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Abstract 

National inventories of greenhouse gases emissions are computed with rather 
low precision. Their uncertainty estimates are, however, calculated in a sim­
ilar way and, therefore, have similar low precision. This should be accounted 
for in the compliance and trading rules. In this paper we model the uncer­
tain inventories using fuzzy numbers, which allows us to shape both their 
uncertainties and ignorance of precise uncertainty parameters. Derived this 
way compliance and emission trading rules generalize those for the interval 
uncertainty approach, which were considered in the earlier papers. The finał 
conclusion is, however, that the interval uncertainty rules can be stili ap­
plied, but the used in them the noncompliance risk shoulcl take much higher 
values. The derivation is then generalized for the nonsymmetric membership 
functions and the compliance checking conclition is derived for this case. 

Keywords: national inventories of greenhouse gases emision, uncer­
tainty, compliance, emission permit trading, fuzzy sets. 

3 



4 



Contents 

1 Introduction 

2 Notation and problem formulation 

3 Interval type uncertainty 

4 A fuzzy type uncertainty 
4.1 Symmetric membership functions 
4.2 Nonsymmetric membership functions 

5 Conclusions 

Appendix A 

Appendix B 

Appendix C 

Bibliography 

5 

7 

9 

11 

15 
16 
22 

29 

31 

35 

39 

41 



6 CONTENTS 



Chapter 1 

Introduction 

Greenhouse gases inventories estimates are far to be exact. Estimation of its 
uncertainty done for severa! countries showed that they usually outstript the 
reductions agreed upon in the Kyoto Protocol. Presented up-to-now ideas 
to change the compliance checking and emission trading mies to include the 
uncertainty of inventories assume that the uncertainty estimates are known 
exactly, see [7] for a review of techniques and specifically [4, 12] for solutions 
in spirit of the present paper. However, this is far from being true. The 
uncertainty estimates are calculated in a similar way as the inventories and 
it may be expected that uncertainty of them is of the similar order as that 
of inventory itself. 

It was shown in [12] that although the stochastic case may be useful for 
the determination of the compliance rule, it provides a too complicated and 
practically useless formula for the emission trading rule. Thus, in this paper 
a fuzzy approach is used, which can be considered as a generalization of 
the interval one. The fuzzy set calculus basically inherits the rules from the 
interval calculus, and this way provides linear dependencies in the resulting 
formulas. But at the same time the fuzzy variables may be shaped to have 
more concentrated distributions than the interval ones, and this way can 
better approximate the real distributions. 

The fuzzy approach solves also the problem of imprecise knowledge of the 
uncertainty interval length by considering the whole family of intervals of dif­
ferent length and this way modeling uncertainty of their knowledge. Coming 
out from this point of view in this paper the uncertainty of the inventory 
uncertainty estimate is taken into account and new rules for checking com­
pliance and emission trading rules are proposed. They are generalizations of 
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8 CHAPTER 1. INTRODUCTION 

the rules presented in [10] and reduce to them when the uncertainty interval 
estimate is exact. The results of application of these rules are compared to 
those obtained earlier, for the assumed exact knowledge of uncertainty esti­
mate. The result is that a convenient interval uncertainty approach may be 
used, but with much higher noncompliance risk. 

In section 2 we formulate the problem and introduce same basie notation. 
Then, in section 3, we recall conditions for checking compliance and formulas 
for so called efficient emissions, which can be directly traded, without taking 
account for the emission uncertainty, for the interval type of uncertainty. In 
section 4 a family of fuzzy numbers is introduced. They are used to model the 
full inventory uncertainty and form the basis for derivations of generalized 
compliance and emission trading rules. These rules are compared with the 
interval approach rules. Section 5 concludes. 



Chapter 2 

Notation and problem 
formulation 

Basically, the total emission by a party is calculated by summing up emissions 
from every type of contributing activity and subtracting the gases absorbed 
by sinks. Yearly emissions x;(t) of every type of activity are computed as the 
product 

xi(t) = c.(t)a;(t) 

where a;(t) is the activity measure (e.g. in tons of materiał used) and ć:;(t) 
is its emission factor, both in the year t. On the national scale both values 
on the right hand side are unsure, giving rise to uncertainty. The nature 
of the uncertainty is a complicated one. It originates from a lack of exact 
knowledge of some variables and a need for an imperfect modeling of often 
poorly known processes. Table 2.1 gives a few examples of the uncertainty 
estimates, in percentages of the emissions. Full details can be found in [5, 6]. 

In the sequel by x(t) we denote the real, unknown emission of a party in 
the year t and by x(t) its best available estimate. To simplify notation the 
time argument t will be dropped in the sequel. 

