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Abstract. In this paper we apply a linear regression with spatial random effect to 
model spatially distributecl emission inventory data. The topie is rela.ted to the i!:>sllC' 

of disaggregation of national greenhouse gas emissions into fine spatial grid. Emission 
maps are typically produced from information on spatially explicit activities con­
tributing to emissions, which are multiplied by emlssion factors. In aur case study we 
luwe available N20 emission assessments for municipalities of southern Norway, as 
well as three kinds of covariate information for each region. Thus a regression model 
can be fitted to these data. We use conditionally autoregressive model to account 
for spatial correlation between municipalities. Estimation of parameters is based 
on the Bayes Theorem and the Gibbs sampler algorithm. The results suggest that 
one of initially considered covariates should be excluded from further analysis, and 
insteacl presence of another, spatially correlated factor{s) is suggestecl. Moreover, 
the model was capable to capture an outlier point source emission from nitric acid 
plant. The point of the contribution is that including spacial information helps in 
finding right explanatory variables. This way improved emission assessments can be 
provided based on future covariate data. 

1. Introduction 

Our contribution is focussed on a spatial aspect of inventories for at­
mospheric polluta11ts. The study is motivated with situations when two 
kinds of inventories for the same area and for the same poliu tant are 
available: (i) based on detailed informatio11 011 emissions (sometimes 
referred to as a bottom-up approach) and (ii) based on spatial activity 
information (e.g. land use, traffic etc.) multiplied by appropriate emis­
sion factors. Provided both data sets were obtained i11depende11tly, one 
may compare two maps and try to conclude on the relevance of activity 
data usecl. To this enci we take a statistical approach. 

This kind of analysis has been already performed in some studies. 
Specifically, we were motivated with the publication of (Winiwarter et 
al., 2003). In that article two sets of data 011 NOx (Nitroge11 oxicles) 
emissions over the same spatial grid for the Greater Athens, Greece 
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were compared. The authors examine significance of area, line and point 
emission sources on the basis of statistical exploratory tools and a visual 
comparison of maps. 

In the case of greenhouse gasses, spatial resolution is not crucial 
for the emission effect as such. However, there are severa! situations 
when spatial dimension is needed. In elaborated models of climate 
change, like British Meteorological Office model HadAM3 (Pope et al., 
2000), transport of greenhouse gasses is modelled similarly to other 
pollutants, like SOx and NOx. With growing resolution, for instance 
in national models of this type, the need for finer mesh of inventory 
data becomes important. The proposed method can be used for this 
purpose. Other examples include validations of regional inventories by 
field measurements or by inverse modelling of satellite data. 

The topie of spatial heterogeneity of greenhouse gas emissions and 
sequestration can be addressed in various ways. For instance, the spatial 
distribution of greenhouse gas emissions for Ukraine has been presented 
in (Bun et al., 2007). (Theloke et al., 2007) develop a methodology for 
spatial (and tempora!) disaggregation of greenhouse gas annual country 
totals. (Oijen and Thomson, 2007) consider using a process-based forest 
model which accounts for spatial distribution of climate and soi!; a 
Bayesian calibration is employed to quantify uncertainties. 

When performing a statistical inference of spatial inventory data, we 
account for the fact that values at proximate locations tend to be mare 
alike. This motivates use of spatial statistics. Moreover, since for each 
grid cell we have information on aggregated emission values, these are 
areał data ( also known as lat tice data). A popular tao! for incorporating 
this kind of spatial information is conditionally autoregressive (CAR) 
model proposed by (Besag, 1974). As opposed to geostatistical models 
with spatially continuous data, CAR models have been developed to 
account for the situation where the set of all possible spatial locations 
is countable. The idea is to define a model in terms of the conditional 
distribution of the observation at one location given its values at other 
neighbouring locations. Applications of CAR model include among oth­
ers mapping diseases in counties and modelling particular matter air 
pollution in space and time (Kaiser et al., 2002). 

