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Abstract. Greenhouse gases emission inventories are computed with rather low
precision. Moreover, their uncertainty distributions may be asymmetric. This should
be accounted for in the compliance and trading rules. In this paper we model the
uncertainty of inventories as intervals or using fuzzy munbers. The latter allows us
Lo shape better the uncertainty distributions. Obtained compliance and emission
trading rules generalize those for the synumnetric uncertainty distributions, which
were considered in the earlier papers. However, unlike in the symmetric distribu-
tion, it is necessary in the asymumetric fuzzy cese to apply approximations due to
uonlinearities in the formulas, The final conclusion is that the interval uncertainty
rules can be applied, but with much higher substitutional noncompliance risk, which
is a patameter of the rules.

Keywords: greenliouse gases emission inventories, uncertainty, interval calculus,
[uzzy sets, compliance, emission permit trading.

1. Introduction

Emission of greenhouse gases is a basic element of the climate change
models, see e. g. (Stern, 2007) where results are presented in prob-
abilistic terms. However, greenhouse gases inventories estimates are
not calculated exactly. Possible error magnitudes depend on types of
gases considered, activities, and countries, ranging from few to over 100
percent. Moreover, distributions of errors for different gases as well as
for national inventories may be asymmetric (Ramirez at al., 2006; Wini-
warter and Muik, 2007). The methods of checking comnpliance and
particularly establishing rules for emission trading proposed up to now
for the uncertain inventories (Jonas at al., 2007; Jonas and Nilsson,
2007; Nahorski et al., 2007; Nahorski and Horabik, 2008a) concern
ounly the symunetric distributions and mostly the interval uncertainty
modlels.

In (Nahorski et al., 2007) the compliance and trading rules were
counsidered for the interval uncertainties of emissions. [n order to have
high enough likelihood of fulfilling the compliance, lower limit of reduc-
tions were required (undershooting), and an appropriate recalculation
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of the traded emissions to be performed. However, interval uncertainty
approach provides too conservative reduction of limits and recalcula-
tion of traded emissions. Although the stochastic case may be useful
for the determination of new compliance rule, see also (Gillenwater et
al., 2007), only a complicated formula for recalculation of the traded
emissions has been provided (Nahorski et al., 2007), practically useless,
because it is valid only for uncorrelated inventories. In this paper a
fuzzy uncertainty is considered. The fuzzy set calculus basically inher-
its the rules from the interval calculus, and this way provides simpler
calculations than that for the stochastic variables. At the same time the
fuzzy variables may be shaped to have distributions more concentrated
around observed values than for the intervals, where the information on
distribution is lost. And therefore it can better approximate the real
distributions. This paper also deals with the asymmetric cases. This
way it aims at improving precision of assessment of satisfying the given
emission limits or reductions, in the sense of guarantying (with a pre-
scribed small risk) fulfillment of this limit or reduction, including in it
emission trading among parties and other possible flexible mechanisms
included in the Kyoto Protocol. Improved precision, as compared with
the interval case, means lower costs of compliance and more reliable
estimates of inventories for the climate change models.

‘We derive in this paper a new formula for recalculation of the trading
quantities for the fuzzy and symmetric distributions, which is gener-
alization of that for the interval approach. To obtain an analogous
formula for the asymmetric fuzzy case an approximation is required.
The one proposed in this paper is a generalization of both those for the
symmetric fuzzy case and for the asymmetric interval approach.

Summing up, we derive here new rules for checking compliance
and for emission trading, for asymmetric fuzzy distributions. They are
generalizations of the rules presented in (Nahorski et al., 2007; Na-
horski and Horabik, 2008a) for symmetric distributions and interval
uncertainty and reduce to them as special instances when appropriate
parameters are taken. Comparison of the rules obtained for the fuzzy
approach with those for the interval one shows that the latter can be
used equivalently, but with a much bigger substitutional parameter
than originally designed for the noncompliance risk.

In section 2 we formulate the problem and introduce some basic
notation. Then, in section 3, we deal with the asymmetric interval
uncertainty and we derive conditions for checking compliance and for-
mulas for so called efficient emissions, which can be directly traded,
without taking into account the emission uncertainty. In section 4 a
family of fuzzy numbers is introduced. They are used to model the full
inventory uncertainty and form the basis for derivations of generalized
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compliance and emission trading rules. These rules are compared with
the interval approach rules and their equivalence in applications con-
sidered in the paper, for appropriately chosen parameters, is shown.
Section 5 concludes.

