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Abstract

National inventories of greenhouse gases emissions are computed with rather
low precision. Their uncertainty estimates are, however, calculated in a sim-
ilar way and, therefore, have similar low precision. This should be accounted
for in the compliance and trading rules. In this paper we model the uncer-
tain inventories using fuzzy numbers, which allows us to shape both their
uncertainties and ignorance of precise uncertainty parameters. Derived this
way compliance and emission trading rules generalize those for the interval
uncertainty approach, which were considered in the earlier papers. The final
conclusion is, however, that the interval uncertainty rules can be still ap-
plied, but the used in them the noncompliance risk should take much higher
values. The derivation is then generalized for the nonsymmetric membership
functions and the compliance checking condition is derived for this case.

Keywords: national inventories of greenhouse gases emision, uncer-
tainty, compliance, emission permit trading, fuzzy sets.
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Chapter 1

Introduction

Greenhouse gases inventories estimates are far to be exact. Estimation of its
uncertainty done for several countries showed that they usually outstript the
reductions agreed upon in the Kyoto Protocol. Presented up-to-now ideas
to change the compliance checking and emission trading rules to include the
uncertainty of inventories assume that the uncertainty estimates are known
exactly, see 7] for a review of techniques and specifically [4, 12] for solutions
in spirit of the present paper. However, this is far from being true. The
uncertainty estimates are calculated in a similar way as the inventories and
it may be expected that uncertainty of them is of the similar order as that
of inventory itself.

It was shown in [12] that although the stochastic case may be useful for
the determination of the compliance rule, it provides a too complicated and
practically useless formula for the emission trading rule. Thus, in this paper
a fuzzy approach is used, which can be counsidered as a generalization of
the interval one. The fuzzy set calculus basically inherits the rules from the
interval calculus, and this way provides linear dependencies in the resulting
fornwlas. But at the same time the fuzzy variables may be shaped to have
more concentrated distributions than the interval ones, and this way can
better approximate the real distributions.

The fuzzy approach solves also the problem of imprecise knowledge of the
uucertainty interval length by counsidering the whole family of intervals of dif-
ferent length and this way modeling uncertainty of their knowledge. Coming
out from this point of view in this paper the uncertainty of the inventory
uncertainty estimate is taken into account and new rules for checking com-
pliance and emission trading rules are proposed. They are generalizations of
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the rules presented in [10] and reduce to them when the uncertainty interval
estimate is exact. The results of application of these rules are compared to
those obtained earlier, for the assumed exact knowledge of uncertainty esti-
mate. The result is that a convenient interval uncertainty approach may be
used, but with much higher noncompliance risk.

In section 2 we formulate the problem and introduce some basic notation.
Then, in section 3, we recall conditions for checking compliance and formulas
for so called efficient emissions, which can be directly traded, without taking
account for the emission uncertainty, for the interval type of uncertainty. In
section 4 a family of fuzzy numbers is introduced. They are used to model the
full inventory uncertainty and form the basis for derivations of generalized
compliance and emission trading rules. These rules are compared with the
interval approach rules. Section 5 concludes.




Chapter 2

Notation and problem
formulation

Basically, the total emission by a party is calculated by sumining up emissions
from every type of contributing activity and subtracting the gases absorbed
by sinks. Yearly emissions &;(¢} of every type of activity are computed as the
product

£a(t) = &:(t)as(t)

where @;(t) is the activity measure (e.g. in tons of material used) and &)
is its emission factor, both in the year . On the national scale both values
on the right hand side are unsure, giving rise to uncertainty. The nature
of the uncertainty is a complicated one. It originates from a lack of exact
knowledge of some variables and a need for an imperfect modeling of often
poorly known processes. Table 2.1 gives a few examples of the uncertainty
estimates, in percentages of the emissions. Full details can be found in [5, 6].

In the sequel by z(t) we denote the real, unknown emission of a party in
the year t and by &(f) its best available estimate. To simplify notation the
time argument ¢ will be dropped in the sequel.

The Kyoto Protocol declaration requires that each participating country
should reduce a prespecified percent of its basic year emission within the given
period (around 20 years), although some countries are granted a possibility
of stabilizing the emission at thie basic year level or even of a limited increase
of its emission.

Let us denote by § the fraction of the party emission that is to be reduced
in the commitment period according to its obligation. The value of § may be

9
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Country | Kyoto reduction | Uncertainty
AT 8 12
NL 8 5
NO -1 21
PL 6 6
RU 0 17
UK | 8 19

Table 2.1: Examples of Kyoto reduction commitments and published uncer-
tainty estimates of national emissions, in per cents.

negative for parties, which were alloted limitation of the emission increase.
Denoting by ¢, the basic year and by t. the commitinent year, and by x, and
%, respectively, the emissions, the following inequality should be satisfied

e~ (1=08)zp <0 (2.1)

As neither z. nor z, are known precisely enough. Instead, only the difference
of estimates can be calculated

Ge— (1= 6)d, (2.2)

where both Z. and %, are known with an intolerable low accuracy.