The aim of the present paper is to demonstrate the usefulness of 
CAR model to analyse data from spatially distributed emission in­
ventory. With available data on factors contributing to emissions and 
an independent set of emission assessments one may build a suitable 
regression model. Inclusion of a spatial component is intended to help 
in finding right explanatory variables, and thus provide mare robust 
emission assessments in situations when only covariate information is 
available. The outline of the study is the following. Section 2 presents 
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our illustrative data set and an initial non-spatial model is suggested. 
Next, it is enriched with a spatial random effect. We use a condition­
ally autoregressive structure to account for spatial correlation between 
neighbouring areas (municipalities, in our case). The model is described 
in Section 3. Results are presented in Section 4 - we fit the spatial model 
and compare various combinations of covariates. Section 5 contains finał 
remarks. 

2. Preliminary explorations 

Our illustration is provided with data set on N20 (nitrous oxide) emis­
sions (in tonnes) reported in municipalities (counties) of southern Nor­
way. The data come from StatBank (availab]e at http://www. ssb. no) 
in Statistics Norway. The map covers 259 municipalities. For each mu­
nicipality three kinds of covariate information are available. We assume 
that the N20 emissions, denoted E, may depend on: population P 
(number of residents in a municipality), area covered by roads R (in 
km2) and the total area of a municipality A (in km2). 

Our original model on municipality emissions has the form 

(1) 

where c and (31 , j = l, 2, 3 are coefficients to be estimated and ·i = 
1, . . . , 259 indexes municipalities. 

We use a log-transformation on the emission data and covariates. 
The log-transformation of the emission data and the covariates enables 
simpler estimation approach - the linear regression can be used. Let us 
clenote: 

y, logarithm of N20 emissions E,, y = (Y1, ... , Yn)' 

Xi,! logaritlun of total area A,, x1 = (x1,1, ... , x,,,i)' 

x,,2 logarithm of population P;, x2 = (x1,2, ... , Xn,2)' 

x,,3 logarithm of area covered by roads R,, 
X3 = (XJ,3,.,,, Xn,3)', 

Figure 1 shows histograms of these ]og-transformed data and Fig­
ure 2 presents the respective scatterplot matrix. We notice that the 
relationship between y and x2 as well as between y and x3 resembles 
the linear one. This is not the case for the (log) total area x 1 • To begin 
with, we check a multiple regression with all three covariates: 

Y; = /Jo + /31 x,,1 + /J2x;,2 + /33x;,3 + c;. (2) 

where c; are independent random variables following norma! distri­
bution with mean equal O and variance a 2. We distinguish between an 
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Figu.re 1. Histograms of log-transformed data on: N20 emissions (y), total area (xi) 1 

popu]ation (x,) and roads (x,) in municipalities. 

observation (y;) and a random variable (Y;) generating this observation. 
Note that e/3° = c and the formula arises from log-transformation of 
(1). 

As to be expected, estimation results, see Table I, showed that the 
covariate on municipality area x1 is not significant. Regression coeffi­
cients of the remaining two covariates x2 and x3 have p-value equal 
0.04 and 9.82e-08, respectively. The model explains 47% of variability 
in log(emissions) - coefficient of determination is R 2 = 0.47. Thus, 
we drop the insignificant variable x 1. We obtain the same coefficient 
R 2 = 0.47 and naw both regression coefficients /32 and /33 are highly 
significant (p-value equal 3.14e-08 and 2.53e-15, respectively). Coeffi­
cient of determination R 2 for other regression models (i.e. with other 
combinations of covariates) are !ower, which supports the choice of the 
model with explanatory variables x2 and x3 as the best one - at least 
on this stage of analysis. 
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F1911.re 2. Scatlerplot matrix showing plausible relations between log-tra 11sfonned 
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1n1111 ici pal it ies. 

Residuals from this model are presented in Figure 3: a residua! plot 
(a) and a map (b). Two issues should be noted here. First , there is one 
outlier observation y 125 , which is the Porsgrunn rnunicipality. ·we find 
out that this is due to a nitric acid plant, operating there since 1991 , see 
also (Perez-Ramirez, 2007). Porsgrunn is a relatively small rnunicipality 
locnted ncar the southern coast and on the residua! map we spot n 
srr iking value. Sccondly, frorn the residua! map we can identify cl11srcr, 
nr count ies with underestirnated emissions (yielding positi ve rcs id11 -
als). and n cluster of counties with overestimnted emissions (y ielding 
11egative residuals) in the central region. 