The Kyoto Protocol declaration requires that each participating country 
should reduce a prespecified percent of its basie year emission within the given 
period (around 20 years), although some countries are granted a possibility 
of stabilizing the emission at the basie year level or even of a limited increase 
of its emission. 

Let us denote by ó the fraction of the party emission that is to be reduced 
in the commitment period according to its obligation. The value of ó may be 
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10 CHAPTER 2. NOTATION AND PROBLEM FORMULATION 

Country Kyoto reduction Uncertainty 
AT 8 12 
NL 8 5 
NO -1 21 
PL 6 6 
RU o 17 
UK 8 19 

Table 2.1: Examples of Kyoto reduction commitments and published uncer­
tainty estimates of national emissions, in per cents. 

negative for parties, which were alloted limitation of the emission increase. 
Denoting by tb the basie year and by te the commitment year, and by Xb and 
Xe, respectively, the emissions, the following inequality should be satisfied 

(2.1) 

As neither Xe nor Xb are known precisely enough. Instead, only the difference 
of estimates can be calculated 

(2.2) 

where both ie and i:b are known with an intolerable low accuracy. 



Chapter 3 

Interval type uncertainty 

Compliance. Assuming that the uncertainty intervals at the basie and the 
commitment years are 2db and 2dc, respectively, we have 

from which, using the interval calculus rules, we get 

where 

Di = ie - (1 - ó)i& (3.1) 

and 
(3.2) 

However, the inventories Xb and Xe are dependent and the values of dbc are 
usually much smaller than those resulting from the above expression. In [12] 
it was proposed to modify it to 

(3.3) 

where O :<:::: ( :<:::: 1 is an appropriate chosen variable. This case will be also 
considered in this paper. 

To be fully credible, that is to be sure that (2.1) is satisfied, the party 
should prove Di:+ dbc :<:::: O. We say that the party is compliant with risk a, if 
Di:+ dbc :<:::: 2adbe, that is, not bigger part of its distribution than a lies above 
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12 CHAPTER 3. INTERVAL TYPE UNCERTAINTY 
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(a) 

(b) 

Figure 3.1: Full compliance (a) and the compliance with risk a (b) in the 
interval uncertainty approach. 

zero, see Fig. 3.1 for the geometrical interpretation. After simple algebraic 
manipulations this gives the condition 

(3.4) 

Thus, to prove the compliance with risk a the party has to satisfy its obliga­
tion with the inventory emission estimate increased by the value (1 - 2a)dbc, 
dependent on its uncertainty measure expressed by dbc· The condition (3.4) 
can be also rewritten as 

where i' is the estimated reduction factor and Rbc = dbc/ib is the half rela­
tive uncertainty interval. Thus, the compliance with risk a can be formally 
reduced to the form (2.2) by redefinition of the reduction factor 

ó ---> óu = ó + (l - 2a)Rbc (3.5) 

Emission trading. Admitting the above compliance proving policy it is 
possible to consider uncertainty in the emission trading. The main idea of this 
proposition consists in transferring the uncertainty to the buyer together with 
the traded quota of emission and then including it in the buyer's emission 
balance. 

Let us denote by Rf = df /xf the relative uncertainty of the seller and 
by E8 the traded amount of estimated emission. This emission amount is 
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associated with uncertainty E8 Rt Before the trade the buying Party checks 
the following condition 

x~ + (1 - 2a)dfc s; (1 - ó)xf 

After the transaction the condition changes into 

x~ - E8 + (l - 2a)[dfc + E8 RIJ '.S (1 - ó)xf 

Due to the partia! cancellation of the subtracted estimated emission and its 
uncertainty in the buyer's emission balance the efjective traded emission is 

(3.6) 

Thus, the bigger seller's uncertainty is, the less purchased unit is accounted 
for the buyer. Expression (3.6) reduces emissions estimated with an arbitrary 
precision to globally comparable values, which can be directly subtracted 
from country's estimated emission. This way it is possible to construct a 
market for the effective emissions, see [12]. 
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Chapter 4 

A fuzzy type uncertainty 

Although the interval approach provides a very simple and convenient so­
lution, its criticism is sometimes aimed at low precision of defining the un­
certainty intervals. Similarly to inventory calculation, also calculation of the 
uncertainty intervals is inexact and its accuracy is of the same order as that 
of the inventory calculation. 

The uncertainty of the interval ends can be modeled using fuzzy set ap­
proach, see Appendix A for a short introduction of some basie notions. A 
common way for this is to use so called fuzzy interval with the trapezoidal 
membership function, like that presented on Fig. 4.1. The uncertainty of the 
interval ends is modelecl by linear change of the membership function from 
O to 1 at the interval ends. 

