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Abstract

The parties that signed the Annex I to the Kyoto Protocol must report their emissions
of the greenhouse gases each year. Uncerlainty of reported values obtained by aggregation of
the partial emissions from all processes and provided so far for several countries is very high.
Independent calculation of the estimates could confirm or question the values obtained up to
now. The aim of this paper is to investigate procedures for doing it. They arc statistical
procedures, which benefit from the yearly reported observations while assuining temporal
smoothness of the emission curve. Another goal is to provide estimates of the real emissions,
which are more accurate than the observed values and could be used in testing fulfilment of the
Kyoto obligations.

We consider two methods for empirical estimation of the standard deviation of the accounting
errors. For this we use signal processing methods: a smoothing procedure based on the spline
functions and a parametric modcl with a time-varying parameter. They are verified on
historical observations of the greenhousc gas cmissions from combustion of the fossil fuels.
The results obtained are promising and give estimates ol variances that agree well with those
calculated by the aggregation of variances [rom the partial processes. A simnple piecewise
exponcntial model was found to {it well the data in the periods of stcady growth or decay.
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1. Introduction

The Kyoto Protocol contains obligations to decrease the emission of the greenhouse
gases of 5.2% below 1990 level by the first period up to 2008-2012. However, the uncertainty
assessments performed are big and in most times exceed, sometimes very considerably, the
reductions agreed upon in the Annex I to the Protocol, see the comparison of the uncertainty
assessments in Nahorski at al. (2003).

The parties who signed the Annex I have to monitor their emissions starting from the
base year, which is mainly 1990. This redundancy in observations can be favourably used to
reduce the uncertainty of individual observations in the commitment period 2008-2012, using
statistical inference. In this paper we propose a method for estimating emissions and their
variances using the smoothing splines (Wahba, 1990; Gu, 2002). Further analysis of obtained
results extends the method to the parametric model with a time variable coefficient, which
finally turns out to be well fitted as a stepwise one.

The spline functions are the piecewise polynomial functions, which are smooth enough
at the joint points. They were invented to interpolate a function known only in a set of finite
arguments. To approximate a function known in errors, the smoothing splines are applied.
They need not to go through the observed points, better estimating the real function. Within
this methodology it is also possible to estimate the variance of errors.

Our application of the smoothing splines aims in getting better estimates of the
greenhouse gas emissions reported by countries and to reduce their uncertainties. For this, we
assume that the emission, as a function of time, is regular enough, permitting good
approximation by the smoothing splines. '




Other methods could be tried to solve the problem. A simple alternative would be to
use another smoothing method. Those based on the wavelets might be promising ones
(Debnath, 2002; Walter, 1994). Popular methods in the automatic control literature use the
parametric models with calculation of the state errors following an earlier phase of the
parameter estimation. In some of them, like in the extended Kalman filter, the parameters and
the states are estimated simultaneously. Similar results can be obtained using the method of
Cox & Bryson (1980) where the control theory approach is explicitly applied. To use this kind
of methods, the parametric model is needed. Apart of that, at least some of them require quite
long data samples to converge.

Although our approach starts with a purely nonparametric model, Sec. 3, in the
consequent steps we move to the analysis of parametric models with a time varying
parameter, Sec. 4. Our final conclusion, presented in Sec. 4.4, is that this parameter may be
actually taken as a constant one in shorter time periods, at least for the data from the fossil
fuel combustion, used in the paper. This allowed us to use the simple regression method to
estimate the parameter in each period. This approach has several advantages for short
sequences. The difficulty lies, however, in predicting the points where the parameter jumps
from one value to another.