Chapter 3

Interval type uncertainty

Compliance. Assuming that the uncertainty intervals at the basic and the
commitment years are 2d, and 2d., respectively, we have

Tp € [ib —dy, Tp + db], Te € [.’l,h‘C — dc, Te + dc]
from which, using the interval calculus rules, we get
Lo — (]. — J)Ib S [D.’f? ~ dpe, DT + dbc]

where

D& =4, (1 -6 (3.1)

and

dye = de + (1 = 8)dp (3.2)
However, the inventories &, and 7. are dependent and the values of dy, are
usually much smaller than those resulting from the above expression. In [12]
it was proposed to modify it to

dbc = (]- - C)(dc + (1 - 6)db) (33>

where 0 < ¢ < 1 is an appropriate chosen variable. This case will be also
cousidered in this paper.

To be fully credible, that is to be sure that (2.1) is satisfied, the party
should prove DZ + dj,. < 0. We say that the party is compliant with risk «, if
D+ dye < 2ady,, that is, not bigger part of its distribution than « lies above

11
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i T
D3 — dy, Dz 0 Dz + dy,

Figure 3.1: Full compliance (a) and the compliance with risk o (b} in the
interval uncertainty approach.

zero, see Fig. 3.1 for the geometrical interpretation. After simple algebraic
manipulations this gives the condition

T+ (1 - 2a)dbc < (1 - 6)%b (34)
Thus, to prove the compliance with risk « the party has to satisfy its obliga-
tion with the inventory emission estimate increased by the value (1 — 2a)d,,,
dependent on its uncertainty measure expressed by dy.. The condition (3.4)
can be also rewritten as

A:ffic/ibg 1—5~(1 —-QQ)R[,C

where 7 is the estimated reduction factor and Ry, = dp./%p is the half rela-
tive uncertainty interval. Thus, the compliance with risk « can be formally
reduced to the form (2.2) by redefinition of the reduction factor

) — 5(} =46+ (1 - Qa)RbC (35)

Emission trading. Admitting the above compliance proving policy it is
possible to consider uncertainty in the emission trading. The main idea of this
proposition consists in transferring the uncertainty to the buyer together with
the traded quota of emission and then including it in the buyer’s emission
balance.

Let us denote by RS = d¥/25 the relative uncertainty of the seller and
by E the traded amount of estimated emission. This emission amount is
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associated with uncertainty ES RS. Before the trade the buying Party checks
the following condition

#5441 -20)d2 < (1-6)af
After the transaction the condition changes into
@B — B4+ (1 - 2a)[dE + ESR%) < (1 — §)af

Due to the partial cancellation of the subtracted estimated emission and its
uncertainty in the buyer’s emission balance the effective traded emission is

E.pp = ES[1 - (1 - 20)R5) (3.6)

Thus, the bigger seller’s uncertainty is, the less purchased unit is accounted
for the buyer. Expression (3.6) reduces emissions estimated with an arbitrary
precision to globally comparable values, which can be directly subtracted
from country’s estimated emission. This way it is possible to construct a
market for the effective emissions, see [12].



14

CHAPTER 3. INTERVAL TYPE UNCERTAINTY




Chapter 4

A fuzzy type uncertainty

Although the interval approach provides a very simple and convenient so-
lution, its criticism is sometimes aimed at low precision of defining the un-
certainty intervals. Sinilarly to inventory calculation, also calculation of the
uncertainty intervals is inexact and its accuracy is of the same order as that
of the inventory calculation.

The uncertainty of the interval ends can be modeled using fuzzy set ap-
proach, see Appendix A for a short introduction of some basic notions. A
comumion way for this is to use so called fuzzy interval with the trapezoidal
membership function, like that presented on Fig. 4.1. The uncertainty of the
interval ends is modeled by linear change of the membership function fron
0 to 1 at the iuterval ends.

()

xZ

m‘—d m mlkd.

Figure 4.1: An example of a fuzzy interval.

In this paper the fuzzy numbers are used to model imperfect knowledge
of the uncertainty. A fuzzy munber is a particular case of a fuzzy interval and
may be also considered as a straight generalization of an ordinary number,
whose value is unsure. This is the situation, which we spot in the greenhouse

15
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gas inventories.

