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A bstract. Gree11houi::e gascs emissiou inventories nre computed with rather low 
prcci1;io11. l'doreover, their uncertuinty distributions may be nsymmetric. This should 
!Je accounLcd for in the compliance ancl trncling rules. In this paper we model the 
uucert,Hinty of in\'entories as intervals or using fuzzy numbers. The latter allows us 
to ~hupe better the uncert;.linty distributions. Obtained compliance and emission 
tradi11g rules generalize those for the symmetric uncerlaiuty distributions, which 
wen.~ con:;idered i11 the earHer pnpers. However, unlike in the symmetric distribu­
tion, it it-; necessary in the asymmetric fuzzy cu.se to apply upproximations clue to 
11011liuearit.ics in the formulas. The finał conclusion is that the intervnl uncertainty 
mies can be applied, but with much higher substitutional noncompliance risk, which 
is a pan.rn1eter of the ru\es. 

Keywords: greenhouse p,ses emission iuventories, uucertainty, interval calculus, 
fuzzy scts, compliunce, emission permit trnding. 

1. Introduction 

Emission of greenhouse gases is a basie element of the climate change 
1uodels, see e. g. (Stern, 2007) where results are presented in prob­
abilistic terms. However, greenhouse gases inventories estimates are 
not calcuhited exactly. Possible error magnitudes clepencl on types of 
gnse:; cousiclered, activities, and countries, ranging from few to over 100 
percent. Moreover, distributions of errors for different gases as well as 
for national inventories nrny be asymmetric (Ramirez at al., 2006; 'Wini­
w.uter and Muik, 2007). The methocls of checking compliance and 
particularly establishing rules for emission trading proposed up to now 
for the uncertain inventories (Jonas at al., 2007; Jonas and Nilsson, 
2007; Nahorski et al., 2007; Nahorski and Horabik, 2008a) concern 
only the synunetric clistributions and mostly the interval uncertainty 
models. 

In (Nahorski et al., 2007) the compliance and trading rules were 
cousidered for the interval uncertainties of emissions. In order to have 
high enough likelihood of fulfilling the compliance, !ower limit of reduc­
t.ions were required ( undershooting), and an appropriate recalculation 
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of the traded emissions to be performed. However, interval uncertainty 
approach provides too conservative reduction of limits and recalcula­
tion of traded emissions. Although the stochastic case may be useful 
:or the determination of new compliance rule, see also (Gillenwater et. 
al., 2007), only a complicated formula for recalculation of the traded 
emissions has been provided (Nahorski et al., 2007), practically useless, 
':lecause it is valid only for uncorre]ated inventories. In this paper a 
fuzzy uncertainty is considered. The fuzzy set calculus basically inher­
its the rules from the interval calculus, and this way provides simpler 
calculations than that for the stochastic variables. At the same time the 
fuzzy variables may be shaped to have distributions mare concent.rntecl 
around observed values than for the intervals, where the infonnation on 
distribution is lost. And therefore it can better approximate the real 
clistributions. This paper also deals with the asymmetric cases. This 
way it aims at improving precision of assessment of satisfying the given 
emission limits or reductions, in the sense of guarantying (with a pre­
scribed small risk) fulfillment of this limit or reduction, including in it 
emission trading among parties and other possible flexible mechanisms 
included in the Kyoto Protocol. Improved precision, as compared with 
the interval case, means ]ower costs of compliance and more reliable 
estimates of inventories for the climate change models. 

We derive in this paper a new formula for recalculation of the trading 
quantities for the fuzzy and symmetric distributions, which is gener­
alization of that for the interval approach. To obtain an analogous 
formula for the asymmetric fuzzy case an approximation is required. 
The one proposecl in this paper is a generalization of both those for the 
symmetric fuzzy case and for the asymmetric interval approach. 

