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Figure 1. Different data distributions within a grid cell that result in the same value for 
the grid cell are showu in (a). The examples are: a single point source of value 100, two 
point sources of value 50, a line source of value 100 and an area source of value 100. 
Each of these are such that they are in one gridcell, which then has the value 100. When 
viewing the gridcell, it is not known what the underlying distribution is. Different 
ineompatible grids are showu in (b)-(e): a relative shift (b), a different gridsize (c), a 
different orientation (d) and a combination (e). 

Figure 2. Examples to explain the problem: (a) Problem illustration: remapping grid A 
onto grid B, (b) Areał weighting: the value of each output cell is determined by the 
amount of overlap, (c) Areał smoothing: the value of eaeh output cell is determined 
resampling a smooth surface that isjitted over the input data, (d) Intelligent reasoning 
using additional data: grid C supplies information on the distribution, which can be used 
to determine values in the output grid. 

Figure 3. Jllustrations for the different cases from Table 1: A is the input grid, Bis the 
output grid and C the auxiliary grid. The gridcells are drawn above each other for 
visibility purposes, but should cover cach other as showu on Figure 2(d). The size of the 
circles reflects the relative value of the associated cell (a small circle is showu for O 
values, for illustration purposes). 
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Figure SI. Simplified example using two grids: the output grid Band the auxiliary grid 
C use the same raster. The cover the same region of interest the input grid A, but the 
gridcells do not overlap nicely: grid A has two gridcells, whereas grids B and C have 
three gridcells. 

Figure S2. Example of the fuzzy sets used to define low, medium and high values for 
both input and auxiliary grid. 

Figure S3. The sets to define the labels of the output values of the inference system. 
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Figure 1. Example showing the different sources that yield a similar grid cell: single 
point source, two point sources, line source and area source. 

Fig. 2. Example cases for the case study. Cases (a) and (b) are used to show how 
auxiliary cells should influence the output, cases (c) and (d) are used to show how the 
input cells that neighbour the overlapping input cell influence the outpuŁ 

Fig. 3. Example cases for the case study, (a) and (b) are used to show the influence of 
auxiliary cells that overlap the neighbouring input cell. 

Fig. 4. Example to illustrate possible definitions for the limits of the fuzzy sets. 
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Fig. 1. The three geometries used to test the algorithms and their approximation as input 
grids. Geometry (a) contains two line sources with a constant value, geometry (b) 
contains 3 area sources with a constant value and geometry (c) contains different line 
patters with varying associated values. Greyscales are used to illustrated the values: 
higher values are shaded darker. 



Fig. 2. Test case 1. Target grid (top) and resultiog segment grid (bottom) (a). The 
auxiliary grid (top) and segment grid (bottom), for the first geometry (b), second 
geometry (c), and refereoce geometry (d). 

Fig. 3. Test case 2. Target grid (top) and resultiog segment grid (bottom) (a). The 
auxiliary grid (top) and segment grid (bottom), for the first geometry (b), second 
geometry (c), and refereoce geometry (d). 
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Fig. 1. Example of an input grid (2x2, in bold) that oeeds to be remapped ooto a target 
grid (3x3, dotted line). Differeot additional data arc represeoted by the thick lines in (a) 
and (b). 

Fig. 2. (a) geoerated ioput data with grid, (b) ideał solutioo for target 1, (c) areał 

weightiog for target 1, (d) ideał solutioo for target 2, (e) areał weighting solutioo for 
target 2. Darker shades represent higher associated values; but the scale betweeo 
different grids does not match. For cach grid, black iodicates the highest occurriog 
colour in that grid; the lighter the colour, the lower the associated value. 

Fig. 3. Case 1: low resolutioo auxiliary data: (a) auxiliary data, (b) result, (c) detail of 
the remappiog of the ioput data and case 2: High resolution auxiliary data: (d) auxiliary 
data, (e) result, (I) detail of the remappiog of the input data. 

Fig. 4. Case 3: low resolutioo rotated auxiliary data: (a) auxiliary data, (b) result, (c) 
detail of the remappiog of the ioput data and Case 4: low resolutioo rotated auxiliary 
data and rotated target: (a) auxiliary data, (h) result, (c) detail of the remappiog of the 
ioput data. 
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lntroduction: statistical assimilation of independent knowledge 

It is difficult to talk about verification of inventory maps in a strict sense, since the true 

values of emissions are not known. With this respect we can talk rather about testing the 

results or validation of the models and methods used to obtain the emission results. 

There are severa] methods providing independent observations, and tbey were discussed 

in Deliverable 3.3. Namely, the following four methods have been presented: 

• using nigbttime ligbts, 

• estimation offossil fuel emissions from tracer measurements, mainly 14CO2, 

• atmospheric inversion to estimate fluxes, 
• flux tower observations. 