2. Problem formulation

Two systems for reducing greenhouse gases emissions have been ap-
plied. Oune, called "cap and trade”, like for example in the European
Trade System, where the limits on emission from chosen activities are
distributed between member countries in the first stage and then, fi-
nally, between companies within the European Union. The problem
here is to check, if L, the given emission limit for the company, ex-
pressed as emission permit, has not been exceeded, i.e. if

<L (1)

where @ is the real, unknown emission of a party in a considered year.
Unfortunately, = is not known exactly, as only its available estimate of
the emission £ can be calculated. The estimate of the total emission by a
party is calculated by inventory of emissions from every contributing ac-
tivity, including absorption by sinks. They are, however, highly unsure,
sec {Winiwarter, 2004; Monni at al., 2007). Moreover, uncertainties of
inventories & differ between different activities both in the range and
distributions.

Another system is used in the Kyoto Protocol, which requires from
each participating country to reduce a prespecified percent of its basic
year emission within the given period (from 1990 to 2008-12 for most
countries), although some countries are granted a possibility of stabi-
lizing the emission at the basic year level or even of a limited increase
of its emission. Three so called flexible mechanisims are connected with
the Kyoto Protocol. These are: Joint Implementation, Clean Develop-
ment Mechanisn and Permit Trading. All of them are related with
some forms of buying the emission saved by other parties. In all these
cases a problem is to check, if the declared reduction has been actually
achieved.

With emission reduction, the compliance checking is slightly more
complicated than in the "cap and trade” systemn, because also the
referred limit is unsure. This leads to the problem of comparison of
two uncertain values. This problem will be, however, transformed here
to the form similar to (1), that is to comparison of unswe value with
the exactly known limit. Let us denote by § the fraction of the party
emission to be reduced. The value of § may be negative, for parties,
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which were alloted limitation of the emission increase. Denoting by 2
the basic emission and by z. the emission to be checked, the following
inequality should be satisfied

Ze— (1= 8w, <0 @)

This inequality has the same form as (1), with the inspected variable
zZ.—(1—8)zp and the limit L = 0. And similarly as earlier, neither 2. nor
xp, are known precisely enough. Thus, only the difference of estimates
can be calculated
& — (1 - 0)iy 3)

where both %, and %, are known inaccurately. In the Kyoto Protocol
context, xp is the emission in the basic year and z, the emission in the
compliance period. We are not, however, interested here in reference
and compliance times, but only in the values to be compared.

Moreover, the emission estimate of a Party may be modified by sell-
ing or buying uncertain emissions, which adds to the final uncertainty
of the left hand side. These problems are discussed in the sequel using
two models of uncertainty: interval and fuzzy.

3. Interval uncertainty

Material in this section is a generalization of the results for the symmet-
ric intervals given in (Nahorski et al., 2007). The idea of the methods
is the same, but the results differ due to changed assumption, although
they reduce to the previous ones when the symmetric intervals are
considered in the equations. The derivations of this section are fun-
damental for the rest of the material and therefore are presented in a
rather complete way, even if they are rather straight generalizations of
those for the symmetric intervals.

3.1. COMPLIANCE

Let us denote the lower spread of the uncertainty interval by d* and
the upper hy d*. Then, the real hasic emission x;, and the real checked
emission . are situated in the intervals

zp € [Bp —db, By + dY),  zo € [ —dl, de +dY

Known limit

GHGO7ZNJHrev.tex; 19/10/2009; 14:33; p.4




5

We start with the simpler case of the limit L known exactly. To
be fully sure that a party (typically a company) fulfills the limit, its
ciuission inventory should satisfy the following condition, see fig. 1 (a).

Be+di<L 4

(a)

Figure . Full compliance (a) aud the compliance with risk a (b) in the interval
uncertainuty approach for the known limit case.

As the bounds can be quite large, a weaker condition will be used,
see (Nahorski et al., 2007). A party is compliant with the risk o if its
enlission inventory satisfies the condition

Ge+d* < L+ald+d*) (5)

The risk is here understood as a likelihood that the party may not
fulfill the agreed obligation as to the emission limit or reduction due to
uncertainty of emission inveutory.

Condition {5) means that it is allowed for the party that the ath part
of its ewnission estimate (inventory) uncertainty interval lies above the
limit L, see fig. 1 (b). After some algebraic manipulations the condition
(5) can be also written in the following form

- d!

Ze+(1-(1+ d—;)a]dz‘ <L (6)
The above condition shows that a part of the upper spread of the
uncertainty interval is added to the emission estimate before checking
compliance. This can be also interpreted that some unreported ernis-
sion, due to uncertainty, is included in the condition to reduce the risk
of noucompliance.