I 
m-d 

I e,(x] 

\X 
I 

m m+d 

Figure 4.1: An example of a fuzzy interval. 

In this paper the fuzzy numbers are used to model imperfect knowledge 
of the uncertainty. A fuzzy number is a particular case of a fuzzy interval and 
may be also considered as a straight generalization of an ordinary number, 
whose value is unsure. This is the situation, which we spot in the greenhouse 
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16 CHAPTER 4. A FUZZY TYPE UNCERTAINTY 

gas inventories. 
An usual problem with the fuzzy set approach is to determine the mem­

bership function. Here, we introduce membership functions dependent on pa­
rameters. Fixing the parameters, the function best fitting the experimenter 
expectation can be obtained. To estimate the parameters, the function can 
also be fitted to the distribution obtained from Monte Carlo simulations, as 
shown in the sequel. 

4.1 Symmetric membership functions 

Monte Carlo simulations give either distributions close to symmetric or clearly 
nonsymmetric [13). We start the discusion from the symmetric distributions, 
as this case is much simpler. The nonsymmetric distributions are considered 
in the next section. 

Let us consider a family F of fuzzy numbers A-Y = {(x,µ1(x))lx E 

supp A-Y} indexed by a variable --y E c+ = {--y E CI--Y 2: O}, with the support 
supp A-Y = [d~, dA]- Fig. 4.2 depicts examples ofµ} representing a fuzzy 
number O, for few values of --y. The membership function is chosen there as 

with d~ = -dA and dA = dA. This is a special LR type fuzzy number 
introduced in Appendix A, with L(1t) = R(1t) = (1 - 1t)"Y and d~ = dA. 
As can be seen, the introduced family can model a wide arrays of fuzzy 
uncertainties. It can be even more generalized, if two branches, left and 
right, with different values of --y and dA, are used. 

It was suggested from the inspection of the results of Monte Carlo simu­
lations [17) that distribution of the inventory error is close to the Gaussian 
one. It is also depicted in Fig. 4.3. Yet, stochastic approach introduces non­
linearities in derivation of the effective traded emission formulas. As seen in 
Fig. 4.4, a membership function from the proposed family can also give good 
fit to Monte Carlo simulation data, presented originally in [16]. 

Compliance. Let us assume now that the uncertainty of xb and Xe are 
of the fuzzy type with the membership functions from the family F, that is 
they are fuzzy numbers x-;; and ±J where 

x-;; = {(x,µJ/x))lx E supp ±-;;} 
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o 

' ' J ~,l I 

' \ I 
' \ I 

-y=2',, \1 
X 

Figure 4.2: Membership functions for -y = O, 0.5, 1 and 2. 

µ}(x) 

X 

-10 -6 -2 2 6 10 14 

17 

Figure 4.3: Fit of the Gaussian function to the histogram from [16], centered 
and normalized. 

and similarly 
iJ = {(x,iiVx))lx E supp xn 

supp iJ = [ie - de, Xe+ de] 

µVx) = (1 _ lx~ xelf 
e 

Then, calculating the difference in analogy to (2.2) a fuzzy number Dx-Y is 
obtainecl 

Dx-r = xJ- (1- c5)x;; = {(x,µ1x 0 (x))lx E supp Di-Y} (4.1) 
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µ}(x) 

X 

-12 -8 -4 O 4 8 12 

Figure 4.4: Fit of a membership function µ}(x) for 'Y = 2.43 and dA = 14.46 
to the histogram from [16], centered and normalized. 

whith the support 

supp Dx• = [Dx - dbc, Dx + dbc] 

and the membership function 

(4.2) 

(4.3) 

where Dx and dbc are given by (3.1) and (3.3), respectively. The proof of 
expressions ( 4.1) to ( 4.3) may be dane easily using slight generalization of the 
addition and multiplication rules on fuzzy numbers given in the Appendix 
A. The derivations are given in Appendix C. 

For this case we say that a party is compliant with risk a when not bigger 
than the ath part of the area under the membership function ( 4.3) lies above 
zero. 

The area under the membership function is 

A = jd,c ( 1 - 1=J. r dx = 2dbc 
- d,c dbc 'Y + 1 

(4.4) 

and the area Ac, corresponding to the ath part of area A is 

(4.5) 

Naw 

• 
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µ}(x) 

1 Aa X 

Di 
' y 
O Di;+ dbc 

19 

Figure 4.5: Graphical interpretation of the ath part Aa of the area under 
the membership function. 

then 
y=(2a),! 1 dbc 

Thus, the area Aa is placed within the distance y = (2a),! 1 d&/ from the 
right enci of the interval [Di; - dbc, Di;+ dbcl, see Fig. 4.5. Thus we get the 
following condition 

or in a mare explicit form 

( 4.6) 

As before, it can be also transformed to the form 

where R&c = d&c/ Rbc, giving rise to redefinition of the reduction factor 

,5 __, óu = ,5 + [l - (2a) ,!, ]R&c (4.7) 

This formula can be interpreted as an extension of the formula (3.5) , as it 
reduces to (3.5) when 'Y = O. 

