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ABSTRACT. This paper is devoted to the study of uncertainty in the greenhouse gases (GIIG)
emission inventorics. Analyzing the CDIAC data from the Oak Ridge National Laboratory,
USA, collected every few years between 1086 and 2004, and their revisions, made in 1989 — 2004,
we model changes in uncertainty structure, occurring in consecutive years. This is achieved by
a parametric model, applied carlier to investigate data from the National Inventory Reports
(NIR). Results obtained for several EU countries, are presented in the form of figures and tables.
They are also compared with those, obtained from the NIR data.
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1. INTRODUCTION

This paper is a continuation of studics on the problemn of reducing the uncertainty in the
inventories on greenhouse gases (GHG) emissions. We started to deal with this issue in 3],
describing the idea and presenting preliminary results, and then continued the discussion in [2],
developing a suitable model, and applying it to data on GHG cmissions.

Reports on GHG cmissions arc being prepared regularly by the cosignatories of the United
Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol. Each of
these countries is obliged to prepare annual reports — the so-called National Inventory Reports,
as well as to prepare revisions of past data (if needed).

The National Inventory Reports (NIR), however, arc not the only database on GHG emissions.
Independent studies are conducted also by rescarch centers, ¢.g. Carbon Dioxide Information
Analysis Center (CDIAC), in Oak Ridge National Laboratory, USA, where the data on GHG
arc gathered and processed (c.g. with respect to their source or type of a gas). There are
a few such well-known databases — in addition to NIR and CDIAC one should mention also
IEA (Intcrnational Energy Agency), EIA (U.S. Encrgy Information Administration), and many
others. They not only describe various, sometimes overlapping, data, are often collected in
different years, but arc also cxpressed in different units. The biggest problem, however. is
that these data are calculated in different ways. with various uncertainty, making it cifficult to
compare and characterize them. Discussion on this problem can be found c.g. in |6], [5], [1],
and in many others.

In this article we are interested in modeling the uncertainty in such inventories. Therefore,
we present a parametric model, introduced and applied earlier in [2] for the NIR data. This
time we will focus on the CDIAC data, conducting analysis for those EU countries that were
considered in [2] (i.c. for Austria, Belgium, Denmark, Finland, United Kingdom, Ircland, and
Sweden), and then comparing the results obtained.

Section 2 provides a brief description of the data from three databases: NIR, CDIAC, and IEA,
along with an example (based on COq cmissions from the year 2004 for the EU-15). In Section
3 we give description of the model introduced in [2[, together with the method of estimation of
the parameters. The CDIAC data for several EU countries, are analyzed in Scction 4. Finally,

Scction 5 provides a sumimary of the results obtained.
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2. DatAa ON CQOy EMISSIONS

Data on GHG emissions from different databases vary considerably — they refer to different
sources of emissions, are often collected and revised in different ycars, may also be expressed in
different units).

To illustrate thesc differences we present below examples, showing data on CQOy cmissions for
countrics of the EU-15, from the year 2004 (ineluding revisions of past data made in 2004). At
the beginning, in Figure 1 we present data from the year 2004, for cach of these three data scts.
This shows the huge differences in scale of values considered.

CO2 emission data

NIR data
CDIAC data
|IEA data

3506539000 3248238 3.3029

FIGURE 1. Data on CO, cmissions in 2004, in [Mt], EU-15.

Now we consider data for countries of the EU-15, derived from the NIR (Figure 2 and 5),
the CDIAC data (Figurc 3 and 1), and IEA data (Figurc 6), from the ycar 2004, and all the
revisions of past data. Figure 2 presents data on total COg emissions (excluding LULUCF) in
|Gg, for the EU-15 countries. The data refer to cmissions in the year 2004, and the annual
enissions in 1986 — 2003, recalculated in 2004.
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FIGURE 2. National Inventory Reports data on CO; cmissions in 2004, in [Ggl, EU-15.
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The CDIAC data presented in Figure 3 express CO; cmissions, in mass units of carbon. To

convert the data to COg mass units, we multiply cach value by the ratio of the molecular mass

of carbon dioxide to the atomic mass of carbon (% or 3.667). The data converted, expressed in

metric tons (Mt)! are presented in Figure 4. Both fgures (Figure 3 and 4) show the data on
COq fossil-fucl cmissions, for the countrics of the EU-15, from the year 2004 and revisions of
data from the years 1986, 1989, 1990, 1992, 1998, 1999, 2000, 2002, and 2003.