For the symmetric interval d. = d* = d.. the condition (6) takes the
form

Ze+(1-2a)d. <L

which has been derived in (Nahorski and Horabik, 2008z).
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Emission reduction

A more difficult case of checking reduction of the emission, when
both the checked and the basic emission are unsure, will be transformed
to the problem of known limit by considering the difference of the
checked and reduced emissions, as mentioned earlier. Using the interval
calculus rules, we get

z.— (1 —8)zp € [Di — d,, D& + dit)

where
Dt =g~ (1-8)iy (7)
and the lower and upper spreads are
de=di+(1-0d, d.=di+(1-0)d, (8)

However, the inventories £; and %, are dependent and the values of d},.

and dj, are usually much smaller than those resulting from the above
expression. In (Nahorski et al., 2007) it was proposed to take it into
account by modification of the formulas (8) to

dhe = (1= Ode+ (1~ &)df) (9)
& = (1= ) (d + (1= 8)dy) (10)

where 0 < { <1 is an appropriate chosen dependency coefficient. This
will be also assumed in this paper!.
Now, to be fully credible, that is to be sure that (2) is satisfied, the

party should prove
Di+dp, <0 (11)

This nonequality condition is analogous to (4), with the upper limit
L=0.

When a party is compliant with risk «, then the part of its dis-
tribution that lies above zero is not bigger than e, see fig. 2 for the
geometrical interpretation. That is, it holds D& + dj, < 2ady,. After
simple algebraic manipulations this gives the condition

!
Bot [1— (1+ De)aldy, < (1- 83 (12)
&

! Modification of the addition operator has a disadvantage. As [ar as the usual
addition is commutative and associative, i. e. for the intervals A, B and C it holds
A+B=B+Aand A+ B+C={A+B})+C=A+(B+C), then the modified
operator with operations (9) and (10), denoted below as +¢, is only cominutative
and not associative, because then (A+¢ B)+¢C # A+¢ (B +¢C). Thus, practically,
the operator +¢ can be only used for pairs of numbers. But this is actually exactly
what is needed in the application considered in this paper.
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(b)

il 5 SRS KA
Di —d!, Di 0 Di+dy

Figure 2. Full compliance (a} and the compliance with risk a (b} in the interval
uncertainty approach for the emission reduction case.

This condition is analogous to (6). Thus, to prove the compliance with
risk « the party has to fulfill its obligation wich the inventory emission

estimate increased by the value (1 — (1 + d“ #£)aldl,, dependent on its

uncertainty.

3.2. EMI$SION TRADING

The above compliance proving policy can be used to modify rules of
emission trading. The main idea presented in earlier papers (Nahorski
et al., 2007; Nahorski and Horabik, 2008a) consists in transferring the
emissions seller uncertainty to the emissious buyer together with the
traded quota of emission and then including it in the buyer’s emission
balance. Here it is adapted to the asymmetric distributions.

Let us denote by R*S = d¥5/25 and RY = d¥ /27 the respective
relative upper and lOWel spleads of uncertainty intervals of the seller
and by E¥ the traded amount of estimated emission. This emission is
aggociated with lower and upper spreads of the uncertainty intervals
ESR!S or ESR®S, respectively.

Known limit
First, let us consider the sinmpler case of known limit L. Before the

trade the buyer has to satisfy the condition (6), which is reformulated

to
i + e — (dif + d2P)a < LB

After buying ES units of emissions from the seller and including the
corresponding uncertainty in the formula, the new condition looks like

B - BS+ a8 + ESRYS — (d'F + ESRYS + dF + ESRS)a < LP
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The above conditions differ in the following value called the effective
emission (Nahorski et al., 2007)

E.y=ES — BSRYS 1+ ES(R®S + RY)a

which can be transformed to the form

Eeff =ES{1— []. —(1+

df:s 2L
25)ol RS} (13)
£

The effective emission is smaller than the estimated emission. The big-
ger the relative upper spread of the uncertainty interval of the seller is,
the smaller is the effective emission. But it also depends on the ratio
duS /'S and obviously on a.

Emission reduction
When emission reduction is required, before the trade the buying
party checks the following condition

8 + P — (@ + dif)a < (1-6%)af
After the transaction the condition changes into
8- BS+ B + ESRYS — (apP + ESRYS +dff + ESRS)o < (1-68)af

Due to partial cancellation of the subtracted estimated emission and
its uncertainty in the buyer’s emission balance the effective emission is

ng,=}§:5{1—[1-(1+d

S

& yolRzs) (19)
(=

This is exactly the same formula as (13). The bigger the seller’s upper
spread of uncertainty interval is, the less purchased unit is accounted
for the buyer. Expressions (13) and (14) reduce emissions estimated
with an arbitrary precision to globally comparable values, which can
be directly subtracted from country’s estimated emission, This way it is
possible to construct a market for the effective emissions, see (Nahorski
et al., 2007; Nahorski and Horabik, 2007) for details.