Summing up, we derive here new rules for checking compliance 
and for emission trading, for asymmetric fuzzy distributions. They arc 
generalizations of the rules presented in (Nahorski et al., 2007; Na­
horski and Horabik, 2008a) for symmetric distributions and intervnl 
uncertainty and reduce to them as special instances when approprinte 
parameters are taken. Comparison of the rules obtained for the fuzzy 
approach with those for the interval one shows that the latter crtn be 
nsed equivalently, but with a much bigger substitutional parameter 
chan originally designed for the noncompliance risk. 

In section 2 we formulate the problem and introduce same basie 
notation. Then, in section 3, we deal with the asymmetric interval 
uncertainty and we derive conditions for checking compliance P.ncl for­
mulas for so called efficient emissions, which can be directly t.raded, 
without taking into account the emission uncertainty. In sect.ion 4 a 
family of fuzzy numbers is introduced. They are used to model the full 
inventory uncertainty and form the basis for derivations of generalized 
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compliance and emission trading rules. These mies are comparecl with 
the interval npproach rules and their equivalence in applications con­
sidered in the paper, for appropriately chosen parameters, is shown. 
Section 5 concludes. 

2. Problem formulation 

Two systems for reducing greenhouse gases emissions have been ap­
plied. One, callcd "cap and tracie", like for example in the European 
TI·acle System, where the limits on emission from chosen activities are 
distributecl between member countries in the first stage and then, fi. 
nally, between companies within the European Union. The problem 
here is to check, if L, the givcn emission limit for the company, ex­
pressed as emission permit, has not been exceeclecl, i.e. if 

X:; L (1) 

wlwre :i: is the real, unknown emission of a party in a considered year. 
Uufortuuately, :r is not known exactly, as only its availab]e estimate of 
the emission i can be calculated. The estimate of the total emission by a 
party is calculatecl by inveutory of emissions from every contributing ac­
tivity, inclucliug absorption by sinks. They are, however, highly unsnre, 
sec (vViniwarter, 2004; Monni at al., 2007). lvioreover, uncertainties of 
inventories :i: dilfer between dilferent activities both in the range and 
clistributions. 

Another system is used in the I<yoto Protocol, which requires from 
c,ach participating country to recluce a prespecified percent of its basie 
ycar emission within the given period (from 1990 to 2008-12 for most 
eountrics), although same eountries are granted a possibility of stab:­
lizing the emission at the basie year level or even of a limited increase 
of its emission. Three so callecl flexible mechanisms are connectecl with 
the Kyoto Protocol. These ,we: Joint Implementation, Clean Develop· 
ment lvlechanism and Pennit 11-acling. All of them are relatecl with 
some forms of buying the emission savecl by other parties. In all these 
cases a problem is to check, if the declarccl recluction has been actually 
nchievecl. 

With emission rec!uction, the compliance checking is slightly more 
complicatecl than in the "cap and tracie" system, because a.lso the 
referred limit is unsure. This leacls to the problem of comparison of 
two uncertain values. This problem will be, however, trnnsformed here 
to the form similar to {l), that is to comparison of unsure value with 
tlie exactly known limit. Let us denote by ó the fraction of the party 
cmissio11 to be reducecl. The value of ó may be negative, for parties, 
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which were alloted limitation of the emission increase. Denoting by .?:/, 

the basie emission and by Xe the emission to be checked, the following 
inequality should be satisfied 

(2) 

This inequality has the same form as (1), with the inspected variab]e 
Xe-(l-ó)Xb and the limit L =O.And similarly as earlier, neither .Tc nor 
Xb are known precisely enough. Thus, only the difference of est.imates 
can be calculated 

(3) 

where both .ie and .ib are known inaceurately. In the I{yoto Protocol 
eontext, Xb is the emission in the basie year and Xe the emission in the 
compliance period. We are not, however, interestecl here in reference 
and compliance times, but only in the values to be eompared. 

Moreover, the emission estimate of a Party may be modifiecl by sell­
ing or buying uncertain emissions, whieh aclds to the finał uncertaint.y 
of the left hand side. These problems are discussed in the sequel using 
two models of uncertainty: interval and fuzzy. 