Solely one of the above approaches may be presently considered for comparison with the 

very high resolution inventory obtained by modeling and disaggregation of rough resolution 

data, like the 2 km x 2 km inventory for Poland, developed in the GESAPU. This is by means 

of nigbttime ligbts. For example, ODIAC inventory provides the data with the resolution 

1 km x 1 km. There are, however, some limitations. Firstly, nigbttime ligbts allow only for 

estimation of energy emissions, and secondly, the accuracy of the nighttime lights inventory 

seems to be distinctly smaller than the accuracy of inventory by modeling. The latter is quite 

accurate, with uncertainty even of the order 2-5%, especially for the energy sector. 

Nevertheless, the comparison of GESAPU and ODIAC inventories showed that the results 

were close, except for about 10% which could be attributed to high point emission sources 

and misalign of the grids in both maps. More precisely, some high point emission sources in 

the ODIAC map were misplaced, and those with high values that were counted in a grid cell 

which did not match precisely a grid in the other map, also contributed to high differences. 

Some quantitative results of comparison have been presented in the Deliverable 3.3, also a 

proposition how to combine both maps is described there. To apply it, estimates of 

uncertainties are needed, and no such estimate is given for ODIAC inventory in Oda & 

Maksyutov (2011). lt is also possible to use statistical tests for comparison ofboth data sets, 

like the I-test for two dependent samples when the distributions are Gaussian, or the Wilcoxon 

matched-pairs signed-ranks test when they are not, see e.g. Sheskin (1997). Basically, both 

tests check whether the differences of the corresponding values from two samples has zero 

mean within the statistical rigors, that is with a prespecified level of significance. The 

difference between these test is tbat in the forrner one, the parametric test statistic is obtained 

assuming the Gaussian distribution, while in the latter a nonparametric rank test is used. In 

this sense, as of now, the nighttime lights inventories provide the best possibility of 

comparison and improvement of inventories obtained from modeling and disaggregation. One 

of the problems to be solved here is a mismatch of the map overlay. 



Atmospheric tracer measurements have been used for estimation of fossil fuel emissions. 

However, this way only the dilution of 14C02 in the atmosphere due to fossil fuel combustion 

is measured. This can be used for detection of changes in fossil fuel emission, as il was 

outlined in Levin & Rodenbeck (2008). They used the t-test statistic for comparison of5-year 

mean 14C02 concentrations in the starting and last years of the Kyoto Protocol agreement. An 

interesting conclusion was, thai they were unable to detect a significant difference in the mean 

using two high precision measurements in the Schauinsland and Heidelberg stations. Whether 

this was caused by a lack of real significant reduction of the fossil fuel emissions across 

Europe, or by low sensitivity of the method, is a matter of further studies. Although this 

method allows for constraining emissions, particularly from bigger areas and/or bigger 

sources, a transport models have to be used in order to get some reduction in emission 

uncertainty (see e.g. Rayner et al., 2010). They used an area grid with 0.25° resolution, and 

certainly applying their method to a very high resolution would reveal problems both in 

bigger computation expenses and much smaller improvement. Here, one of the difficulties is a 

in proper definition of an area from which the fossil emission come; it is another 

manifestation of a map overlay problem. It is worth to add thai the estimates of fluxes 

obtained from the atmospheric tracer measurements are much more uncertain than those 

obtained from inventories. However, the former may be regarded as more objective, while the 

latter as more subjective. 

Atmospheric inversion for estimating fluxes is another method thai can help in 

comparison of inventory results with independent information. This method has been used 

mainly for the estimation of C02 fluxes from biospheric sources and ocean, assuming thai the 

fossil fuel emissions are exact (i.e. much less uncertain). Knowing rather low uncertainty of 

biospheric inventory estimates, which are of main interes! in our studies, the inversion 

methods may introduce useful additional information. They can help both in improving the 

inventory values and in reduction of their uncertainty. As before, the problems stem from 

scarce measurement sites, and from uncertainty as to the area from which emissions come. 

Thai is why these methods were applied to the problems of rough spatial resolution. However, 

Lauvaux et al. (2008) have been able to get results with the 8 km x 8 km resolution, although 

in a relatively small region (300 km x 300 km), and with intensive measurement efforts, 

including aircraft measurements. The inverse methods are quite general and can be used for 

other greenbouse gases. For example, Thompson et al . (2011) used them in estimating N20 

fluxes . Also other gridded information can be incorporated inio inventory estimates. Needless 

to say, the atmospheric inverse results can be also compared with inventory data using e.g. the 

earlier mentioned t-test or Wilcoxon test. For this, the very high resolution inventory data 

would have to be aggregated, which makes Ibis idea rather futile. 