4. Fuzzy uncertainty
Interval uncertainty approach does not use any information on the
distribution of inventory errors. Thus, it ends with too conservative re-

sults. Modeling the uncertainty using stochastic approach causes prob-
lems related with nonlinearities of the underlying algebra. Instead, we
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propose to use the fuzzy approach in modeling uncertainty distribu-
tion. It allows for good approximation of the distribution while keeping
simple algebra of the interval calculus. A short information on fuzzy
sets and some related notions is given in the Appendix.

In this paper the fuzzy numbers (see Appendix for a definition)
are used to model imperfect knowledge of the uncertainty. A fuzzy
number is a straight generalization of an ordinary number, whose value
is unsure. This is the situation, which we spot in the greenhouse gas
inventories.

pa(z)

Y =g*=0
r = |
I ~a¥ =05
| N l
| RN |
v =1 AN
| \ |
| A
| Y =2 Voo
l |
—dt 0 ay

Figure 3. Membership (unctions for different values of +.

Usually, the main problem with the fuzzy set approach is to de-
termine the membership function. Here, we introduce analytical mem-
bership functions dependent on parameters. To estimate the param-
cters, the function can be fitted to the distribution obtained from
Monte Carlo simulations, as shown in the sequel. In lack of experimen-
tal distributions, the parameter can be fixed to fit the experimenter
expectation®,

The most popular membership functions are the triangular or trape-
zoidal ones. These functions are, however, rather inconvenient for our

? It is perhaps worth to mention at this point that we treat the fuzzy approach
only as an approximation of distribution and algebraic rules for the variables and
not for introduction of the possibility function, see e. g. {Bandemer, 2006}, that is
anolher possible approach to the problem.
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purpose because of their bad approximations of the distribution tails,
which are very important in the applications described here.

Consider a family of fuzzy numbers A7 = {{z, uJ; (x))|z € supp A7}
indexed by a vector parameter v = [v,4] € Ct x C*, with the
support supp A7 = [—-dY, d%]. The proposed membership function has
the form, see fig. 3.

a(1—%)7“ for 0< g <dy

2 - Lo %
Ha(=) {a(l+ﬁ;)7' for d4y <2<0 LARA (15)
where a is a normalizing factor used for fitting the membership function
to empirical distributions. In the theoretical considerations it can be as-
sumed that the membership function has been normalized and therefore
e =1 is taken in the sequel. Let us note that taking 9% = v* = 0 we get
the even distribution, see fig. 3, and actually reduce the considerations
to the interval case.

ﬂ[ﬁtl (z)
A1 L

i i T T T U T
-10 -6 -2 2 6 10 14 18 22 26 30

Figure 4. An estimate of a membership function ) (z) calculated using the Monte
Carlo method.

Fig. 4 presents an estimate of an asymmetric distribution obtained

using the Monte Carlo method and presented in (Winiwarter and Muik,
2007).
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w3 ()

Al
e T
T — =T
fo—db e Bot Zen  Ee+d

Figure 5. Definition of areas under asymmetric fuzzy number membership function.

4.1. COMPLIANCE
It is assumed that the uncertainty of the estimate 2, is described by
the membership function

(l—m;—;h)‘r” for &y <2 < 3y +dff

T () = .
#a, () (14280 for & —d) < <
b

and of the estimate £, by

1— 25835 for §, <o < d+d¥
W= LTI for fes s et (16)
° (1+ Z5fe)™ for §,—d, <2 < e

Known limit
We start with the exactly known limit case. First, we calculate by

integration the whole area A under the membership function. It is the
suin of two areas, see fig. 5

A=A+ A"

o e
A‘:/ 14 2 2eyrtgy = e
el ( dt ) "%

Zo-td2 . g
A= [T -yt = e

i d 1+9¢
We want now to fiud the distance z., between &. and & + Zcq,
where the latter is the value cutting off the most right ath part of the
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area under the membership function, see fig. 5. This area, denoted A,
for 0 < o < A%/(A! + A%), where A is the area under the left branch
of the membership function and A* under the right branch is

A = Fotdy (1 B T — i;c),y; . d‘c‘ (1 _ .1:“,)1_‘_%"
e /. qv -1 u v
ZetTca c + 7% e

Now, it must hold
Ay = A

which after some algebraic manipulations gives

S e R S,
oo = {1~ [0+ G Dl ™ J

Finally, the compliance checking condition is

14
dy 147}

g+ {1-[(1+ Ja]E < I (17)

For the interval uncertainty case ¥ = 4% = 0. Then the above

condition is the same as (6), and the symmetric case d = d? = d, and
4% = 4* = v,, and the above condition takes the form

Eet[1-(20)F)d. < L

This formula has been derived in (Nahorski and Horabik, 2008a).