With a given a the formula (4.7) shows the clepenclence of the reduction 
factor on „ This dependence is illustrated in Fig. 4.6. 

1 For further use Jet us notice that the value of the membership function corresponding 
to this point of the x-axis is equal to 7/ = (2a) c;'h. 
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0.6 

0.4 

0.2 r o o -+----~---~----'T""""' 
o 2 3 

Figure 4.6: Dependence of the reduction factor on „ 
Emission trading. After derivations analogous to the interval case we end 
with the effective reduction for the fuzzy type uncertainty 

(4.8) 

It is again an extension of the formula (3.6) for the interval case. In 
comparison with the interval case it provides smaller differences between 
E,11 and i;B, see Table 4.1. 

Count. Une. Interv. Fuzzy 

1 = 0.5 ,=1 r = l.5 ,=2 1 = 2.5 
AT 12 0.904 0.965 0.973 0.978 0.981 0.984 
NL 5 0.960 0.986 0.989 0.991 0.992 0.993 
NO 21 0.832 0.939 0.953 O 961 0.967 0.971 
PL 6 0.952 0.983 0.986 0.989 0.991 0.992 
RU 17 0.864 0.951 0.962 0.969 0.973 0.977 
UK 19 0.848 0.945 0.957 0.965 0.970 0.974 

Table 4.1: Comparison of the ratio E,JJ / jj;S for the interval and fuzzy ap­
proaches for a = 0.3 and data from Table 2.1. 

Equivalence of approaches. Let us notice that actually the fuzzy 
approach formulas ( 4.6) and ( 4. 7) can be considered equivalent to the interval 
approach ones (3.5) and (3.6) provided appropriate values of a is chosen for 
both cases. Denoting by the subscript 1 the interval and by F the fuzzy case 
the equalities of the reduction factors or the effective reductions 

OJ= OF or E,JJ,I = Eeff,F 

.... 
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after simple algebra provide the same condition 

For the aclopted assumptions O:','. a1 , °'F :','. 0.5 and 'Y 2: O we have 

with strong inequality for interna! points of the assumption set. Dependence 
of °'I on °'F and "fis shown in Table 4.2. The results show that °'I rises quickly 
when rises "f. In two cases considered in aur calculations estimates of "f close 
to 2 and 2.5 were obtained. Then, practically it seems that 0.2 :','. °'I :','. 0.3 
should be taken even for small values of °'F· 

°'F l 'Y --> 0.1 0.5 1 1.5 2 2.5 
o o o o o o o 

0.05 0.06 0.11 0.16 0.20 0.23 0.26 
0.10 0.12 0.17 0.22 0.26 0.29 0.32 
0.15 0.17 0.22 0.27 0.31 0.33 0.35 
0.20 0.22 0.27 0.32 0.35 0.37 0.38 
0.25 0.27 0.32 0.35 0.38 0.40 0.41 
0.30 0.31 0.36 0.39 0.41 0.42 0.43 
O 35 0.36 0.39 0.42 0.43 0.44 0.45 
0.40 0.41 0.43 0.45 0.46 0.46 0.47 
0.45 0.45 0.47 0.47 0.48 0.48 0.49 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 

Table 4.2: Dependence of °'I on °'F and T 

The interpretation of these results is quite straightforward. Ignorance of 
the exact interval ends knowledge introduces additional uncertainty, which 
sums up to the uncertainty of the inventory itself. Thus, to obtain the 
same reduction factor or the same effective reductions a bigger risk should 
be aclopted in the interval approach. An important practical observation is 
that bigger values of °'I, like 0.2 to 0.3, should be taken to compensate for 
ignorance of the exact knowledge of the uncertainty interval length, even if 
a smaller noncompliance risk is actually meant. 
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Nonsymmetric membership functions 

We consider nowa family od fuzzy numbers A-Y = {(X,J-L~(x))lx E supp A-Y} 
indexed by a vector parameter 1 = [,112] E c+ x c+, with the support 
supp A-Y = [d~, dA]- The membership function has the form 

{ 
a(l--fo-)'Y" for o:c;x:c;dA 

J-L'Y(x) = A I 

a(l + t )'Y for d~ :c; x < 0 

where a is a normalizing factor used for fitting the membership function to 
empirical distributions. In the theoretical considerations it can be assumed 
that the membership function has been normalized earlier and then a = 1 is 
taken in the sequel. 