.
S .
S | ‘
8 ,
2 [
;
1
5 g :
- '
< 3 '
a ® o9 .
O Y !
N e |
8 I/ \‘ ",4 \‘ ’/.
g 1 - . - [
g ) [ ‘.
o |e 3 °
T T T
1990 1995 2000
year_j

FIGURE 3. CDIAC data on CO; fossil-fuel cmissions in 2004, in mass units of carbon, EU-15.
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FIGURE 4. CDIAC data on CO fossil-fuel emission in 2004, in [Mt], EU-15.

Comparing Figures 2 and 4, you may notice some similarity in trend. Visible differences result
from different types of emissions, from the fact that the data were collected in different years,

1] Mt = 0.001 Gg




but also, slightly, from different scale of the data, and different units. The first two reasons are
beyond our control, but for a better comparison, we show the NIR data in Figure 5 in [Mt].

These units will also be used later in this paper.
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FIGURE 5. NIR data on CO2 emission in 2004, in [Mt], EU-15.

Finally, Figure 6 presents the IEA data (encrgy related). These data concern COy emissions
(cxpressed in mctric tons [Mt]) from fuel combustion, for the countrics of the EU-15, in 2004.
The revisions concerncd were made in the ycars 1990, 1995, 2000, 2001, 2002, 2003, and 2004.
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FIGURE 6. IEA data on CO, emissions from fuel combustion in 2004, in [Mt], EU-15.

For the convenience of the reader, the data from Figures 2, 5, and 6 in [Mt| are also presented
together in one graph (Figure 7). Due to the large differences in the scale, we have prepared
two Figures. The one on the left shows the NIR. data (red), CDIAC data (blue) and IEA data
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(black). Because the difference between the CDIAC and IEA data is almost invisible, in the
figure on the right are presented only the data from these two scts.

|
|

o
8
2 g -
+ (=3
2 @
o =)
E- T s 8
%l T g| e
c 8 P
5 < 5 &
w3 ™ K
2 5 2 g
§ < s g
) 153
3 S
8
b te-- @ o [ ®- - esecs e
= —_ T T T T
1890 1994 1998 2002 1990 1995 2000
year_j year_j

FIGURE 7. Data on CO, cmissions in 2004, in [Mt], EU-15,
(NIR data — red, CDTAC - blue, IEA — black).

Wider discussion of data conversion, and the ways to compare them, can be found, for example
in (1.

3. MoDEL

In this scction we present the model and the way of interpreting the data (sce [2] for details).
Let E';’ . — denote the inventory data for the country 7, in the year n revised in the year y;,
y; <Y, where Y — is the last year, when the revision is made.

We use the fact that, cach revision data, for a given country 2,

B By B e B

R Rt TR A Rt TP A
forms a realization of a stochastic process. These stochastic processes for a fixed country form
a bunch of stochastic processes.

For a given country 4, we model any revision data to be composed of the “real” emission, which
we call the “deterministic” fraction and a “stochastic” fraction, related to our lack of knowledge
and imprecision of obscrvation of the rcal emission. We assume that the uncertainty is related
to the stochastic part of the model.