For the symmetric case only the range 0 < a < 0.5 is practically
worth to be considered, as for & = 0.5 the above condition takes the
form &, < L, and for & > 0.5 we would let for exccesion of the limit, i.e.
for # > L. For the asymmetric case the range 0 < o < A*/(A! + A™)
should be considered. Thus, the limiting o can take values greater or
smaller than 0.5, For the interval uncertainty the range willbe 0 < o <
d*/(d + d¥).

Let us then notice that for the asymmetric distribution, like in fig. 4,
the likelihood of noncompliance when £, is only compared with the
limit L is greater than 0.5, in the sense that for the random occurance
of the inventory £, but compatible with the distribution, the limit will
be more frequently exceeded then not achieved.

Emission reduction
For the emission reduction case, to find the membership function

of the fuzzy number DE = &, — (1 — 8)2; as a linear combination of
the fuzzy numbers £}, and £, the n-cuts will be used, see Appendix for
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r
i —d 7

Figure 6. Asymmetric fuzzy number and definitions of related parameters.

explanation of this notion. For the number i, the upper ZJ* and the
lower &% ends of the »-cut ave as follows, see Fig. 6. For 7% we have

LU — FoyrE
(1 - -c——-—c) =1
dg
Then, assuming % # 0,
1
=g+ dP(1-n7F)
In the same way, for ;i:’c’[, assumning 'yé #0,

(1 N i-g’dz £C)~,é =

and \

: - T

8 =g — di(1 - n)

For ¥ = 0 or 9. = 0 we have 17 = 1. For this case the expression like
1

7> is not formally defined. Thus, we additionally define

1

& =0, for ¥¥=0
i

1):5 =0 for 7,'_.:0

The fuzzy number &, can be treated analogously. But we consider
the number —(1 — §)%,. Taking analogous asumptions and additional
definitions as above, we now look for #* satisfying

e s “
2 1-46)&
(1———-——" aalt )b)7”=77
a-o
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from where the upper end 2" of the n-cut is given by

1
3

B = —(1 - )ay+ di(L - )(1 - )
For the lower end :i;" of the 7-cut the equation
~nl Py 1
&y + (1 —-8)E\" _
(1+ a-od )=
provides
1
&= —(1-6)z - dy(1 - )1 - ")

Finally, the n-cut of the number D# is obtained applying the modi-
fied interval calculus rules (9) and (10) for the sum of the n-cuts of the
numbers £, and —(1 — &)%;. Thus

Di™ = D + (1~ (1 — ) + a1~ HA-7 D) (19)

1 1
Di™ =Dz — (1= Q)de(1—n%) + dy(1 - 8)(1 - 7" )] (19)
The above equations show dependences of D% and D#™ on 7, that is
they are the reverse functions of the two branches of the membership
function p).(z), see fig. 6.
Let us now transform (18) to

_ D&M D& _ din'h¥ +di(1 - 8)nth (20)
) ’

where dj, is given by (10), and define 7}, to satisfy the equation

1

oM L (1= st
ay +di(1 - 6) -

3
f

From the above

1 lo
Yoo = T = £7 T (21)
dunt/rE pdt (1—8)' Ayt /7 el (1--6) b
log, < o log = B
1 di +d} (1-8) de+dy (1-5)

In the spirit of earlier additional definitions we also define
Y =0 for A*=0 or A=0

Now it is possible to write the right branch of the membership function

as
— Dz u
A () = (1~ I_F—l)“fu Di<z<Di+d, (22

be

GHGO7ZNJHrev.tex; 19/10/2009; 14:33; p.14
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Likewise we get

b ) = z =Dy s gl "
#g"(x)_(H_dL—) % Di-di.<z<Di (23)

where di, is given by (9), and

1 logn
{ = = - 24
e loy At/ dr 1)/ B dint/ % (180" @
8y T d:(1=3) g TFdE(1=3)

with
=0 for =0 or 4¥=0
Now, the most right ath part of the area under the membership
function (22) is

Daed.  a- Dz).,u -

Lo\ 141
1-— be
Ditz, 1 + Y. ( )

Ax =

and the area under the entire membership function (22) - (23) is

D3 y — D3 Di+dy - D% ou
A= (1+= Da’)"'*dz+/ - 2=yt =
Di-di, d, D# dg,

di, dp
= + 25
1+, 1+7% L

Because 4, = aA, then its solution for z,, denoted Tpen, has the form

o1 = {1 - [(1+ g&c;:"k) }T’?Lﬁ} (26)

and finally the compliance condition is
4 dlbc 1+, THE 2
Ze+ {1 — [(1+F“i+—7t)a] "’}dl‘b‘c < (1-6)3 27)

