Figure 20 Scatterplot watrix showing plausible relations between log-transforimed

e o N2O emissions (y). total area (1), populution {2} and roads . in

mnicipalities

Restduals from this model are presented in Figure 3: a residual plot
iy and 2 miap (b). Two issues should be noted here. First, there is one
outlier observation s, which is the Porsgrunn municipality. We find
out that this is due to a nitric acid plant, operating there since 1991. sec
also (Perez-Ramivez, 2007). Porsgrunn is a relatively small municipality
locared near the southern coast and on the residual map we spot a
striking value. Sccondly, from the residual map we cuan identily elusters
of counties with underestimated emissions (vielding positive residu-
als). and a cluster of counties with overestimated emissions (yviclding

negative residuals) in the central region.
Wo eheck spatial correlation in residuals using Moran's [ statistic:
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Figure 3. Residuals from the linear model with covariates on (log) population (z2)
and (log) roads (z3); estimated *o displayed as dashed lines.

where €; - a residual of linear regression in the area i, & - the mean
of residuals, wy; - the adjacency weights (w;; = 1 if j is a neighbour
of 1, and 0 otherwise, also w;; = 0). We consider two municipalities as
neighbours if they share common border. Moran’s I can be recognized
as a modification of the correlation coefficient. It accounts for correla-
tion between residuals in area ¢ and nearby locations and takes values
approximately on the interval [—1,1]. Higher (positive) values of I
suggest stronger positive spatial association. Under the null hypothesis
where ¢; are independent and ideuntically distributed, I is asymptoti-
cally normally distributed, with the mean and variance known, see e.g.
(Banerjee et al., 2004). In our case of linear regression with covariates
on zg,z3 Moran’s I is equal 0.3144. The corresponding test statistic
z {Moran's I standardized with the asymptotic mean and variance) is
equal z = 8.5713 and 2, = 2.33 at the significance level @ = 0.01. Thus
we reject the null hypothesis of no spatial correlation of errors. Moran’s
I is, however, recommended as an exploratory information on spatial
association, rather than a measure of spatial significance (Banerjee et
al., 2004).

Table I contains Moran’s I statistic calculated for the remaining
linear regression models as well. We will discuss it further in the sequel,
together with spatial modelling results.
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3. Modelling spatial correlation

In this section we develop a Bayesian hierarchical model to characterize
spatial distribution of NgO emissions in municipalities.

Let Y7 denote a stochastic variable associated with the observed log-
arithm of emnission (y;) defined at each spatial location i fori=1,... n.
The collection of all Y; is denoted as Y = (Y1,...,Y;,). It is assumed
that the random variables Y; follow normal distribution with mean g,
and common variance 2. Assumption of normal distribution for (log)
emission is equivalent to assuming that emission itself follows lognor-
mal distribution. It is a suitable choice for non-negative continuous
processes sinice lognormal distribution has positive support.

Our approach to modelling the mean p; expresses belief that avail-
able covariates explain part of the spatial pattern in observations, and
the remaining part is captured through a regional clustering. It is

expressed as follows. Let the mean p = (u),...,1n)" be such that
pw=XpB+ 6. Then it is assumed
Y|8,8,0° ~ N (XB+0,0°I,), (3)

where I, is an identity nxn matrix. X is the (design) matrix containing
a vector of 1s for the intercept By and k explanatory covariates:

1z ... Tik
x|l
12 . m
B =1(Bo,0,--.,Bk) is a vector of regression coeflicients. @ = (6y,...,8,)’

is a vector of correlated random variables. Thus, conditionally on the
parameters 3, 8,02, stochastic variables Y; are independent.

Next we describe the random spatial component 8. Correlation of
variables 8; allows us to model spatial dependence between the variables
Y;. We make use of the conditionally autoregressive (CAR) model.
The CAR structure is given through specification of full conditional
distribution functions:

2
00005, T~ N [ 3 0, 4
1| FRT ) N wig JEZN‘ ]7wi+ ( )

with N; being the set of neighbours of area i, w;; being the number
of neighbours of area 7 and 72 is a variance parameter. Conditional
expected value of ¢; is the average value of those variables ¢; that are the
neighbours of the site <. Conditional variance is inversely proportional
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to the number of neighbours w;,. Note that assuming 8; = 0 for all
7 would bring us back to the linear regression (nonhierarchical) model
considered in the previous section.

Given (4), the joint probability distribution of @ is the following
(Banerjee et al., 2004; Cressie, 1993)

ol ~ W (0,7 (D - W)™, (5)

where D is n x n diagonal matrix with w; on the diagonal and W is
n x n matrix with adjacency weights w;;. Equivalently, after algebraic
manipulations (5) can be rewritten as

1
p(0) x exp ~5= Zwij(ei - 9j)2 . (6)
s

Estimation of unknown parameters 3,8, 0, 72 is based on the Bayes’
Theorem. The joint posterior distribution of these parameters is pro-
portional to the product of the likelihood function associated with the
formula (3); the distribution of spatial random component € in (5); and
specified prior distributions for the remaining parameters 3, 02 and 72.
Uniform distributions are employed for each of the 3 parameters. The
fuverse variance parameters (precisions) 1/0% and 1/7% are assumed
independent Gamma(0.01,0.01) distributions, where Gamma(a,b) dis-
tribution has the mean equal to a/b. When observations arise from
normal distribution, the choice of Gamma as a prior for precision leads
to posterior precision distribution being also Gamma. It is a natural
conjugate prior distribution in this case (see e.g. (Press, 2003)).

Combination of all model assumptions allows us to derive full condi-
tional distributions for all parameters in a closed-form, see e.g. (Gamer-
man and Lopes, 2006). Gibbs sampling is used to update the parameters
(Robert and Casella, 2004). Calculations were accomplished both using
the WinBUGS package (Lunn et al., 2000) and writing our own functions
in the statistical software R (R Development Core Team, 2008).

4. Results

Spatial CAR models have been applied to the Norway emission data.
We estimate spatial models for various combinations of covariates. The
results are compared using the Deviance Information Criterion (DIC),
which was introduced by (Spiegelhalter et al., 2002). For an intuitive
interpretation and a straightforward example see also (Liddle, 2007).
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