3. Interval uncertainty 

Materiał in this seetion is a generalization of the results for the symrnet­
ric intervals given in (N ahorski et al., 2007). The idea of the methods 
is the same, but the results differ due to ehanged assumption, although 
they reduce to the previous ones when the symmetrie intervals are 
eonsidered in the equations. The derivations of this seetion are fun­
damental for the rest of the materia! and therefore are presented in a 
rat.her eomplete way, even if they are rather straight generalizations of 
those for the symmetric intervals. 

3.1. COMPLIANCE 

Let us denote the !ower spread of the uneertainty interval by cl1 and 
the upper by du. Then, the real basie emission .Tb and the real checked 
emission Xe are situated in the intervals 

Known limit 
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We start with the simp]er case of the limit L known exactly. To 
be fu!Jy sure that a party (typically a company) fulfills the limit, its 
cmission inventory should satisfy the following condition, see fig. 1 (a). 

xe+d~~L (4) 

:i:,. - cL'.. ie+ cl~ (a) 
.-. ,._.,. .-. C-."7 .-.• 

I 

•a(d~ + d~) 
...... ~.---:--.-:-:-:-:-.--:-·.7:·:-:-.--:--.-:-:-:-:-.--:---.:-:-:-:.---:---.-:-:-:-:-.~-.7:·:-7 (b) 

:i:,. - d~ 

F·irJu.l'e J. full cornpliance (a) and the compliance with risk er (b) in the interval 
n11certai11t.y approach for the known limit ca.se. 

As the bouncls can be quite large, a weaker conclition will be usecl , 
see (Na!torski et al., 2007). A party is compliant with the risk a if its 
emission inventory satisfies the condition 

Xe+ d~ ~ L+ a(d~ +d~) (5) 

The risk is here understoocl as a Jikelihoocl tlrnt the party may not 
fullill the agreed obligation as to the emission limit or recluction due to 
uncertainty or cmission inventory. 

Condition ( 5) means that it is allowed for the party that the ath part 
or it.s emission estinmte (inventory) uncertainty interval lies above the 
liinit L , see fig. 1 (b). After some algebraic manipulations the condition 
(5) can be also written in the fo!Jowing form 

d1 
Xe+ [l - (1 + i,;. )ajd~ ~ L 

e 

(6) 

The above conclition shows that a part of the upper spreacl of the 
uncertaint.y interval is adcled to the emission estimate before checking 
rnmpliance. This can be also interpretecl that some unreportecl emis­
sion, clue to uncertainty, is includecl in the conclition to reduce the risk 
of no11c0111pliance. 

For the symmetric interval dt = d; = de the condition (6) takes the 
form 

x,. + (1 - 2a)de ~ L 

which has been clerived in (Nahorski and Horabik , 2008a). 
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Emission reduction 
A more diflicult case of checking reduction of the emission, when 

both the checked and the basie emission are unsure, will be transforrned 
to the problem of lmown limit by considering the difference of the 
checked and reduced emissions , as mentioned earlier. Using the interval 
calculus rules, we get 

where 
Dx = Xe - (1 - c5)x0 (7) 

and the !ower and upper spreads are 

(8) 

However, the inventories Xb and ie are dependent and the values of d/,c 
and d):, are usually much smaller than those resulting from the above 
expression. In (N ahorski et al. , 2007) i t was proposecl to take it into 
account by modification of the formulas (8) to 

dbc = (1 - ()(d~ + (1 - c5)d/;) 

d/:c = (1 - ()(cl';+ (1 - ó)d[) 

(9) 

(10) 

where O $ ( $ 1 is an appropriate chosen dependency coeflicient. This 
will be also assumed in this paper1 . 

Now, to be fully credible, that is to be sure that (2) is satisfied, the 
party should prove 

Dx + d,;c $ O (11) 

This nonequality condition is analogous to ( 4), with the upp er limit 
L= O. 