This condition is analogous to (17). For the interval case v;, =
0 and (27) reduces to (12). For the symmetric distribution d{c =]
dye and 'y",c =4 = e and it reduces to

B+ [l — (o) Tnc]dy, < (1 — 6)p (28)

The coundition (28) has been derived in (Nahorski and Horabik, 2007).
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4.2. EMISSION TRADING

The formula for the efficient emission can be quite easily obtained for
the symmetric distribution (28) using derivations similar to interval
case. Before the trade the buying party has to satisfy the condition

#2 4 (1 (20) VB 18 < (1— 67)P

and after buying ES emission units from the seller it becomes
1
82 — BS + [1 - (20) "R)(E + BSRY) < (1 - 6%)f
Then the efficient emission is
Eyp=E5(1-11- (2a)ﬁl*?f]kf} (29)

However, the problem becomes more difficult for the asymmetric dis-
tributions, as then the uncertainty distribution bounds di_ and df*, enter
nonlinearly in the compliance condition (27). This is why linearization
is now used to obtain the result. The exact derivation is presented in
(Nahorski and Horabik, 2008b). This way the following expression for
the efficient emission is obtained

S
Eup= B30~ (1= (04 o™ F )R} o)

It generalizes expressions for simpler cases. In particular, for the known
limit case the following substitution should be made: 722 — 4*B. For
the symmetric distributions the substitutions are: d¥ — d5, d*5 — df,
'y,‘,;B — 7,2, which provide (29). For the interval uncertainty: 73:2 — 0,
which gives (14).

In comparison with the formula (14) for the interval uncertainty, the
formulas (29) and (30) depend on parameters Y2 or 122 of the emission
buyer uncertainty distributions. This would complicate considerably
the market, as the traded quota depends in such case both on the
seller and the buyer uncertainty distributions. This problem will not
be discussed in this paper.

4.3. EQUIVALENCE OF APPROACHES

Let us notice that actually the fuzzy approach formulas (17) and (27)
can be considered equivalent to the interval approach ones (6) and (12),
provided appropriate values of o are chosen for both cases. Equiva-
lence of the compliance checking formulas causes also equivalence of
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the emission trading counterparts. Denoting the interval case by the
subscript ; and the fuzzy case by g, and equaling the effective emitions
Eers,r = Eeypy1, after simple algebraic manipulations we arrive at the
following condition

ais d's B
1+ Z‘%)QF = [(l + dgs)aI]1+‘7u

If the cases af = 0 (no noncompliance risk) and 432 = 0 (interval
5
uncertainty) are excluded, then for 0 < aj,af < 'Fgéﬂ and 7}‘3 >0

we have

ay > ap
Dependence of ay on ap and 'ﬁ‘f is shown in Table I. The results
show that oy rises quickly when 3 rises. In cases considered in our
calculations estimates of 738 close to or much higher than 1.5 were
obtained. Then, practically it seems that a; > 0.3 should be taken
even for small values of ap.

An interpretation of these results is quite straightforward. Within
the considered family of distributions ignorance of the uncertainty dis-
tribution in the interval case requires bigger reduction. To obtain the
same effective emitions as for the fuzzy uncertainties, a bigger substitu-
tional noncompliance risk should be adopted in the interval approach.
Thus, for ay, at least the values 0.3 or higher should be taken to com-
pensate for ignorance of the exact knowledge of the uncertainty interval
distribution, even if a small noncompliance risk is actually meant.

5. An example

In the example the data from the Monto Carlo simulation presented
in (Ramirez at al., 2006) are used. Uncertainty distributions of three
gases emissions, carbon dioxide COg, methane CHy and fluorine F,
are considered. The uncertainty distributions were chosen to illustrate
the proposed rules of trade. They are depicted in figs. 7, 8 and 9 to-
gether with fits of the distribution functions (15). It is assumed that
each emnission is related to different companies, called CO, CH and F,
respectively. Table II contains parameters of the distributions.

We do not consider the compliance, and only the trade, Let us then
suppose that the three companies mentioned: CO, CH and F, want
to trade with each other. The uncertainty of emission in the company
CO is small, less than 4%, while in the rest it is around 38%. On the
other hand, the shape of the uncertainty distributions of CO and CH
are similar, with values of -y of the order 2 ~ 2.5 for the lower and 4 -
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Table I. Dependence of ey on ar and 72,

ar | % - 01 05 1 15 2 25

dl/de =0.2
0.05 006 013 020 027 033 0.37
0.10 012 020 029 036 041 045
0.15 0.18 027 035 042 047 051
0.20 023 032 041 047 052 055
0.25 0.28 037 046 051 056 059
defdz =05
0.05 006 012 018 024 028 0.32
0.10 012 019 026 031 035 0.39
0.15 017 025 032 037 041 044
0.20 0.22 030 037 041 045 047
0.25 027 035 041 045 048 0.50
difde =1
0.05 006 0.1 016 020 023 0.26
0.10 012 0.7 022 026 029 032
0.15 017 022 027 031 033 035
0.20 022 027 032 035 037 038
0.25 027 032 035 038 040 041

Teble II. Parameters of the distributions.