Probably, the most promising results for comparison and assessment of inventory 

emissions for the biosphere fluxes can be obtained from flux tower observations. At present 

however, the flux towers are extremely rare; at the territory of Poland and Ukraine there are 

no such installations yet. The measurements from a tlux tower can be representative at most 

for a one very high resolution cell. With this respect, this option seems to be more useful for 

calibration of biosphere emission models used for preparation of inventory, than for 

significant tests of annual inventories given in high resolution gridded form. 

Jt is evident from the above considerations that some possibilities exist for testing the 

inventory results, validation of models and methods used, and even for incorporation of 

additional knowledge to improve the results and their uncertainty. They are mainly in the 

form of independent estimates of emission fluxes in different spatial scales and different 

scarcity. There may exist estimates in isolated cells in the fine scale, group of cells, estimates 

in rough scale or even bigger regions. All this information can be incorporated in the Bayes 

approach described in the Deliverable D3 .3, at available scales. This means that some 

information is used directly in the fine scale, while other may possibly help in improving 

rough scale estimates, which are then disaggregated to fine scale, but with improved accuracy. 

For completeness of the reasoning, the Bayes procedure is surnmarized below. Let Yobs be 

a n-vector of the independent estimates in the considered scale cells, and x is a n-vector of 

real unknown fluxes (emissions) from these cells. Then we have 

Yobs =X+ 1P (I) 

where t/J is a n-vector of errors, which is modeled as a random variable with the 

Gaussian distribution of a covariance matrix Cy 

(2) 

On the other hand, it is assumed that uncertain information Xprior on fluxes is also 

available, so that 

X = Xprior +-{} (3) 

where again, uncertainty is modeled as a random vector with the Gaussian distribution 

independent ofp(t/J) and having covariance matrix Cx 

p(-lJ) = [(2rrr detCxJ-1 exp{-¼-lJTc_;1-lJ} (4) 

Now we are looking for the conditional probability p(XIYobs)- From the Bayes theory we 

have 

P(xly ) = PCYobs lx)p(x) 
obs PCYobsl (5) 

As the Jacobians in the transformations (I) and (3) is equal I, then 

p(Yobslx) = [(2rrr det Cyr1 exp {-¼ CYobs - x)Tc;;1 CYobs - x)} (6) 



p(x) = [(2rrr det CxJ-1 exp {-½(x - Xprior/ c;1 (x - Xprior)} (7) 

Tuus, the conditional probability p(xlYob,) is proportional to 

p(XIYobs) - exp {-H ĆYobs - x)Tc;;1CYobs - x) + (x - X prior/ c;1(x - X prior)]} 

(8) 

Now, assuming that it is unique, the value x which maximizes the above conditional 

probability is taken as the estimator. Namely, it is the value which minimizes the following 

cost function 

J = ĆYobs - x)TCyl(Yobs - x) + (x - Xprior/ c;l(x - Xprior) (9) 

The solution can be found analytically. As the matrices Cy and Cx are symmetric, the 

derivative of/ with respect to x is 

~:!i. 
2 dx 

Supposing that the inverted below matrix is nonsingular, the derivative is zero for 

X= (Cy1+c;1f 1 (Cy1Yobs + c;1 xprior) = 

= ( Cy1 +c;1f 1
[ Cy1 (Yobs - Xprior) + ( Cy1 +c;1 )xprior] 

which finally gives the Bayes estimator of the fluxes 

X= Xprior + (Cy1+c;1f 1 Cy1 (Yobs - Xprior) 

(10) 

(11) 

lfthe matrix Cy1+C;1 is singular, then a singular value decomposition (SVD) can be used. 

It can be demonstrated that having inserted x to (8), one gets a Gaussian distribution. Then, 

as the expression under the exponent in a Gaussian distribution is quadratic, we can find the 

inverse of the covariance matrix C\ of the estimator from the second derivative of /. 

Differentiating (IO) gives 

cyi+ c;i 

thus 

(12) 

lltis matrix allows us to estimate statistical uncertainty of the Bayesian estimator. The 

most right hand expression in (12) is more convenient for numerical calculations, since only 

one matrix has to be inverted, while three matrices has to be inverted in the middle 

expression. In case of big number of observations n, this may give quite a saving in 

computation time. 

An evident difficulty in using independent information is in practically unavoidable 

problems of incompatible grids, when two maps overlay. This incompatibility introduces 

errors which can substantially contribute to uncertainty of results obtained from common 



processing of such incompatible maps. As of now, the solutions to this problem are under 

development. The typical approach is to partition the emissions proportionally to the area or, 

optionally, to some other proxy variables, like population. Usually, a lot of additional 

knowledge exist, which can be used for more advanced and, at the same time, more accurate 

allocation of emissions. Sometimes it is available even in a non-numeri cal form. This type of 

additional knowledge is difficult for processing, and often it may be even impossible using the 

probability terms and statistical approach in a strict sense. Consequently, this problem is 

considered in the sequel by means of the intelligent computation and fuzzy logic approach. 
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