2. Notation used

Let us introduce some basic notation. By x(f), as a function of time, we denote the
integral of the real emission calculated on the interval (£-1, £] where ¢ is expressed in years.
Thus, the integral is calculated over the one-year-back period. So, if the instantaneous
emission is called em(f), then x(¢) = j'['_lem(r)a’r. In the sequel we call x(¢) the emission. The
integer value of 7 is assigned to the end of the year. The emission in the basic year fo will be
denoted x(#) = xo. The important commitment period years, 2008-2010, will be denoted T},
where i = 8-10. The emission reports provided by the Annex I Parties are prepared by
‘summing up partial emissions of all involved activities during a year. Due to uncertainties in
assessing the exact quantities of all emissions, they are in errors. We denote the observed
(reported) values y(r;) or shortly y;. The index i begins here at O and takes the consecutive
integer values. Therefore 73 # #g, and similar for other 7;’s. The real emissions are unknown
and can be only estimated. Hats will mark the estimated values, so X(¢) is the estimated
emission.

By & we denote the fraction of the emission to be reduced within the Kyoto obligations
until the commitment period. Thus at the commitment period the emission should be not
greater than (1-6)x,. Obviously, the percentage reduction required by the Kyoto protocol is
1008 but we often refer directly to &§ in percents. The value of & is not greater than few
percents.

As it is common to express obligations in percents, it is useful to work not with the
straight observations but with their logarithms. Let us denote /\"’(T,.) =InX(7;)/ x,, thus /\A’(T,)
is the logarithm of the normalized emission. As in our case %(7;)/%, is close to 1, then it

approximately holds
CORTRICURLIJUR PRI 0
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‘Thus, X(T,-) may be interpreted as the relative change of ¥(7;) with respect to X, and may

be expressed in percents.




The logarithmic values will additionally prove useful in the sequel when we discuss
the evolution of the emission curves in time. Our calculations suggest that a first
approximation to them is a piecewise exponential curve. Working with the logarithms we get
this way a piecewise linear functions, easy for any algebraic manipulations.

3. Estimating the uncertainty parameters by a nonparametric method
3.1  Basic assumptions and simplifications
3.1.1 Data treatment

The function x(¢), as an integral of a positive function, is continuous and positive, We
have dx(1)/dt = em(t)—em(t —1). If we take a reasonable assumption that em is a continuous
function of /, then x(7) is even continuously differentiable. We assume more, namely, that x(¢)
is a twice continuously differentiable function.

We assume that the emission process can be only observed with errors in equally

spaced time intervals 47 =1 year. We introduce a simplified notation x(f, =jAf) = x,, x,>0.

4.1.2  Uncertainty treatment

We assume that the real process x; is observed with multiplicative errors &, =u, x,,

where
L(u;)=m,
El@, ~m)*]1=0},
cov(, 1t ;)= py
Thus, the observations can be presented in the following way
Y, =X tu X, :(1+11,,)x,. ,i=0,1,..,N .

where y; are the observed emissions, x; the (unknown) real emissions, and u; their relative

‘uncertainties.
The function x(7) is generally not known. Therefore, we can also introduce the errors

proportional to the observed value g, =, y,. This yields
.yr = xy +“i }’,
1
t-u,

X,

i

))‘ =

For small u, we have 1/(1-u,)=1+u, and both models are approximately the same.

i
However, for higher #, it is not so.

There is an important difference between two above models. In the former y; is linear
in u,, which is the only stochastic variable at the right hand side. This is not the case in the
latter.

The above dependencies are also true for i = 0. Dividing sides and taking the
logarithms we get

+u,
Y, =X, +ln—L
I+u,



or, respectively,

1_
Y, = X, +In—20

-1,

where ¥, =Iny, /y, and X, =Inx, /x,. For small #o and «; approximately it holds

1+, 1-u
In L~y ~In ¢
I1+u, 1-u;
resulting in the identical expression
Yi=X, +u, ~u,
The errors v, = u; — 1y have the zero mean, E(vj) = 0, and the variance

2
ag

» =0l +0§ -2p,0,0,. Their covariance is equal to

cov(v,,v,) = El(u, ug)ut; —10)]= py = pro = Pjo + 05
1t is equal zero, if all summands are equal. But generally the sequence is correlated, even if
the original errors u; are not. We assume, however, that the correlation is negligibly small. As
noticed by Wahba (1990, s. 4.9), correlation of errors may considerably worsen the smoothing
results, as far as reconstruction of the original function is considered.