An usual problem with the fuzzy set approach is to determine the mem-
bership function. Here, we introduce membership functions dependent on pa-
rameters. Fixing the parameters, the function best fitting the experimenter
expectation can be obtained. To estimate the parameters, the function can
also be fitted to the distribution obtained from Monte Carlo simulations, as
shown in the sequel.

4.1 Symmetric membership functions

Monte Carlo simulations give either distributions close to symmetric or clearly
nonsymmetric [13]. We start the discusion from the symmetric distributions,
as this case is much simpler. The nonsymmetric distributions are considered
in the next section.

Let us consider a family F of fuzzy numbers A = {(x,p)(x))lx €
supp A7} indexed by a variable v € Ct = {y € Cly > 0}, with the support
supp A7 = [dy,d%]. TFig. 4.2 depicts examples of u, representing a fuzzy
number 0, for few values of 7. The membership function is chosen there as

@ = (- y

with d), = —d4 and d, = das. This is a special LR type fuzzy number
introduced in Appendix A, with L(v) = R(u) = (1 — ) and dYy = d’y.
As can be seen, the introduced family can model a wide arrays of fuzzy
uncertainties. It can be even more generalized, if two brancles, left and
right, with different values of v and d4, are used.

It was suggested from the inspection of the results of Monte Carlo simu-
lations {17] that distribution of the inventory error is close to the Gaussian
one. It is also depicted in Fig. 4.3. Yet, stochastic approach introduces non-
linearities in derivation of the effective traded emission formulas. As seen in
Fig. 4.4, a membership function from the proposed family can also give good
fit to Monte Carlo simulation data, presented originally in [16].

Compliance. Let us assume now that the uncertainty of 7, and &, are
of the fuzzy type with the membership functions from the family F, that is
they are fuzzy numbers ;} and ) where

&7 = {(z, p, (@) € supp 47}
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1a(z)

Figure 4.2: Membership functions for v = 0, 0.5, 1 and 2.

ui(@)

T T T T T
-10 -6 -2 2 6 10 14

Figure 4.3: Fit of the Gaussian function to the histogram from [16], centered
and normalized.

supp &y = [&p — dp, £y + db)
v . ll - i":'| v
,U:E,,(I) = (1 T4, )
and similarly
27 = {(z, uz,(z))jz € supp 27}
supp &7 = [&. — de, Zc + d]
,, == Zely 7
pl (x) = (1 . ‘)

Then, calculating the difference in analogy to (2.2) a fuzzy number DZ7 is
obtained

D7 = &) - (1 - 6)z, = {(z, phe (%)) € supp D&} (4.1}
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T 1 T
-12 -8 -4 0 4 8 12
Figure 4.4: Fit of a membership function pj(x) for v = 2.43 and d 4 = 14.46
to the histogram from [16], centered and normalized.

whith the support
supp D27 = [DZ — dye, DI + dp, (4.2)
and the membership function

II*D.’%[J)W (43)

e

where D# and dy. are given by (3.1) and (3.3), respectively. The proof of
expressions (4.1) to (4.3) may be done easily using slight generalization of the
addition and multiplication rules on fuzzy numbers given in the Appendix
A. The derivations are given in Appendix C.

For this case we say that a party is compliant with risk & when not bigger
than the ath part of the area under the membership function (4.3) lies above
Zero.

The area under the membership function is

2dy,
A= / 'T' Tag =~ (4.4)
dbc v+ 1
and the area A, corresponding to the ath part of area A4 is
dpe T \7 dpe 7 Y (1
Ao = / 1- 2)dz = 4 45
dye~y ( dbc) v+1 (dbc) ( )

Now 4 )
_ Ao Y \r+L
(.
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pA(x)

D& — dye Dz 07 Ditd

Figure 4.5: Graphical interpretation of the ath part A, of the area under
the membership function.

then .
y = (20)71d),

Thus, the area A, is placed within the distance y = (2a)$d[,cl from the
right end of the interval [D& — dye, D& + dy), see Fig. 4.5. Thus we get the
following condition

Di + dye < (20) 7T dye

or in a more explicit form
Gt [1~ (20) 7 )dye < (1= 8)d (4.6)
As before, it can be also transformed to the form
F=d /iy <10 —[1— (ZQ)#]RM
where Ry, = dyo/ Rye, giving rise to redefinition of the reduction factor
5 — Sy =0+[1—(20)7|Rye (4.7)

This formula can be interpreted as an extension of the formula (3.5), as it

reduces to (3.5) when v = 0.
With a given o the formula (4.7) shows the dependence of the reduction

factor on . This dependence is illustrated in Fig. 4.6.