We eh cek spatial corre!ation in residuals using Mo ran 's I statistic: 

ghg•2. tex; 8/ 10/2008; 15: 15; p. 5 



6 

a) b) 

., 
__ ;;ljl!~°!·* ·· ···0

··: ·---- IP'f o o ł,~ 
ff°/c,,0„'iti,~0._ .... 0,,,, O 000 8:_,,_! ,.,..t..,0 

o o"~" ,tt}, flrr-., o.li o "",.A,<SJ: 
.... :., • .. '"::,;'\.\,~ ·%····'<::;/!'c .•. . 

„o „'ł>o J 

Pigure 3. Residuals from the linear model with covariates on (log) population (x2) 
and (log) roads (x3); est imated ±a displayed as dashed lines. 

where €i - a residua] of lineai· regression in the ai·ea i, € - the mean 
of residuals, Wij - the adjacency weights ( Wij = 1 if j is a neighbour 
of i, and O otherwise, also Wii = O). We consider two municipalities as 
neighbours if they share common border. Moran 's I can be recognized 
as a modification of the correlation coefficient. It accounts for correla­
tion between residuals in ai·ea i and nearby locations and takes values 
approximately on the interval [-1 , l]. Higher (positive) values of I 
suggest stronger positive spatial association. Under the null hypothesis 
where Ei are independent and identically distributed, I is asymptoti­
cally normally distributed, with the mean and variance known, see e.g. 
(Banerjee et al., 2004). In our case of linear regression with covariates 
on x2 , x3 Moran's I is equal 0.3144. The corresponding test statistic 
z (Moran 's I standardized with the asymptotic mean and variance) is 
equal z = 8.5713 and Zer = 2.33 at the significance level c, = O.Ol. Thus 
we reject the null hypothesis of no spatial correlation of errors. l\foran 's 
I is, however, recommended as an exploratory information on spatial 
association, rather than a measure of spatial significance (Banerjee et 
al., 2004). 

Table I contains Moran's I stat istic calculated for the remaining 
lineai· regression models as well. vVe will cliscuss it further in the sequel, 
together with spatial modelling results. 
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3. Modelling spatial correlation 

In this section we develop a Bayesian hierarchical model to characterize 
spatial distribution of N20 emissions in municipalities. 

Let Y; denote a stochastic variable associated with the observed Jog­
arithm of emission (y;) defined at each spatial location i for i = 1, ... , n. 
The collection of all Y; is denoted as Y = (Y1, ... , Yn)'. It is assumed 
that the random variables Y; follow norma! distribution with mean J.L; 
and common variance a 2. Assumption of norma! distribution for (Jog) 
emission is equivalent to assuming that emission itself follows lognor­
mal distribution. It is a suitable choice for non-negative continuous 
processes since lognormal distribution has positive support. 

Our approach to modelling the mean µ; expresses belief that avail­
able covariates explain part of the spatial pattern in observations, and 
the remaining part is captured through a regional clustering. It is 
expressed as follows. Let the mean µ = (f,1 , ... , µn)' be such that. 
µ = X/3 + 0. Then it is assumed 

(3) 

where In is an identity nxn matrix. X is the (design) matrix containing 
a vector of ls for the intercept (30 and k explanatory covariates: 

X= [ 
1 xu ... Xjk l 
1 X21 , , , X2k 

' ' ' . . ' 

1 Xnl Xnk 

f3 = ((30, (31, ... , f3k)' is a vector of regression coefficients. 0 = ( 01, ... , 0n)' 
is a vector of correlatecl random variables. Thus, conditionally on the 
parameters /3, 0, a 2, stochastic variables Y; are independent. 

Next we describe the random spatial component 0. Correlation of 
variables 0; allows us to model spatial dependence between the variables 
11;. We make use of the conditionally autoregressive (CAR) model. 
The CAR structure is given through specification of full conclitional 
clistribution functions: 

( 4) 

with N; being the set of neighbours of area i, w,+ being the number 
of neighbours of area i and T 2 is a variance parameter. Conditional 
expected value of 0; is the average value of those variables 0i that are the 
neighbours of the site i. Conditional variance is inversely proportional 
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to the number of neighbours w,+- Note that assuming 0, = O for all 
i would bring us back to the linear regression (nonhierarchical) model 
considered in the previous section. 