3.2. Smoothing and uncertainty analysis
3.2.1 Smoothing splines

Let us consider some abstract data z; generated by the following system
z, = f(t,) ‘e, i=042,...,N
The vector
e=(¢g,rey)ox N(O,a’l)
contains the set of observation errors, We want to recover the function £f), assumed to be
smooth enough, knowing only the erroneous observations z;, i = 0, 1, ..., N. For this we use

splines.

’ In the interpolating splines an approximation z(f) to f{f) is obtained assuming that
-2(t) is a polynomial of an order m (we use nm = 3) on each segment [£;, #+1), i = 0,1,2,...,N-1,
satisfying Z(f) = z; and having the continuous derivatives up to the order m—1 on the whole
interval (4, ty). In the presence of noise the interpolating spline generally quickly varies in
time, overshooting and undershooting considerably the function £7).

Much better approximation can be then achieved using the smoothing splines. Their
idea is to find the function z(¢) that does not need to go directly through the observed points

z;, in order to get a function with smaller (im—1)th derivative, see Fig. 1.
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Figure 1. The interpolating spline (dashed curve) and the smoothing spline (solid curve).

If we restrict our attention to the third order polynomials, then the task is to find a
smooth function Z(¢), which minimises the sum

1 Y ar W2 t”(ﬂ(z) )2
Wg(z’_z(ti)) +,1’fz ) ar )
where

B = + byt - 1)+ ¢t~ 1)? +di (1)

telt ti),  i=01..,N-1

‘The solution of the problem, for a given 4, is delivered e. g. in Wahba (1990) and can be
written in a general form

2)=a; = L 4z (N, A)z &)
J

e =b; = %Bik (N, )z 3)
see also Gu (2002), where 4;; and By are coefficients which do not depend on the data z and
can be precomputed. Thus, both Z(#,) and dZ(¢,)/dr are kernel estimators.

3.2.2 Uncertainty analysis

The solution depends on the value of A. This value is estimated by the generalized
cross validation method (Wahba, 1990) by minimising over A the criterion

y N 2
‘Z[Zi -z (N, )]
V(N,2)= ’iLT— €))
N+1- ZA“(N,}»)
i=0

where z,(N, 1) is the solution of the problem (2), in which the Z, observation is dropped. The
optimal value will be denoted 1. The optimal value of the criterion can be used as an estimate
of 0% ie. -

6XZ(NY=V(N, D) - (5)



The expression in the denominator of (4) can be interpreted as for the degrees of freedom of
the noise, in analogy to the degrees of freedom in the regression analysis. However, in

contrast to the regression analysis, only consistency of the estimate &Z(N) for the smoothing
splines has been proved theoretically (Gu, 2002, th.3.4), while other good statistical properties

have been checked on numerical simulations.
The estimated variance of Z(¢;) is now

GEN) =62 (N4 (N, A)

(6

Table 1. Optimal values of A and estimated standard deviations of observation errors for
different countries and two time periods

Years 1950-1998

Years 1970-1998

~ | Std. Dev. | Std. Dev. 1y Std. Dev. | Std. Dev.
Country 4 |"edge” [%]|"middle” [%] Country 4 |edge” [%]]"middie” [%]