When a party is compliant with risk °', then the part of its dis­
tribution that lies above zero is not bigger than a, see fig. 2 for the 
geometrical interpretation. That is, it holds Dx + di:c $ 2etdi:c • Aft.er 
simple algebraic manipulations this gives the condition 

i,+ [l - (1 + ~.")et]dt, $ (1 - c5)xu 
be 

(12) 

1 ivlodifica.tion of the addition operator hn.s a <lisadvantage. As far as the usunl 
oddition is commutative and associative, i. e. for the intervals A, Band C it holds 
A+ B = B + A and A+ B + C = (A+ B) + C =A+ (B + C), tben the moclifie<l 
operator with operations (9) and (10), denoted below as + t;-, is only commutativc 
and not associative, because then (A+< B)+,C i:- A+, (B+,C). Thus, practicnlly, 
the operator +, can be only used for pairs of numbers. But this is actunlly exncl:ly 

what is needed in the application considcred in this paper. 
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Di+ c1;;c (a) 
.-. ,-_.., .-. ,__.., --;-- _c-. --c .-.1 

I 

I 

•a· 2d" 
c-.--c~c-.--c~c-.--c~,-.--c~,-.--,~~-..,~,-.--cn~.--,k 

Di: 

(b) 

Piyu, ·~ 2. Full compliance (a) and the compliance with risk er (b} in the intervnl 
u11ccrLni11Ly o.pproach for the en1ission recluction case. 

Tltis coudition is analogous to (6). Thus, to prove the compliance with 
risk a the pmty has to fnlfill its obligation with the inventory emission 

d' 
estiurnte increased by the value [l - (1 + ~ )o:]di,'c, dependent on its 
llllCertainty. 

3.2. E~IISSION TRADING 

The above compliance proving policy can be used to modify rnles of 
emissiou trading. The main idea presented in earlier papers (Nahorski 
et al. , 2007; Nahorski and Horabik, 2008a) consists in transferring the 
eudssions seller uncer tainty to the emissions buyer together with the 
tradcd quot,\ of emission and then including it iu the buyer's emission 
halance. Here it is adaptecl to the asymmetric clistributions. 

Let us denote by R~s = d~s jxf and R? = d~s / if the respective 
relative upper and !ower spreads of uncertainty intervals of the seller 
and by E8 the traded amount of estimated emission. This emission is 
associated with !ower and upper spreads of the uncertainty intervals 
t;s R~s or t;s R~s, respectively. 

Known limit 
First , !et us consi<ler the simpler case of known limit L. Before the 

trade the bu_ycr has to satisfy the condition (6), which is reformulated 
to 

if + c1;B - (d~D + d~B)o: $ LB 

Alter buying t;s Lmits of emissions from the seller and including the 
corresponcliug uncertainty in the formula, the new con di tiou looks like 

GHG07ZNJHrev . tex; 19/10/2009; 14:33; p. 7 
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The above conditions differ in the following value called the effective 
emission (N ahorski et al., 2007) 

Eeff = Es - Es R~s + Es(R~s + R~s)c, 

which can be transformed to the form 

d'S 
E = Es{1 - (1 - (1 + ....E_ )et)R"5 } ~f ~$ C 

(13) 

The effective emission is smaller than the estimated emission. The big­
ger the relative upper spread of the uncertainty interval of the seller is, 
the smaller is the effective emission. But it also depends on the ratio 
d':5 / d~s , and obviously on a. 

Emission reduction 
When emission reduction is required, before the trade the buying 

party checks the following condition 

xf + cl);j' - (di:0
8 + di~)a ~ (1 - o8 )xf 

After the transaction the condition changes into 

xf-Es +d);.a +Es R~s - (d',;j' +Es R~s +dif +Es R~s)a ~ (1-5B).if 

Due to partia] cancellation of the subtracted estimated emission and 
:ts uncertainty in the buyer's emission balance the effective emission is 

(14) 

This is exactly the same formula as (13). The bigger the seller's upper 
spread of uncertainty interval is, the less purchased unit is accountecl 
:or the buyer. Expressions (13) and (14) recluce emissions estimatecl 
with an arbitrary precision to globally comparable values, which can 
::ie directly subtracted from country's estimated emission. This way i t. is 
;:,ossible to construct a market for the effective emissions, see (Nahorski 
et al., 2007; Nahorski and Horabik, 2007) for details. 