Fig. 4. 7 presents an estimate of a nonsymmetric membership function 
obtained using the Monte Carlo method and presented in [18]. 

:r 

-10 -6 -2 2 6 10 14 18 22 26 30 

Figure 4.7: An estimate of a membership function µ.~(x) calculated using 
the Mante Carlo method, [18]. 

Compliance. It is assumed that the uncertainty of the estimate Xb is de­
cribed by the membership function 

for xb :c; x :c; xb + di: 
for Xb - di :c; x < Xb 
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and for the estimate Xe 

{ 
(1-~)'Y~ for ie:Sx:Sie+d~ 

pJJr) = '. I 
(1 + =)7' for i - d1 < x < i d~ C C - C 

To fine! the membership function of the fuzzy number Di= ie-(l-ó)ib 
as a linear combination of the fuzzy numbers i;b and ie, the 71-cuts will be 
used, see Appendix A for explanation of this notion. For the number Xe the 
upper i~ and the !ower i~ ends of the 71-cut are as follows, see Fig. 4.8. For 
xi we have 

Then 

In the same way, for i;~ 

and 

d~ -4 

I 

i~= Xe+ d~(l - 71'iY) 

•,I • I 

( Xe - Xe)"/, 
l+-- =71 

d' e 

I 

i~= ie - d~(l - 71ł) 

4 d~ 8 

X 

12 

Figure 4.8: Fit of a membership function µ}(x) for -y = 1.91 and dA = 13.7 
to the histogram from [17], centered and normed. 

Analogously the fuzzy number i;b can be treated. However, we consider 
the number -(1 - b')ib. There is 

( l _ xt + (l - ó)ib)"I' _ 
(1 - b')dg - 7/ 
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from where the upper end :i;b' is given by 

1 

i't = -(1 - ó):i;b + d't(l - ó)(l - 77'1:) 

And for the !ower end .f:i the equation 

(1 ±t + (1 - ó)xb),l _ 
+ (1 - ó)dh - 17 

provicles 

The 77-cut of the number Di is obtainecl applying the interval calculus 
rules for the sum of the 17-cuts of the numbers ie and -(1 - ó)i:b. Thus 

1 1 

Di:1 = Di- d~(l - 77I) - d./:(1 - ó)(l - 17'1:) 

For later use we fine! the value xry - the clistance between the right end of 
the 77-cut and the right end of the support (i.e. 0-cut) equal to 

d'tc = d~ + (l - ó)di ( 4.9) 

Then 

1 1 

xry = Di+d'tc-Di:u = Di+d~+(l-ó)di-Dx-d~(l-77::;;')-di(l - o)(l-17ł 

or, after simple manipulations 

( 4.10) 

Let us now consicler Fig. 4.9. We want to fine! the value x 0 giving the area 
below the curve equal to A0 , which is the a:th part of the whole area uncler 
the full membership function. By integrating the membership function we 
get 
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'f/ 

Figure 4.9: Calculation of Xa· 

25 

The area of the whole rectangle from the figure is 'f/aXa, The are of the 
upper, shaded, part A„ can be found by integrating (4.10) as function x'1('fJ). 
Thus 

or, after integration, 

Finally we have 

Inserting from ( 4.10) for 'f/ = 'f/a gives 

or after simplification 

A - [ d~ =i'! dUl - ,5) -:;rl 
c,-'f}c, ~'f/a + l+ I 'f/a 

'Yc 'Yb 
( 4.11) 

The area A under the membership function can be found by integration 
of the right brach, providing area A", and the left branch, providing area A1• 

Thus 
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Therefore 
d" d1(l - ó) d1 d"(l - ó) A= __ c_ + b +--c-+ _b~--

1'~' + 1 ,t + 1 /~ + 1 ,;; + 1 

and 

A _ A _ ad~ adi(l - ó) ad~ adW - ó) 
a-a ---+-~--+--+----

')'~ + 1 ,t + 1 ,~ + 1 ,;; + 1 
(4.12) 

Inserting the above value A0 into (4.11), solving it for 170 and inserting 
the solution into (4.10) provides us with the value x 0 , which cuts the right 
ath part of the area under the membership function of the fuzzy number Di. 
Unfortunately, solving (4.11) in the generał case is not possible analytically 
and must be solved numerically. 