ARGENTINA _ 0,06 2.7 23 ARGENTINA _ |3,2E-10] 0.4 0.4
AUSTRALIA _ |0.06] 2.1 18 AUSTRALIA __|7,4E+05] 1,5 0,9
AUSTRIA 015| 3.4 2.7 AUSTRIA 2.36+05] 2.0 14
BELGIUM 007] 28 23 BELGIUM 12E-01] 238 23
BRAZIL 031] 26 1,9 BRAZIL 19601 1,7 13
CANADA 0,03] 24 1,9 CANADA 32E-10] 05 05
CHINA 003 52 47 CHINA 1,3E01] 1,7 14
cuBA 0,16| 84 5,6 cuBa 4,3E+05] 33 19
EGYPT 116 50 34 EGYPT 32601 35 26
FINLAND 0,03] 53 438 FINLAND 35E-02] 43 3,8
FRANCE 014| 29 23 FRANCE 55601 3,2 23
GREECE 014| 35 2,8 GREECE 16E-01] 28 22
ICELAND 164| 53 35 ICELAND 1,76+05] 4,1 2.7
IRELAND 01| 54 43 IRELAND 30E-01] 30 2,2
ISRAEL 003] 38 34 ISRAEL 22E01| 26 2,0
ITALY 010 2,0 16 ITALY 86E01] 1.9 13
UAPAN 0,01] 2.8 2.7 JAPAN 6,7E-02| 2.1 18
LUXEMBOURG | 0,05| 3,3 2.9 LUXEMBOURG |1,3E-01] 3,5 2,8
MEXICO 076 2,5 1,7 MEXICO 2,2E+05] 26 1,7
NETHERLANDS | 0,08| 3,4 238 NETHERLANDS |4,1E-02| 4.2 3,7
NEW ZEALAND | 5,11 2.8 18 NEW ZEALAND |5,36-02| _ 3,4 2.9
NORWAY 344] 66 42 NORWAY - 3,5E+05] 8,3 52
POLAND 071] 2.1 15 POLAND B7E01] 25 18
PORTUGAL __ [3,34] 30 1,9 PORTUGAL __ |4,0E+05| 3.1 1,9
ROMANIA 019] 25 1,9 ROMANIA 32601] 29 2.1
SPAIN 0.03] 34 3,0 SPAIN 82601 25 1.7
SWEDEN 369] 40 25 SWEDEN 36E+05] 3,7 23
SWITZERLAND |0,11] 4,1 33 SWITZERLAND |1,1E+05] _ 2,8 1,9
TURKEY 01| 3.9 31 TURKEY 16E-02| 3,7 34
UNITED UNITED

KINGDOM 015| 20 16 KINGDOM 1,1E+05| 2,0 1,4
UsA 002 18 16 USA 8,7E-05| 04 04




3.2.3 Application to real data

The above analysis was applied for smoothing the data ¥; = In y; / yo to obtain the
smoothed values. Equation (6) has been used to calculate the estimates of the standard

deviations &, (N,,) for the emission from the fossil fuels provided by Marland et al. (1999),

in the periods 1950-1998 and 1970-1998. As the values A, (¥, i) do not change significantly
in i except for time points at the beginning and the end of the data, see Table 1, where the
values at the “edge” and in the “middle” of the data period are compared. The value
&;(N,1;) depends also on the number of data used. This dependence is visible, aithough
mostly not crucial, in the results presented in Table 1 for different time periods. For few cases,
like e.g. Argentine, Canada, USA, reduction of the number of data caused big drop of the
standard deviation value.

Wahba (1990, sec. 4.9) recommends using at least 25-30 observations when applied the
smoothing splines. The data used in calculating the values in the left side of Table 1 contained
29 points, just satisfying the recommendations. However, for many countries, the
corresponding standard deviations differ for different length of data. At least in some cases
this is correlated with extreme values of A, either very close to zero, like for Argentina,
Canada and USA, or very high, like for Austria and Cuba. This phenomenon is also
mentioned by Wahba (1990, a. 4.9). This may suggest that the data in the shorter sequence are
too short.

The estimated values agree quite well in magnitudes with the common idea of the errors
made in calculation of the fossil fuel emission, believed to be of few percents. A little bigger
figures obtained in some of our calculations may be connected with some additional factors
that might have influenced the calculated estimates, as year-to-year variations in the weather
conditions or variations due to change in economic factors of the countries.

4. Empirical parametric models for the net emission data

In the previous section we noticed that the consecutive values in the emission sequence
might be correlated. To better model this property, in this section we consider a set of values
x, which can be considered as a time series consisting of N elements. We introduce both a
difference model and a differential model to describe the time evolution of the data. Then we
motivate the choice of the model and finally present some results for fitting the model to the
‘emission data for some countries.