Distribution  d' [Tg] + +* d“[Tg

CO; 4.8 26 45 6.9
CH4 4.3 21 39 6.7
F 2.0 14 14 31

4.5 for the upper branch, while the shape of F is close to triangular,
with 7 equal 1, In Table III the values of E.z; are depicted for three
assumed trades, when each company at turn is the seller while other
are buyers. Two values of the original noncompliance risk o = 0.05 or
0.1 were assumed and substitutional values of a are given in the right
side of the table. Most of them are of the order of 0.4. For CO, with
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Figure 7. Fit of a membership function s, () to the histogram for emission of CO..

small uncertainty, the values E,‘” are only sligtly smaller than 1. The
values Eff ; and Efl ¢ are much smaller, around 0.8 ~ 0.9.

Let us notice that for the fuzzy distribution there is no unique
substitutional risk parameter ¢ related with the seller, because it also
depends on who is the buyer. This is what causes problems in the
trade as compared to the interval case. A solution to avoid it might
be that a common value 0.4 or a smaller one, like 0.35, is taken for o
to organize the market with a substitutional interval uncertainty. This
way the market schedulled in (Nahorski et al., 2007} can be applied. A
market with substitutional risk parameters ¢y dependent on the buyer
is, however, an interesting question. It will be considered elsewhere.

6. Conclusions

The paper deals with the problem of checking compliance of pollutant
emission with a given limit in the case when the observed emission
values are highly uncertain with asymmetric uncertainty distributions.
High uncertainty should be also considered in trading in emission per-
mits, which is frequently used to minimize the emission abatement cost,
and this is also done in the paper. Asymmetric uncertainty is evidenced
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Figure 8. Fit of a membership function s}, (z) to the histogram for emission of CH,.

by recent investigations, and particularly by Monte Carlo simulations
of uncertainty distributions.

An interesting case® of an asymmetric distribution of uncertainty
is connected with the risk in valuing forest carbon offsets caused by
accidental losses, e.g. due to wildfires (Hurteau et al., 2009). The un-
certainty there has a specific one-sided distribution. This case entered
already the implementation stage in the U. S. forest carbon storage
project (Mignone at al., 2009). However, the solutions applied there
take into account that the related uncertainty is eventually resolved in
the future, as the damages are known after they have happened. This
is in opposition to the case discussed in this paper, where uncertainties
are inherent part of data considered in all stages of decision making.

A market with the effective emission permits has been outlined in
earlier papers (Nahorski et al., 2007; Nahorski and Horabik, 2008a) for
the symmetric case. That construction is valid also in the asymmetric
case discussed in this paper.

3 This direction of research has been brought to our jion by one of
undisclosed reviewers.
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Figure 9. Fit of a membership function u; {z) to the histogram for emission of F.

The idea proposed in this paper lies in grounding the derivations in
the fuzzy set approach. A family of fuzzy numbers depending on free
parameters is introduced. These parameters can be chosen to appro-
priately shape the distribution of uncertainty. The approach provides
the closed form formulas, which can be used for designing a market
for the efficient emission permits. However, for the most general case of
an asymmetric membership functions a closed analytical solution could
not be found. An approximate solution was considered for this case and
a generalized rule for compliance has been derived.

Application of the fuzzy numbers and consideration of asymmetric
distributions enabled us to much more precisely determine the required
level of reduced inventories to get high likelihood of fulfilling the given
limit or reduction. Moreover, the better accuracy in determining the
level give rise to better scaling the amounts of emission emitted by
parties for using them in trading, which has a measurable financial
meaning. Approximating distribution by a function dependent on pa-
rameters allowed us to derive the analytical expressions for reduction
of emissions and for scaling the traded emissions. The distribution
parameters have been acquired by fitting the distribution functions
to the data from the Monte Carlo simulations.
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TableIIl. Efficient emissions in the trade and substitutional values
of ar for interval uncertainty.

Emission R EY, EY, EY o of o}

o =0.05
co 0.043 seller 0.86 0.86 - 021 0.36
CH 0.385 0.98 seller 085 0.39 - 0.36
F 0.371 097 0.75 seller 0.39 0.37 -
a=0.1
CO2 0.043 seller 089 0.90 - 028 041
CH, 0.385 099 seller 088 044 - 042

F 0371 098 0.79 seller 0.44 042 -

The results obtained are generalizations of the results derived for
the interval and symmetric uncertainty models. However, it was shown
that the rules for the interval case can be used instead of the gen-
eralized ones, provided the appropriately higher value of the risk of
noncompliance is substituted in the interval case.