Ey, =Dy, + 5¢;, 8%, ~ N(0,0v,),
where £ — stands for the emission inventory, D ~ for its deterministic fraction, S — for the
stochastic fraction, and n — is the year, for which the revised data were recalculated. Similarly,
if 4; <Y,

Ep =DV, + S8,  with S V~N(m;j1,-‘a;j,,-),
where the mean valucs mu i and the standard d(’Vld.thl’lS o . are of the form
mJ],z g‘l(Y - 1/1 ij, oy, + b; f 7/]) b; 7é 0,

and f is a given function, such that
oy
JY —yy) > ===
i
The parameters a; and b;, for a country 7, associated with the stochastic fraction S;” ;» can be
cstimated from the data togcthcr with oy;. Parameter a; describes a shift in the accuracy of the
inventory gathering, and b; — a shift of the precision level. They both depend on the difference
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between the revision year y;, and the most recent revision ycar Y, due to the learning. To find
the deterministic fraction DP,, the smoothing splines can be used, as presented in [7}. This
approach, when applicd to the most recently revised data E,’,L.’i will give not only the cstimate of
the deterministic fraction, but also an estimate of the variance g,z,'i.

3.1. Algorithm for a fixed country i. .

Fix 7 and counsider all the inventory data E';J ; in the year n for n = 1,..., N;, revised in the
year y;, j = 1,...,J. For a fixed country %, the procedure can be describe as follows.

1

(2

M

1. For the most recently revised inventory data EY calculate the smoothing spline Spy
and estimate the variance ¢% of the stochastic fraction Sj.

2. Subtract the spline Spy, built on the data from the yecar Y, from all carlicr
revisions E7., y; <Y, calculating differences

v;‘zE;J —Spy, n=1,...,N;, j=1,...,J

For some years the difference v does not exist, due to lack of revised inventorics in this
year. These years are skipped from the sequence of Nj data.
We consider the following madel:

v;‘~./\f<mj,r7j>, n=1,....,N;, j=1,...,J

where

m; =a(Y ~y;), o;=o0y~b(Y —y;)*™, A0

Assumec also that differences (1) are independent.
3. Estimate parameters a, b, and ¢ (and henee mj and o5, j = 1,...,J in (2)) in the
following three-step procedure.

(34).

(52)

Estimate paramcters «; and &5, j = 1,...,J in the model
mj = (Y —y;),
o5 =0y +5; (Y ~y;), 05 #0,
using Maximumn Likelihood cstimators
Nj

- 1 N
oy = ———— vy,
A =PI

and

_ "
where o; = NL, Tl
Use @j, j = 1,...,J, obtained in (3.1), to cstimate parameter a in the first order

autoregressive model
1 - ~
a1 = =0 +e5, lal<1, 2#0,
where
agyr =0,
and €; arc independent and €5 ~ N(0,0). Estimator of the paramecter a is then
given by

q =

ISHE
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(3.3). Use the sequence [Ai] j=1,...,J, obtained in (3.1), to cstimatc paramcters b and

¢ in the regression model

(8) B;=-b(Y —y;)%, j7=1,...,J, where b<O.
Since 8; > 0, j = 1,...,J, nonlincar modecl (8) can be converted into a linear onc
of the form

)] In ;= In(=b) + cIn(Y ~ y;),
and the parameters b 1= In(—b) and ¢ can now bc estimated using the Least Squarcs
method.

3.2. CDIAC data for the EU-15. To illustrate how it works in practice, we apply the model
(1) = (2), and the procedure described in Subsection 3.1 to the CDIAC data (in [Mt]) from the
year Y = 2004, and from the years 1989, 1990, 1992, 1998, 1999, 2000, 2002, 2003, including all
the revisions. We start with building the smoothing spline Spygo4, using the method described in
|7]. We get 52004 = 28701, and the estimation result (in hlue) is presented in Figure 8, together
with data from the year 2004 (in black).
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FIGURE 8. Smoothing spline Spy- for Y = 2004, CDIAC data for EU-15, 5y = 28701

The main problem that differs this analysis from those, carried out previously in [2], for the
NIR data, is a smaller number of obscrvations, but also the fact that in some years, data revisions
were not performed. This means that some of the differences (1) do not exist and arc ignored
in the calculation (it can often be seen in figures).