4.1. Difference model

As we assumed that x; are positive we can define a new time series
go=tmog=tnTh oo N-1
X, X,
Each element g; of a new time series can be interpreted as a relative difference of the two
consecutive elements x;,; and x;.
From the latter relation we can now formulate the following difference equation
Xl =X = g%, X =x(tp) N

which can be then easily solved giving




i-1
X; =Xy H0(1+gj)
=
As all x; are positive we can convert this solution to an additive form

i-1 -1
X::Zln(l+g,')52g}' (8)
j=0 ) j=0

where we inserted the variable X, =Inx; /x,.

As we have y; = (1+u,)x;, then (7) can be transformed to
T+,
1+u, '
Dividing both sides by yg and taking logarithms yields

+u,
Yy =tn(l+g,)+In 2y,

1+u

i

Yin=U1+g)

or approximately
Yi+l _Y: Mgty — U,
from where the estimator £, can be designed as
g’i =4 _Yi (9)
Under our assumption on u;’s we have
E@)=EX, -Y +u; ~u,)=X, - X, =In(l+g)~g,

i
Thus the estimator is unbiased (up to the approximation done). Its variance is
var(g) = (¥ = Xin -7, + Xi)z =

2 _ g 2 _ 2 2
=Ly, —ty —u, +ig) =L, —n) =05, =2y, +o7

4.2.  Differential model
A similar expression can be provided directly for the function x(¢). Starting with the
equation
dx(t)

7=g(1)x(f), x(fp) = xg 10)

we abtain the solution for x(#;) which depends on the function g()
U]
x(t,) = x, exp[jg(r)dr]
)
This provides us with the formula

1nLI’) = fg(T)dT = ’iig(tf)
=

0 ty
x{¢)
X0

Denoting X (f;)=In we get
f i1
X)) =lgln)dr= Zog(ll)
I J=
This is approximately equivalent to (8).
The actual solution of the problem relies, as it was already mentioned, on the function
'g. From (10) this function can be written in the form
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1 xo _d. x(1) _dX(1)
SO0 a T a"x - a (n
Xp
From this expression we find that the function g can be conceived as the rate of change of the
variable X(/).
The estimate of g(#) can be then calculated as
L dR(Q)
g = o (12)

where d/\A’(t)/dt is obtained from the smoothing spline approximation. This can be also
expressed in the form

- i
X()=[g(r)dr (13)
‘o
Estimated value of the signa!l in the year 7,,, afier modelling by the smoothing splines,
is given by
i(;\{N—) = exp(/\A’(IN )): expay
Xo
or
X 'y ¥ iy . .
@ = exp(jwdrj = exp(jﬁ(r)dr) = exp Nzlb,. (14)
Xo K dt [ i=0

4,3  Estimation of the parameter g(/)

Both expressions (9) and (12) were used to estimate the function g(#) for few countries
from the previously mentioned data of CO, emission from the fossil fuels published by
Marland et al. (1999). The results are presented in Appendix A. The smoothing splines were
used both to smooth the points obtained from (9) and to calculate the derivatives in (12), using
the formulae (3). For each country, in the left panel the observations (dots) and their
smoothing spline approximations (solid lines) are depicted. The right panel shows the
estimates of the function g(#). The dots represent the points calculated using the formula (9).
The bold dashed line is obtained by smoothing these points. The solid line is calculated from
(12). The normal thickness dashed lines on both panels show the 95% confidence intervals of
the estimates.

Comparison of the estimates reveals that the curves obtained from smoothing are very
similar in many cases. However, there is also a number of case where they differ, in a way
that those from (9) are more smooth than those from (12). Thus, the method using the formula
(12) is more sensitive to variations in data and more often shows the oscillations of the value
g(t). The method using (9) shows more often slow trends in the estimate, neglecting its
quicker variations. However, it is more sensitive to the choice of the time interval for
smoothing. A practical observation is that when smoothing of the points obtained from (9)

there were less of pathological values of A.as happened in smoothing the points ¥

Table 2 depicts the values A and estimates of the standard deviation of the errors .-
1;, both for the “edge” and the “middle” points. From the comparison with the values
presented in Table 1 it can be seem that both estimates of the standard deviations are of the




same order, although not always very close to each other, Notice, however, that Table 1 shows
the standard deviations of the errors u;-1, which might cause the differences. The values Ain
Table 2 are bigger and often much than those in Table 1. This is related with bigger
smoothing of the method connected with the formula (9).