!For further use let us notice that the value of the membership function corresponding
to this point of the z-axis is equal to 7 = (2a)7+7.
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by —6
0.8 q1-pRyc

0.0 T T - T
0 1 2 3

Figure 4.6: Dependence of the reduction factor on .

Emission trading. After derivations analogous to the interval case we end
with the effective reduction for the fuzzy type uncertainty

oy = BS{1 = [1 ~ (2)7] RS} (4.8)

It is again an extension of the formula (3.6) for the interval case. In
comparison with the interval case it provides smaller differences between
E.;p and £5, see Table 4.1,

[ Count. | Unc. | Interv. Fuzzy

¥y=05 y=1 =15 =2 =25
AT 12 0.904 0.965 0.973 0978 0.981 0.984
NL ) 0.960 0.986 0.989 0.991 0.992 0.993
NO 21 0.832 0939 0.953 0961 0.967 0.971
PL 6 0.952 0.983 0.986 0.989 0.991 0.992

RU 17 0.864 | 0951 0.962 0969 0973 0977
UK 19 0.848 0.945 0957 0965 0970 0.974

Table 4.1: Comparison of the ratio Eeff/ES for the interval and fuzzy ap-
proaches for & = 0.3 and data from Table 2.1.

Equivalence of approaches. Let us notice that actually the fuzzy
approach formulas (4.6) and (4.7) can be considered equivalent to the interval
approach ones (3.5) and (3.6) provided appropriate values of « is chosen for
both cases. Denoting by the subscript ; the interval and by g the fuzzy case
the equalities of the reduction factors or the effective reductions

(51:(51? or Eeff,[:Eeff,F
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after simple algebra provide the same condition
(2(11)1+7 = 2ap
For the adopted assumptions 0 < oy, ap < 0.5 and v > 0 we have
ar Z ar
with strong inequality for internal points of the assumption set. Dependence
of oy on ap and y is shown in Table 4.2. The results show that «; rises quickly
when rises 7. In two cases considered in our calculations estimates of v close

to 2 and 2.5 were obtained. Then, practically it seems that 0.2 < oy < 0.3
should be taken even for small values of af.

ar |y — 1011 05 1 1.5 2 2.5
0 0 0 0 0 0 0
0.05 0.06 | 0.11 1 0.16 [ 0.20 | 0.23 | 0.26
0.10 0.1210.17 }0.22 | 0.26 | 0.29 | 0.32
0.15 0.17 1 0.22 1 0.27 [ 0.31 1 0.33} 0.35
0.20 02210277032 |0.3510.370.38
0.25 0.27 1 0.32 1 0.35 [ 0.38 ] 0.40 | 0.41
0.30 0.31 036 {039 | 0.41 | 042 0.43
0.35 0.36 | 0.39 | 0.42 [ 0.43 ] 0.44 | 0.45
0.40 0.41 | 043 | 0.45 | 0.46 | 0.46 | 0.47
0.45 0451047 | 047 | 0.48 | 0.48 | 0.49
0.50 0.50 | 0.50 { 0.50 | 0.50 | 0.50 | 0.50

Table 4.2: Dependence of a; on ap and 7.

The interpretation of these results is quite straightforward. Ignorance of
the exact interval ends knowledge introduces additional uncertainty, which
sums up to the uncertainty of the inventory itself. Thus, to obtain the
same reduction factor or the same effective reductions a bigger risk should
be adopted in the interval approach. An important practical observation is
that bigger values of oy, like 0.2 to 0.3, should be taken to compensate for
ignorance of the exact knowledge of the uncertainty interval length, even if
a smaller noncompliance risk is actually meaut.
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4.2 Nonsymmetric membership functions

We consider now a family od fuzzy numbers A7 = {(z, ;1}(z))|z € supp A"}
indexed by a vector parameter v = [y17] € CT x CF, with the support
supp AY = [dY, d%]. The membership function has the form

3 a(l~ &) for 0<x<dy

T) = A

W) a(1+§“”r)7‘ for dy <x<0
A

where a is a normalizing factor used for fitting the membership function to
empirical distributions. In the theoretical considerations it can be assumed
that the membership function has been normalized earlier and then a = 1 is
taken in the sequel.

Fig. 4.7 presents an estimate of a nonsymmetric membership function
obtained using the Monte Carlo method and presented in [18].

(g (z)

_FF gl

1 ! 1 L f T T
-10 -6 =2 2 6 10 14 18 22 26 30

Figure 4.7: An estimate of a membership function pj(z) calculated using
the Mante Carlo method, [18].

Compliance. It is assumed that the uncertainty of the estimate 7y is de-
cribed by the membership function

n3, () =

(1- I_i")"’; for &, <z <Ip+dy
- '
(1458 for 4, —dy <<














































