To find an approximate value of x0 we expand the function A0 (170 ) given 
by equation (4.11) in the first order Taylor series around the value 7/o = 

(2a) ~. This value of T/o resembles the solution for the symmetric case. 
But it is worth to remeber that simplicity of the results obtained using this 
approach will depend very much on the ponit, around which the function is 
expanded. As 

o" 
then aro und the va! ue T/o = ( 2a) Fi we ha.ve 

I d" d1 5-
+(2a):;y+i" [--"- + (1 - ó)---1c(2a) 0b ]67J0 /~ ,t 

Ta.king now into account (4.12), after same ma.nipula.tions we get 

I l I+Ihf, 7+f -~ + (1 - ó)[¾i + ¼i(l - ½(2a) 1+ 1h:,' )] 
/:,.ry :::::, a c c b b u = a/3 

I d' ?i-
(2a):;y+i"[~ + (1- ó)?t(2a)'•] 

le 'Yb 
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Thus, around the 170 = (2a)~ we have 

-r'' l 1 
17" ;:::, (2a) :;f;:-f + l::,.ry = 2a[(2a)-:;y:TT + -,6) 

2 

27 

Inserting the above value to ( 4.10) and denoting by Xa the resulting value of 
x'1 we finally get 

I 

"'lu I ~ :!r 
Xa ;:::, d~[(2a) fr. + a,B]:;f + (1 - o)d~[(2a) V' + a,6]°• ( 4.13) 

For the symmetric case ,6 = O and ( 4.13) reduces to the expression for the 
I 

symrnetric case, i.e. Xa = (2a),+ 1 dbc· 
Then, for a party to be compliant with risk a the following condition 

should be satisfied 
Dx + d~c :<::: Xe, 

where cl~c is given by (4.9). Thus 

(4.14) 

For the approximate expression (4.13) the condition (4.14) is expressed 
as follows 
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Chapter 5 

Conclusions 

The paper deals with the problem of checking compliance of pollutant emis­
sion with a given limit in the case when the observed emission values are 
known with high uncertainty, which is the case of national inventories of 
emissions of the greenhouse gases. High uncertainty must influence trad­
ing in emission permits, which is frequently used to minimize the emission 
abatement cost [9]. 

Not only the inventory itself, but also its uncertainty is calculated with 
relatively low accuracy. This should be taken into account when deriving the 
compliance and emission trading rules. The idea proposed in this paper lies 
in grouncling the derivations on the fuzzy set approach. A family of fuzzy 
numbers depencling on a free parameter is introduced. This parameter can be 
chosen to appropriately shape the distribution of uncertainty. The approach 
provides the linear formulas, which can be usecl for designing a market for 
the efficient emission permits. 

The results obtained are generalizations of the results clerived for the 
interval type of uncertainty. It was, however, shown that the rules for the 
interval case can be sti ll used instead of the generalizecl ones, provicled the 
appropriately higher value of the risk of noncompliance is used. 

Then a nonsymmetric membership functions are consiclered. In this case 
a closed analytical solution could not be found. But an approximate solution 
was consiclered and another generalized rule for compliance has been derivecl. 
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Appendix A: Fuzzy sets and 
fuzzy numbers 

To introduce the notion of a fuzzy set Jet first us consider a classical set A 
from an universe U. It can be conveniently described by the characteristic 
function XA defined as 

{ 1 if u EA 
XA (u) = 0 if u (/. A 

which say that a point u E U belongs to the set, if XA(u) = 1, or does not 
belong, if XA(u) = O. 

In a fuzzy set the characteristic function XA is generalized to take any 
value from the interval [O, l]. It is then called a membership Junction and is 
denoted µA. The value of a membership function µA(u) reflects the degree 
of acceptance of the point u to the set. Thus, a fuzzy set is characterized by 
the set A and the membership function µA. Then, an usual set is a special 
fuzzy set with the membership function being the characteristic function. A 
comparison of a membership function and a characteristic function of a set 
is shown in fig. 1. 

A fuzzy set can be also fully characterized by a family of so called 17-cuts1 

denoted by A~, i. e. points of U, for which the value µA(u) assumes at least 
the value 17, see fig. 1, where an example of a 17-cut for 17 = 0.5 is depicted. 

Two additional notions connected with a fuzzy set are worth to ment ion. 
One is the support, called supp A, which is the set of points u, for which the 
membership function is positive, i. e. : 

supp A= {u EU: /tA(u) > O} 

1 Here we call as the ry-cut of a fuzzy set A the notion usually called the a-cut, i.e. the 
set A,1 = {x E supp Alµ.,(x) 2: ry}, for 7) E (O, 1). 
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XA 

0.5 

Ao.s u 

m-p1 m A m+pr 

Figure l: The characteristic function and a rnernbership functions of the set A. 

Another definition of the support may be fonnulated using 17-cuts, as 

supp A = lim A,, 
~~o 

The second notion is the core of the fuzzy set, called core A, which is the set 
of points, for which the membership function is equal 1, i. e.: 

core A= {u EU: µA(u) = l} 

Using the notion of the 17-cuts we may also write 

core A= A1 

A special case of a fuzzy set A is called a fuzzy number, if it satisfies three 
additional conditions: 

1. core A consists of only one point. 