Table 2. Optimal values of A in smoothing estimates g, for different countries in two time
periods

Years: 1950 - 1998

Years: 1970 - 1998

- Std. Dev. | Std. Dev. - Std. Dev. | Std. Dev.
Country A |redge” [%}]'middie” %] Country A |"edge” [%]|"middle” [%)]

ARGENTINA _|3.7E+10] 14 07 ARGENTINA _ |1,2E-10| _ 04 0.1
AUSTRALIA __ |5,6E+06] 0,9 0,5 USTRALIA _ [1,3E+10] 1,1 0.5

USTRIA 3,3E+05] 1.7 0,9 AUSTRIA 1,3E+10] 2,0 1,0
BELGIUM 27E-01| 44 33 BELGIUM 46E01] 46 33
BRAZIL 4,8E+03] 20 14 BRAZIL 1,E405] 2.6 1,7
CANADA 1,8E+03] 16 0,8 CANADA 14E03| 1,8 1,8
CHINA 11E-01] 88 7.1 HINA 1,7E405] 2,5 1,7
cuBA 3,76410] 4,3 22 CUBA 1,6E+00| 2,8 14
EGYPT 3,7E+10] 2,7 14 EGYPT 1,0E+06] 2.2 11
FINLAND 3,7E+10| 26 13 FINLAND 55E+05] 58 36
FRANCE 1,0E+00] 4,4 3,0 FRANCE 1,3E+10] 2.1 11
GREECE 1,36405] 1.7 0.9 GREECE 4,9E%05] 1,7 0.9
ICELAND 3,7E+10] 2.7 14 ICELAND 16E+09] 28 14
IRELAND 3,7E+10] 2,4 12 IRELAND 1,9E+05] 3,8 22
ISRAEL 6,9E+01] 4,0 2,2 ISRAEL 16E+09] 1.7 0,9
ITALY 3.9E01] 3,1 2,3 ITALY 16E+09] 1.3 0,7
JAPAN 13E02] 5.1 4.8 UAPAN 52E:01] 33 24
LUXEMBOURG |2,0E-01] 55 43 LUXEMBOURG |6,0E-01] 5,6 4,0
MEXICO 9,0E+00] 35 2.1 MEXICO 2,8E+05] 3,5 2,0
NETHERLANDS |3,3E+05| 1,8 0,9 NETHERLANDS |1,6E+09] 28 14
NEW ZEALAND |3,7E+10] _ 1,6 0,8 NEW ZEALAND |2,8E+05] 36 2.1
NORWAY 3,7E+10] 38 2,0 NORWAY 1,6E+09] 6,3 33
POLAND 7,6E+00] 2.9 1.8 POLAND 6,9E+05] 3,5 2.2
PORTUGAL __[3,7E+10| _ 1.7 09 PORTUGAL __ |1,6E+09] 2.4 1,2
ROMANIA 2,0E+00] 37 24 ROMANIA 2,3E+05| 4,4 2,9
SPAIN 43E+03] 23 12 SPAIN 1,9E+04] 1.8 1,0
SWEDEN 2,5E+05] 2.2 11 SWEDEN 13E+10] 28 14
SWITZERLAND |6,4E-01] 62 43 SWITZERLAND |1,3E+10] 1,9 10
TURKEY 3,7E+10] 18 0,9 TURKEY 1,6E+09] 2.2 1.1
UNITED UNITED
KINGDOM 3,7E+10] 1,0 0,5 KINGDOM 136+10] 14 07
USA 6,8E+04] 0.9 05 USA 51E:02] 25 2.1
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4.4, Piecewise exponential model