Although the fits of the functions presented in this paper to the data
are quite good, except perhaps in the central part of the uncertainty
interval, a question of a possible better fit to the data has been risen
by one of the undisclosed reviewers. As this is certainly possible with
a more flexible class of functions, a possibility of obtaining close ana-
lytical solution may be a challenging problem. It will be a subject of
further investigations.

Appendix: Fuzzy sets and fuzzy numbers

To introduce the notion of a fuzzy set let us first consider a classical
set A from an universe U. It can be conveniently described by the
characteristic function x4 defined as

lifueAd
XA() =\ 0 ifug A

which says that a point u € U belongs to the set, if x4(u) = 1, or does

not belong, if xa(u)=0.
In a fuzzy set the characteristic function x4 is generalized to take
any velue from the interval [0, 1]. It is then called a membership function
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and is denoted p4. The value of a membership function p4(u) reflects
the degree of acceptance of the point u to the set. Thus, a fuzzy set is
characterized by the set A and the membership function p4. Then, an
usnal set is a special fuzzy set with the membership function being the
characteristic function. A comparison of a membership function and a
characteristic function of & set is shown in fig. 10.

A fuzzy set can be also fully characterized by a family of so called
n-cuts! denoted by A,, i. e. points of U, for which the value p4(u)
assumes at least the value 7, see fig. 10, where an example of a 7-cut
for n = 0.5 is depicted.

1 XA

|

Ha :

0.5 :
!

!

|

U

| |
m— m A m + pr

Figure 10, ‘The characteristic function and a membership functions of the set A.

Two additional notions connected with a fuzzy set are worth to
mention. One is the support, called supp A, which is the set of points
u, for which the membership function is positive, i. e.:

supp A= {u € U: pg(u) > 0}
Another definition of the support may be formulated using 7-cuts, as
supp A= 11,1_% A,
The second notion is the core of the fuzzy set, called core A, which is
the set of points, for which the membership function is equal 1, i. e.:
core A={u€U: py(u)=1}

4 Here we call as the n-cut of a fuzzy set A the notion usually called the a-cut,
i.e. the set A, = {2 € supp Alpa(z) 2 1}, for 5 € (0,1].
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Using the notion of the n-cuts we may also write
core A = A;

A fuzzy set A is called a fuzzy number, if it satisfies three additional
conditions:

1. core A consists of only one point.

2. The membership function does not increase starting from the core
point toward both sides.

3. Every n-cut is a (connected) close interval.

A weaker definition of a fuzzy number is often used, with the first
condition replaced by

1' There exists a point belonging to the core A.

But in this paper we use the stronger former definition.

The n-cuts for a fuzy number form a family of intervals. Each in-
terval can be interpreted as our conviction in precision of knowledge of
the core value. Values of the level n close to 1 mean that we are well
convinced that the core value is precise. Small values of 9, close to 0,
mean that our conviction is small. See also (Dubois and Prade, 2005)
for more formal discussion of this subject. Calculations performed on
fuzzy numbers allow us to process whole this knowledge in comunon.

Technically, two functions defined for nonnegative arguments may
be introduced, L and R, (Bandemer, 2006), such that they have the
unique value 1 at 0, L(0) = R(0) = 1, equal zero for arguments greater
or equal 1, L(u) = R(u) = 0 for u > 1, and are not increasing. Then,
given core A = {m}, the membership function of a fuzzy number may
be constructed using the above functions as its left and right branches

Halw) = L(=—=

) foru<m (31)

AL R(“;m) for u > m (32)

where p; and p, are scale parameters, see Fig. 10. Let us denote the
fuzzy number constructed this way as A(m, p;, r)LR-

Although operations on fuzzy sets or fuzzy numbers can be defined
in a more general context, they are first restricted only to fuzzy numbers
described in the above LR form. For two fuzzy numbers A(m, p1,pr)LR
and B(n, g1, ¢-) Lr the following operations are defined, see (Dubois and
Prade, 1978):
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1. Addition
A+B=m+n,p+aq,pr+¢)IR (33)

2. Multiplication by a positive real number ¢

cA= (C‘"’I, cpty Cpr)LR (34)

3. Multiplication by a negative real number ¢
cA = (em, Iclprr Iclpl)ﬂ.[: (35)
with interchange of the function L and R in (31) and (32)

walw) = R(%—r—u-) foru<em
. _ y[u—cm
pealu) = L(—Iclpl ) for u > em

In the general case interval calculus for the 7-cuts can be used to
get the appropriate operation.
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