We use the procedure, described in Subsection 3.1. First, we need to find sequences aj and
Ej, j=1,...,J in (3) - (4). Using the formulas (5) and (6), we get @&; of the form

3279.46, 3615.51, 2006.73, 2230.63, 4180.43,4108.21, 9222.48, 18661.79

and B_,

—642.43, —995.22, —1737.52, —2551.20, —3478.36, —5174.52, —9824.09, —21924.90.
The results arc presented in Figure 9, below. It can be noticed that the values Zi]- are rathir
scattercd, although one can also notice an increasing trend. On the other hand, the values 5;
arc strictly decreasing (and also negative, what enables further analysis).
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FIGURE 9. Estimates of parameters a; and 3;, CDIAC data, EU-15.

Having obtained the results of the initial estimation, we can fit the paramncters a, b, and ¢ in
the model (2). First, we cstimate the paramecter ¢ in the [first order autoregressive model (7).
We get @ = é = (.585, where o2 = 6487811. Then, with an cstimate of @, we can determine the

mean values mmj, § = 1,...,J in the model (2): 8.78,8.19,7.02,3.51,2.93,2.34,1.17,0.59. The
values m; are also depicted in Figure 10.
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FIGURE 10. Estimated values of mi; and o7, CDIAC data, EU-15.

Let us now cstimate parameters b and ¢, and hence standard deviations o5, 7 = 1,...,J in
the model (2). Consider the regression function of the form (8). Since g; < 0,5 =1,...,J, we
consider the regression model (9). We get the following results.

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 10.05438 0.16541 60.78 1.33e-09 #*x*
ly -1.19199 0.08737 -13.64 9.63e-06 ***

Signif. codes: O “#x%’ 0.001 #x° 0,01 ’%’ 0.05 ?.? 0.1 * 1

Residual standard error: 0.2231 on 6 degrees of freedom

Multiple R-squared: 0.9688, Adjusted R-squared: 0.9636

F-statistic: 186.1 on 1 and 6 DF, p-value: 9.63e-06

The parameter § = In (—b) = 10.05, so b = 23257.43. The cstimatc of ¢ is equal -1.19. Using the

model (2) and taking gy = 28701 calculated before, when building the smoothing spline Spyggy,
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we get estimates for standard deviations oj:
14873.02, 14688.64, 14267.73, 12213.30, 11625.94, 10878.52, 8341.6, and 5443.73.

The values obtained arce presented in Figure 10. In conclusion, we gather the results obtained
for EU-15, in Tablc 1.

7 1989 1990 | 1992 1998 | 1999 2000 1 2002 2003
;| 327946 | 3615.51 ‘ 2006.73 | 2230.63 | 1180.43 | 4108.21 ! 9222.48 | 18661.79
By | 64243 | -995.22 | -1737.52 | -2551.20 | -3478.36 | -5174.52 | -9824.09 | -21924.90
m; 8.78 8.19 7.02 | 3.51 293 2.34 1.17 0.59
o; | 14873.02 | 14688.61 | 14267.73 [ 12213.30 | 11625.94 ] 10878.52 | 8341.6 5143.73
TABLE 1. Model paramcters, CDIAC data for EU-15, @ = 0.585, b = 23257.43, ¢ = —1.19.

4. ANALysIS oF TiIE CDIAC pATA FOR A FEW EU COUNTRIES

We apply the model, described in Scetion 3, to the CDIAC data for Austria, Belgium, Den-
mark, Finland, United Kingdom, Ircland, and Sweden. We consider the data from the year
Y = 2004, and from the years: 1989, 1990, 1992, 1998, 1999, 2000, 2002, and 2003, including
all the revisions made. The data refer to COg emissions from fossil fucls, and are expressed in
mass units of carbon. To convert them into the mass units of carbon dioxide, we multiply cach

valuc by %. The data converted are now expressed in metrie tons (Mt) of COq.