Given (4) , the joint probability distribution of 0 is the following 
(Banerjee et al., 2004; Cressie, 1993) 

(5) 

where D is n x n diagonal matrix with w;+ on the diagonal and W is 
n x n matrix with adjacency weights w,j- Equivalently, after algebraic 
manipulations (5) can be rewritten as 

(6) 

Estimation of unknown parameters /3, 0, o-2 , T 2 is based on the Bayes' 
Theorem. The joint posterior distribution of these parameters is pro­
portional to the product of the likelihood function associated with the 
formula (3); the distribution of spatial random component 0 in (5); and 
specified prior distributions for the remaining parameters /3, o-2 and T 2 . 

Uniform distributions are employed for each of the /3 parameters. The 
invcrse variance parameters (precisions) 1/o-2 and 1/T2 are assumed 
independent Gamma(0.01, O.Ol) distributions, where Gamma(a, b) dis­
tribution has the mean equal to a/b. When observations arise from 
norma! distribution, the choice of Gamma as a prior for precision leads 
to posterior precision distribution being also Gamma. It is a natura! 
conjugate prior distribution in this case (see e.g. (Press, 2003)). 

Combination of all model assumptions allows us to derive full condi­
tional distributions for all parameters in a closed-form, see e.g. (Gamer­
man and Lopes, 2006). Gibbs sampling is used to update the parameters 
(Robert and Casella, 2004). Calculations were accomplished both using 
the WinBUGS package (Lunn et al., 2000) and writing our own functions 
in the statistical software R (R Development Core Team, 2008). 

4. Results 

Spatial CAR models have been applied to the Norway emission data. 
We estimate spatial models for various combinations of covariates. The 
results are compared using the Deviance Information Criterion (DIC), 
which was introduced by (Spiegelhalter et al., 2002). For an intuitive 
interpretation and a straightforward example see also (Liddle, 2007). 
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The DIC is calculated as a sum of the posterior expectation of the 
deviance D, and the effective number of parameters PD: 

DIC = D +PD· 

D measures how well the model fits the data; the larger this value, the 
worse the fit. Model complexity is summarized by the effective number 
of parameters PD - it is a crucially important component of the DIC 
clefinition. If all parameters are well-contained within the prior clistri­
bution, then PD is close to the actual number of parameters. Otherwise 
PD is smaller than the number of parameters. 

The idea of the DIC is to favour a model with a good fit, but also to 
penalize for the number of parameters. Thus models with smaller DIC 
are preferred to models with larger DIC. 

Table I. Model comparison using coefficient of de­
termination R2 , Maran 's I and DIC statistics for 
linear regressions and spatial CAR models. 

I Covariates I Linear regression I CAR I 
R2 DIC I po DIC 

Xt, X2 1 X3 0.47 571 0.31 190 345 

Xt,X2 0.42 598 0.30 151 426 

X1 1 X3 0.46 573 0.32 217 330 

x2 1 x3 0.47 572 0.31 199 356 

X3 0.40 601 0.37 227 319 
x, 0.32 633 0.31 132 482 

For the estimated spatial CAR models both, the DIC and the ef­
fective number of parameters PD, are displayed in Table I. For the 
linear regression models PD is equal to the actual number of unknown 
parameters (e.g. 5 for a model with 3 covariates: 4 components of /3 
plus variance a 2). For these models we report only the DIC. 

In terms of the DIC criterion, all of the CAR models are much 
better than any of the initially considered regressions. The hierarchical 
structure with the spatial random effect performs considerably bet­
ter. The best result (the lowest DIC equal 319) was obtained for the 
spatial model only with information on the area covered by roads x3. 

This model outperforms among others the CAR model with covariates 
x 2 , x3 . In case of a non-spatial regression these two covariates providecl 
the best results (recall that we rejected the model with covariates 
1: 1, x2 , x3 since x1 was not significant). This suggests that some miss-
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ing, spatially correlated variables contribute to overall emissions much 
better than the variable x2 (log) population. 

As already mentioned, Table I shows calculated Moran's I for the 
considered non-spatial models. The highest I = 0.37 is reported for the 
model with the same set of covariates (just x3) as the model with the 
lowest DIC. The applied spatial structure confirmed the exploratory 
analysis based on the Moran's I tool. 