4. Fuzzy uncertainty 

Interval uncertainty approach does not use any information on the 
distribution of inventory errors. Thus, it ends with too conservative re­
sults. Modeling the uncertainty using stochastic approach canses prob­
Iems related with nonlinearities of the under!ying algebra. Instead, we 

GHG07ZNJHrev.tex; 19/10/2009; 14:33; p.8 



9 

propose to use the fuzzy approach in modeling uncertainty distribu­
tiou. lt allows for good approximation of the distribution while keeping 
simple algebra of the interval calculus. A short information on fuzzy 
sets and some related aotions is given in the Appendix. 

Ja this paper the fuzzy numbers (see Appendix for a definition) 
are usecl to model imperfect know]edge of the uncertainty. A fuzzy 
nu1uber is a straight geueralization of an ordinary nu1nber, whose va.lue 
is unsure. This is the situation, which we spot in the greenhouse gas 
iuventories. 

I 

1/ł 
I 

-i A 

ru 

o 
f•'iyurn. :J. !de111ber.ship runctions for different values of/-

' ' 

0.5 

' ' \ I 
\ I 

\1 
X 

du 
A 

Usually, the maia problem with the fuzzy set approach is to de­
termine the membership fm1ction. Here, we introduce analytical mem­
ber::;hip fuuctions dependent on panuneters. To estiinate the paran1-
et.ers, the fuaction can be fitted to the distribution obtained from 
i\fonte Carlo simulations, as shown in the sequel. la lack of experimen­
tal clistribu;ioas, the parameter can be fixed to fit the experimenter 
expcctat10n-. 

The most popular membership functioas are the triangular or trape­
zoidal oues. These functions are, however, rather inconvenient for our 

2 lt is perliaps worth to mention at tbis point tlrnt we treat the fuzzy approach 
011l.v .i.s an approximatiou of distribution and rdgebraic rules for the variables and 
not for inlrocluction of the possibilit_y function, see e. g. (Bandemer, 2006}, that is 
a110 Lher possible apprnach to the problem. 
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purpose because of their bad approximations of the distribution tails, 
which are very important in the applications described here. 

Consider a family of fuzzy numbers Al'= {(x,µ;(x))lx E supp A 1 } 

indexed by a vector parameter 1 = [1J', 1~] E c+ x c+, with the 
support supp Al'= [-d~, d'..i_]. The proposed membership function has 
the form, see fig. 3. 

{ 

a(l - i,;-)'" 
µ' (x) = A I 

A a(l + 7)' 
A 

for O :5 x S dA 

for d~ S x < O 
1

1
, ," ,f 0 (15) 

where a is a normalizing factor used for fitting the membership funct.ion 
to empirica] distributions. In the theoretical considerations it can be as­
sumed that the membership function has been normalized and therefore 
a = I is taken in the sequel. Let us note that taking , 1 = ," = O we gct 
the even distribution, see fig. 3, and actually reduce the considerntions 
to the interval case. 

~i;(x) 

X 

-10 -6 -2 2 6 10 14 18 22 26 30 

Figure ,f. An est imate of n membership function Jt1(x) co.kulnted t1sing the ~·fonte 
Carlo method. 

Fig. 4 presents an estimate of an asymmetric distribution obtainecl 
using the Monte Carlo method and presented in (vViniwarter and Muik , 
2007). 
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A' 

X 

Pi9m-e 5. Definition of arens under asymmetric fuzzy number membership fuuction. 