4.1. Austria. We start the analysis with Austria. First, we build a smoothing spline Spy-, for
Y = 2004. We get oy = 2342.01. The rcsult obtained is presented in Figure 11, where the
smoothing splinc Spyg, is depicted in red.
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FIGURE 11. Smoothing spline Spy for ¥ = 2004, Austria, CDTAC data, 5y = 2342.01

Then we estimate parameters aj, and §;, j = 1,...,J, according to formulas (5) and (6).
The results are presented in Figure 12. Next step is the estimation of the parameters a, b, and
¢ in the model (2). and hence the sequences mj, and oj, j = 1,...,J. The results can be scen
in Figurc 13. All the results obtained are also gathered in Tables 2a nad 2b.
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FIGURE 13. Estimated valucs of m; and o0, Austria, CDIAC data.

[ ] 1989 [ 1996 [ 1992 [ 1998 [ 1999 | 2000 [ 2002 | 2003 | mean std

a; [ 1207 | 766 | 74 | -1238 [-160.4 | -44.7 | 1699 |-450.45] -50.59 | 185.73 |
B; | -73.61 | -130.61 | -96.75 | -91.36 | -35.81 | -68.26 | -334.08 | -835.76 | -208.28 | 25229 |
my | 2877 | 2685 [23.01 | 1151 | 959 | 7.67 | 384 | 192 [4a=192

oj [ 1452.8 | 1470.3 | 1508.3[1650.44 | 16944 | 1734.8 | 1844.9 | 1935 | b= 4069, &= 0.7

TABLE 2a. Fstimates of parameters in the model (2) Austria, CDIAC data.

[ Paramcter | Estimate Model fit —|
a 1.92 0% = 36636 f
b 406.9 | St.error 0.5782, t-test: p-value=0.0000065, R? = 0.49 J
¢ ~0.7 St.crror — 0.3054, t-test: p-value- 0.00587

TABLE 2b. Estimates of paramcters g, b, and ¢, Austria, CDTAC data.

Similar analysis is conducted for other EU countrics mentioned — Belgium, Denmark, Finland,
UK, Ircland, and Sweden. The results are presented iu Figures 14 — 31 and Tables 3a, 3b ~ 8a,

aud 8b.
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4.2. Belgium.
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FIGURE 14. Smoothiug spline Spy for Y = 2004, Belgium, CDIAC data, 5y = 5340.9
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FIGURE 15. Estimates of parameters o; and 3;, Belgium, CDIAC data.
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FIGURE 16. Estimated values of m; and o, Belgium, CDIAC data.
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J ] 1989 [ 1990 [ 1992 ] 1998 [ 1999 [ 2000 [ 2002 | 2003 mean st%
&; | 139.7 [49.86 | 222.6 | 210.3 | 2289 | -65.21 | 375.6 | 23.8 123.2 147.7
B | -206.9 | -214.6 | -330.0 | -488.9 | -563.9 | -1102.6 | -1351.8 | -2288.3 -829.7 668.2
m; | 86.26 | 805 69 315 [ 28.75 23 11.5 575 Ja=5.75 |
o; [1489.5 | 1533.6 | 16304 | 2036 [ 2135.2 | 2252.5 | 2590.1 | 2800.9 [ b = 2449.9, ¢ = —0.8 |

TABLE 3a. Estimates of parameters in the model (2), Belgium, CDTAC data.

l Paramcter | Estimate | Model fit
a 5752 | o2 = 40801
b 2449.9 | St.crror—0.149, t-test: p-value=0.0000000033, R? = 0.95

¢ | -083

St.crror = 0.079, t-test: p-valuc=0.0000043

TABLE 3b. Estimates of paramcters a, b, and ¢, Belgium, CDIAC data.

4.3. Denmark.
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FIGURE 17. Smoothing spline Spy for Y = 2004, Denmark, CDIAC data, oy = 1672.6
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FIGURE 18. Estimates of parameters o and /3;, Denmark, CDTIAC data.
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