Table Il. Parameter estimates for linear regression and 
respective spatial model (with 95% credible sets). 

Linear regression (x3) model CAR (x3) 

1.51 (1.291, 1.737) 

0.93 (0.801, 1.062) 

0.59 (0.500, o. 700) 

1.44 (1.268, 1.607) 

0.98 (0.871, 1.092) 

0.06 (0.015, 0.223) 

1.27 (0.810, 1.962) 

Another benefit of fitting the spatial structure is seen in the reduc­
tion of the length of the 95% credible sets for the covariates in the 
CAR model compared with the respective non-hierarchical model, see 
Table II. We show results for the spatial model CAR (x3), which gave 
the best results. For the intercept a reduction in length of the 95% 
credible set is approximately 24%, and for the effect of (log)roacls it is 
around 15%. 

Figure 4 shows maps with (a) the posterior mean for the best spatial 
model i.e. CAR (x3), (b) fitted values for the best linear regression 
model with covariates x2, x3, and (c) the observations. It can be no­
ticed that the spatial model maps the original data much better. The 
outlier emission in the Porsgrunn municipality is now captured. Most 
of the remaining locations with somewhat higher emissions have been 
correctly identified as well. 

Figure 5 depicts the spatial random effect 0;. It illustrates the pat­
tern of the suggested stili-missing explanatory variable(s) and may help 
in its identification. 

5. Concluding remarks 

We have shown an application of the spatial conditionally autoregres­
sive structure to examine dependence of covariate data on an indepen­
dent bottom-up inventory. In the considered case our results suggest 
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a) b) 

c) 

Figure 4. Posterior mean of log{emission) for model CAR with covariate XJ (a); 
fitted values in linear regression with covariates x2 , X3 (b); observed (log) emission 
(c). 

excluding an initially considered covariate on a population of munici­
palities. Instead, the presence of another missing, spatially correlated 
factor(s) is suggested. Generally, such situation - that we get better 
results just for a subset of covariates plus a spatial component - is not 
unusual. The point of the contribution was to take advantage of the 
spatial resolution in evaluation of inventory data. Statistical hierarchi­
cal models, estimated within the bayesian framework offer a flexible 
tool. 
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Figure 5. Spatial random effect ()i, CAR model with covariate on roads (x3) 

This kind of evaluation can help to improve future em1ss1on as­
sessments through: (i) indication of the most relevant covariates, and 
(ii) estimation of the spatial random effect 0. Provided the estimated 
relationship could last for some time, the model can be used to produce 
improved emission assessment based on another set of covariates. 

A potentially problematic part of inventory are emission point sources 
(plants), which are correctly reported in a bottom-up approach (as a 
response) but are missing in datasets with activity information (Wini­
warter, 2007). The proposed met hod proved to be capable to identify 
such situations, as was the case of the Porsgrunn nitric acid plant. 

In the considered model different sizes of the spatial areas ( mu­
nicipalities) were not relevant for the emission level - the covariate 
on total area of municipality was not statistically significant. In this 
sense we simply ignore that sizes are different. However, we noticed 
(not showu) that in some of the models with covariate on area size, 
the corresponding regression coefficient was negative (on a log scale), 
which provided a kind of weighting on the emission scale. 

It is noted again that in our example the models were applied 
on the log-transformed response and the covariates. It converts the 
original multiplicative relationship of the covariates to the linear one. 
However, this fact does not influence our conclusions on the choice of 
the factors. Usually emission inventories are carried as a sum ( not a 
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product) of activities. The presented analysis can be applied then as 
well, i.e. directly on the data. In such a case the regression coefficients f3 
would have direct interpretation as emission coefficients ( also known as 
emission factors). In our study no information on this kind of activities 
was available, and therefore a production function of known factors ha5 
been applied. 

This model might be possibly extended for the case, in which the 
CAR prior is used for parameter coefficients {3. In the context of emis­
sion inventories, this approach might be useful when considering space­
varying emission factors. These models are mentioned for instance in 
(Gamerman and Lopes, 2006), while (Gamerman et al., 2003) provide 
computational details for sampling schemes in a relevant algorithm 
required for parameter estimation. 
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