Although the estimated functions g(¢) in the previous section vary in time, in many
instances their patterns resembles the constant value lines. To better investigate this question
let us start with examining of few curves. Fig. 2 contains emission curves y(¢;) and logarithmic
curves Y(;) =1n y(t,)/ y(t,) for the global emission data from Marland (1990). Similar data

for Poland are depicted on Fig. 3. It can be seen that the data evolve approximately along
piecewise exponential curve, and the logarithmic curves are approximately linear. Even better
indication of the exponential relation can be inferred from Fig. 4. It shows the dependence of
i =y(#) on yi1 = y(ti.1). Referring to (7) this dependence should have the form y; = (1+g;) yi1.
Similar relation can be inferred from the logarithmic data depicted on Fig. 5 for which it
approximately holds ¥; = In (1+g) + ¥;, '

. The curves indicate that this dependence holds with g; slightly bigger than 0.

However, looking at TFig. 3 we can easily notice periods where this simple constant
parameter g (and therefore the growth along the exponential curve) does not hold. This is
particularly visible in the periods of the Great Crisis of 1930s, the 2™ World Word, and the
collapse of the communist regime.

V() y(t =1990) Y,)/ Y (t =1990)
1 NS 0 '
0.8 -1
-2
0.6
' -3
0.4 -4
0.2 -5
-6
 — ‘ .- ]
1800 1855 1850 1875 1900 1905 1980 1955 1800 1825 1850 1875 1900 1925 1960 1975
year year

Figure 2. Global data: CO; total emissions (1800 — 1990)
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Figure 3. Poland’s data: CO; emissions (1800 — 1998)
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Figure 4. The phase plane portraits of the data
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Figure 5. The phase plane portraits of the logarithmic data

Thus the exponential growth models describe quite well development of data only in
some intervals, as shown in the Appendix B. These intervals seem to be the periods of
constant development conditions. One can easily distinguish on the figures the period of the
19" century industrial revolution, the periods of the World Wars and Great Crisis of 1930,
the periods of the post-war prosperity of 1950"-1960" and the energy shocks of 1970™-1980™.
Also smaller ripples can be distinguished and explained, like for example in the case of the
‘Polish transformation period.

The fit of this simple piecewise exponential model is quite good in the periods of
growth or decay. In the period of steady growth it is almost perfect. In the decay periods the
emission is often more volatile. War and transition periods, like those of 1970s in the West
Europe or 1980s in Poland, are highly irregular and were skipped from fitting.

The results obtained are generally quite similar for both methods. The error variance
estimates calculated by the regression method (parametric model) turn out to be usually small,
although mostly greater than those calculated by the smoothing splines. This seems to be
connected with too big simplicity of the exponential model used. The good fit of the
piecewise exponential model seems to be an important observation. It means that the
emissions follow approximately the exponential functions in defined longer periods. The jump
from one such segment to another is mostly connected with a big political or economic
change.

5. Conclusions

Nonparametric and parametric methods for modelling the greenhouse gas emission
phenomena and for estimating the parameters are proposed in the paper. They differ in degree
of smoothing and precision of fitting the observations. Comparison of the methods made up to
now reveals that the method using the formula (9) gives more smooth curves in many
instances, although it is more sensitive to the smoothing interval. The method using the
formula (12) is more accurate and better emphasizes the ripples in data. The parametric
piecewise exponential model gives the most rough but also most simple description, showing
general trends in evolution of emission data.




One of the main goals of the paper was to estimate the standard deviation of the errors.
Good estimate could help to answer a quite important Apart of confirmation of the
uncertainty estimates obtained by aggregation of the errors, an important question for
verification of the Kyoto obligations is how big part of the uncertainty pertains to the
systematic error, which biases equally all observations. During the verification, when
calculation of the difference xy — xo is performed, the systematic parts of the errors cancel.
Thus, this kind of uncertainty is perhaps less harmful for the verification results. This paper
aims at elaboration of a method for estimating the stochastic part of the error. Some signal
processing methods are proposed and preliminary results are presented. They are based on the
published observations of the emissions from the fossil fuels (Marland at al., 1999) and
therefore do not cover the whole emissions, which is reported within the Kyoto agreement.
Moreover, they may be biased by the method of preparation of the data. Thus, the results are
only partial and addition of the rest of data may change the estimates and conclusions.
Although the estimators are consistent, nothing is known on their smail sample properties.
The early results show that the variability of the estimates is rather high.