2. The membership function does not increase starting from the core point 
towards both sides. 

3. Every 17-cut is a (connected) close interval. 

The 17-cuts for a fuzy number form a family of intervals. Each interval can 
be interpreted as our conviction in precision of knowledge of the core value. 
Values of the level 17 close to 1 mean that we are well convinced that the core 
value is precise. Small values of 17, close to O, mean that our conviction is 
small. See also [3] for more forma! discussion of this subject. Calculations 
performed on fuzzy numbers allow us to process whole this knowledge in 
common. 
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Technically, two functions defined for nonnegative arguments may be in­
troduced, L and R, [l], such that they have the unique value 1 at O, L(O) = 
R(O) = 1, equal zero for arguments greater or equal 1, L(u) = R(u) = O for 
1i 2'. 1, and are not increasing. Then, given core A= {m}, the membership 
function of a fuzzy number may be constructed using the above functions as 
its left and right branches 

(m-u) ft~(1i) = L --
P1 

for u :S m 

for u 2'. m 

(1) 

(2) 

where p1 and p„ are scale parameters, see Fig. 1. Let us denote the fuzzy 
number constructed this way as A(m,p1,PrhR-

Although operations on fuzzy sets or fuzzy numbers can be defined in 
a more generał context, they are first restricted only to fuzzy numbers de­
scribed in the above LR form. For two fuzzy numbers A(m,p1,PrhR and 
B(n, q1, q„)LR the following operations are defined, see [2]: 

1. Addition 
A+ B = (m + n,p1 + ą1,Pr + qr)LR 

2. Multiplication by a positive real number c 

cA = (cm, cpi, cp„)LR 

3. Multiplication by a negative real number c 

cA = (cm, !cip,, lclPilLR 

with interchange of the function Land R in (1) and (2) 

1 (cm- u) 
flcA(u) = R -

1
-

1
-

C Pr 
for u :S cm 

r ( ) L(u - cm) flcA U = _I_I_ 
CP1 

for u 2'. cm 

If we further restrict attention to L = R = M and Pr = P1 = p, then 

( lu-cml) 
µcA(1t) = M !cip 

(3) 

(4) 

(5) 

(6) 

In the generał case interval calculus for the 17-cuts can be used to get the 
appropriate operation. 
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Appendix B: Determination of 
a membership function 

The membership function can be determined freely. However, to be closer to 
reality, it can be set on the basis of same data. Here, a method of determina­
tion of the mernbership function parameters from the ernission distribution 
obtained during Monte Carlo simulation is presented. We assume in this 
appendix that the data are shifted in such way that µ(O) = l. 

Symmetric case 

Let µ(x;), i = l, 2, ... , N, be the observed values of distribution. We want 
to fit to them the following distribution function 

lx I , 
µ'(x) = a(l - -j-) 

where a is a scale coefficient. This is a highly nonlinear function and to make 
the problem "less" nonlinear we fit its logarithm using the sum of squares 
loss function 

~ [ ( ) ( lxd)]2 J = L.., Inµ x; - In a - 1' In 1 - -
i=I d 

Denoting In a = A and differentiating J to find the stationary points we get 

81 N lx I 
aA = -2 L [ In µ(x;) - A - 1' In ( 1 - -· ' ) ] = O 

~I d 

from where 
l N lxl 

A= N~ [ lnµ(x;) - 1' In (1 - -j- )] (7) 
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Further 

~J = -2-f, [inµ(x,) - ,In (1 _ l:sł)] In (1 _ l:sł) = O u, i=I d d 

which gives 

L~1 [inµ(x;) -A] In (1-1-;t-1) 
,---~----~-~~-~ 

- L~i[ In ( 1 -1-;t-1) r (8) 

Differentiation with respect to d provides a rather complicated formula 
ind 

EJJ = -2[ In µ(x) - A - , In (1 _ l:sł)] ~ = O 
ad ' d 1- EJ 

d 

At the same time, the value d can be easily approximately estimated from 
the emission distribution and shoulcl be practically only slightly adjustecl. 
Thus, the following algoritlun for estimation of the parameters A, 1 and d is 
proposed: 

1. Assume the starting values d(O) and ,(o). 

2. Calculate A (J) accorcling to (7). 

3. Calculate improvecl value ,(I) accorcling to (8). 

4. Iterate calculations of A(n) and ,(n) for n = 2, 3,. until the stop 
condition is fulfilled. 

5. Choose the value d(k) for k = 1 according to a one-dimensional opti­
mization scheme for the function J(d) and for the values of A and , 
settled in iteration step 4. 