The empirical approach proposed in the paper heavily relies on the assumption of the
smoothness of the emission process. But no doubt there exists some volatility in observations,
which may be related not only to the observation errors but also to such factors as changing
weather conditions and rapidly changing economic situation of the country. These phenomena
may increase the estimated variance and the variance connected with the stochastic errors may
be actually smaller. And although the results obtained up to now and presented in this paper
do not indicate existence of big systematic errors, a more precise answer to this question
requires analysis of more data.

Under all this reservations, the calculations performed for the fossil fuels indicate that the
empirical approach gives reasonable estimates, comparable to the aggregate ones. The partial
results obtained here do not falsify the procedure applied up to now. However, the present
knowledge does not allow us to state definite conclusions as yet.

An interesting result connected with the relation between the piecewise exponential
character of the emission curve and the economic development of the country may extend to
'some other components of the emission. But probably this will not concern removal of the
greenhouse gases by sinks, also included in the full calculation of the greenhouse gas balance
of countries. Evolution of this type of data in time will be possible to analyse when longer
historical records will be available. .

The proposed approach can be used to better estimate the real emissions, by filtering out
the errors, and possibly for prediction, The latter may be, however, a little risky until more
will be known on how much the abrupt economic and weather condition changes can
influence the emissions.
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APPENDIX A

Results of smoothing and estimation of g(r) for different countries.
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II. Years 1970-1998
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APPENDIX B

Results of fitting the piecewise exponential models.
POLAND 1870 - 1998

Estimated parameters and model verification statistics for the logarithmic regression

models.
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AUSTRIA 1870 - 1998

Estimated parameters and niodel verification statistics for the logarithmic regression

models.
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UNITED STATES OF AMERICA
1870 - 1998

Estimated parameters and model verification statistics for the logarithmic regression

models.
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Estirate
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CANADA 1870 — 1998

Estimated parameters and model verification statistics for the logarithmic regression

models.

YEARS 1870 1914
Estimate
1 -70.7008
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FRANCE (INCLUDING MONACO)

1870-1998

Estimated parameters and model verification statistics for the logarithmic regression

models.

YEARS 1870- 1914

Estimate
1 -15.4856
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E.Var. 0.00180001

YEARS 1980- 1998

Estimate
1 14.9833
t - 0.00501543

E.Var. 0.00092536

.000357624

SE

6.14916
0.00319685

" s

1.39318
0.000710073

ONH

.53428
.00127414

TStat
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JAPAN 1880 - 1998

Estimated parameters and model verification statistics for the logarithmic regression

models.

YEARS 1880 1940
Estimate

1 -52.5721

t 0.0295688

E.Var. 0.0205735

YERRS 1830- 1940
Estimate

1 -52.5721

t 0.0295688

E.Var. 0.0205735

YEARS 1945 1974
Estimate

1 -75.012

t 0.0407414

E.Var. 0.00200878

YERRS 1975 1998
Estirmate

1 -6.45422

t 0.00598255

E.Var. 0.000428916

SE
1.99232
0.00104306

SE
1.99232
0.00104306

1.85253
0.000945402

SE
1.21319

0.000610713
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NETHERLANDS 1980 - 1998

Estimated parameters and model verification statistics for the logarithmic regression

models.

YFEARS 1880- 1914
Estimate

1 -23.8167

t 0.0144343

E.Var. 0.000760199

YEARS 1920- 193¢

Estimate
1 -20.8725
t 0.012883%

E.Var. 0.00258593

YERRS 19451974
Estimate

1 -40.5533

t 0.0228893

E.Var. 0.00627036

YFARS 1980- 1998

Estirate
1 -7.60261
t 0.006129%4

E.Var. 0.00127993

SE
0.

875393

0.000461455

SE
3.

0.

SE

81226
00157577

3.273
0.00167031

B

o N
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