6. Repeat steps 2 to 4 and then step 5 with incremented k until the stop 
condition for minimization of the function J(d) is fulfillecl. 

The algorithm converged quickly for the two cases considerecl, for which 
the data were taken from the literature and were presented as histograms. 
The results are depicted in Figs. 4.4 and 2. 

The approximate shapes of the function J(d) for these two cases are 
shown in Figs. 3 and 4. These approximations were computecl from only few 
points calculated cluring the execution of the estimation algorithm presentecl 
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X 

-12 -8 -4 O 4 8 12 

Figure 2: Fit of a membership function µ}(x) for --y = 1.91 and dA = 13.7 to 
the histogram from [17], centered and normed. 

above. Thus, it should be rather considered as an illustration of possible 
function J(d) approximate shape. Nevertheless, the function seems to be 
quite convenient for optimization. An interesting further observation is that 
similar estimates of --y and d were obtained for both cases. 

52 

14.0 14.5 15.0 

Figure 3: An approximate dependence of the sum of squares of errors on d 
for the data from [16]. 

Nonsymmetric case 

V1/e distinguish naw among the obseved values of distributions those for nega­
tive arguments, Xi < O, µ(xi), i= l, 2, ... , N 1, and those for the nonnegative 
ones, x1 2:: O, µ(x1), j = l, 2, ... , Nu, N1 +Nu= N. The fitted function has 



38 CHAPTER 5. CONCLUSIONS 

s 

d 

13 14 15 

Figure 4: An approximate dependence of the sum of squares of errors on d 
for the data from [17]. 

the form 
µ-Y(x) = { a(l - -f.J~" for O :S: x :S: d~ 

a(l + ;Ji" ),., for -d1 :S: x < O 

Analogously as for the symmetric case we cosider the logarithms 

Nv. X· 2 Nl X· ? 

J = L [ lnµ"(xj)-lna-1 In (1-. J] + L [ lnµ1(x;)-lna-1 In ( 1+--i-) r 
j=l d i=l d 

where µ" and µ1 a.re the right and left branches of the function µ, respectively. 
Denoted again In a = A and differentiating J we get 

u I:f:1 [lnµ"(xiJ-A]ln(l - ~) 
1' = ._,N .. [ I ( _ ':i)]2 

L.,j=l 11 1 d" 

" I:~1 [lnµ1(x;) - Aj ln(l - ~) 
1' = "N' [I (1 X")]2 

L.,i=l 11 - :if" 
Xj < 0 

To estimate the parameters A, 1", 11, d" and d1 a simple generalization 
of the iteration procedure prezented for the symmetric case can be used. 



Appendix C. Proofs of 
equations ( 4. 1) - ( 4.3) 

To prove these equations Jet us write the fuzzy nurnbers xZ and iJ using 
the LR notation used in expressions (3)-(5). Specifically, the notation with 
L = R = Ni will be used below. Then, with 

M(u) = (1- u)'Y 

we have 
xZ = (ib, db, db)M iJ = (ie, de, de)M 

Thus, applying multiplication by a negative number rule (5) yields 

-(1 - o)x6 = ( - (1 - o)xb, (1 - o)db, (1 - o)db) 
M 

and for the interval calculus with the rule (3.2), after applying the addition 
operation (3) we get 

Dx7 = xJ - (1 - o)x6 = 

= ( Xe - (1 - o)ib, de+ (1 - o)db, de+ (1 - o)db) M = (Di, dbe, dbe)M 

Thus, from (6) the membership function is 

_ (lx-Di7 I)-( lx-Di7 I)? t•Dx• - Ni ~--~ - 1 - ---~ 
dbe dbe 

and the support 

supp Di7 = [Di7 - dbe, D.f:'1 + dbe) 

These are just the expressions (4.2) and (4.3). 
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It seems obvious from the above reasoning that its generalization for the 
operator (2.2) requires changing of the addition operator (3) to 

A+, B = (m + n, (1 - ()(p1 + Pr), (1 - ()(p,. + q,.)) M (9) 

leaving ( 4) and (5) intact. Then, repeating the reasoning the equations ( 4.1) 
- (4.3) are obtained again. 

Let us notice, however, that change of the addition operator to (9) brings 
a disclvantage. As far as (3) is commutative and associative, that is it holcls 

A+ B = B + A and A+ B + C =(A+ B) + C =A+ (B + C) 

Then the operator (9) is only commutative, because 

(A+, B) +,Cie A+, (B +, C) 

Thus, practically, the operator (9) can be used only for pairs of numbers. 
But this is actually exactly what is needed in the application consiclered in 
this paper. 
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