-Ll. Co~JPLIANCE: 

lt is assumcd that the uncertainty of the estimate :fu is clescribed by 
t.he membership function 

'L' (,;) - b I 
{ 

(1 - x~,f•• )'•' 
, i, . - (1 + z )'Y• 

and of the estimate :i:e by 

Known limit 

for Xb $ x $ Xb + dt 

for Xb - d( $ x < xb 

for :i:e $ X $ Xe + d~ 

for :i:e - d~ $ X < :i:e 
(16) 

We start with the exactly known limit case. First , we calculate by 
integrntion the whole area A under the membership function. It is the 
su111 of two areas, see fig. 5 

A=AL+A" 

A l 1'"' ( X - :i:e),' d~ = 1 + --1 - 'dx = --1 x,-d( de l + 1e 

l
·i,+d;' X _ X „ du 

Au= (l---e)''dx=--e-
ic d~ 1 + 7g 

\·Ve want now to find the distance X cn between Xe and :i:e + Xrn, 

where t.he latter is the value cutting off the most right etth part of the 
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area under the membership function, see fig. 5. This area, clenotecl A 0 , 

for O S o- S Au /(A 1 + Au), where A 1 is the area uncler the left branch 
of the membership function and Au uncler the right brancl1 is 

Now, it must hold 
Ao =aA 

which after some algebraic manipulations gives 

x ={1-[(l+śl+')'~)o-J i-¾}d" 
ca d~l+r~ C 

Finally, the compliance checking condition is 

d' 1 + u I x + {1 - [(l + _.s~ )o-] i+,;- }d'.' < L 
C dg1+,~ c-

(17) 

For the interval uncertainty case ')'~ = ')'~ = O. Then the above 
condition is the same as (6), and the symmetric case d~ = d~ = de and 
')'~ = ')'~ = ')'c, and the above condition takes the form 

This formula has been derived in (Nahorski and Horabik , 2008a). 
For the symmetric case only the range O S o S 0.5 is practically 

worth to be considerecl, as for o = 0.5 the above condition takes the 
form Xe S L, and for o > 0.5 we would Jet for exccesion of the limit, i.e. 
for x > L. For the asymmetric case the range OS a S A"/ (A1 + A") 
should be considered. Thus, the limiting a can take values greater or 
smaller than 0.5. For the interval uncertainty the range will be O S o- S 
cl"/(d1 + d"). 

Let us then notice tha.t for the asymmetric clistribution, like in fig. 4, 
the likelihood of noncompliance when Xe is only comparecl with the 
limit L is greater than 0.5, in the sense that for the random occurance 
of the inventory i,, but compatible with the clistribution, the limit will 
be mare freąuently exceecled then not achievecl. 

Emission reduction 
For the emission recluction case, to fine! the membership function 

of the fuzzy number Di = .i:, - (1 - 5)ib as a linear combination of 
the fuzzy numbers i 0 and ie, the ry-cuts will be used, see Appendix for 

GHG07ZNJHrev.tex; 19/10/2009; 14:33; p.12 
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X 

expla11ation of this notion. For the number ie the upper ,f;Ju and the 
!ower i/ ends of the 'IJ-cut are as follows, see Fig. 6. For i:;!u we have 

(
l _ xiu - i:e)7!' 

d~ = 1/ 

Then, assu111ing r~' =/:- 0 1 

l 

Xt'· = i:c + d~(l - 17,Y) 

lu the same way, for i /, assu1ning 1'~ =/: O, 

( xt - Xc)7; 
1 +-d-l- =17 

C 

ancl 
l 

xi = ie - d~(l - 71'l) 

For ,~• = O or 1~ = O we have ·17 = l. For this co.se the expression like 
I 

·11,{ is not formally defined. Thus, we a<lclitionally <lefine 

l 

17-=;f = o, for ,: = o 
l 

11'l = o for "/~= o 
The fozzy number ib can be treatecl analogonsly. But we consicler 

the number -(1 - o)i:b. Taking analogous asnmptions and aclclitional 
clefi nitions as above, we naw look for i:t satisfyi11g 

( _ xt + (1 - ó) :h)7' _ 1 
(1 - ó)di: - 17 

GHG07ZNJHrev. ux; 19/10/2009; 14 :33 ; p.13 
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frorn where the upper end i;;"' of the 1)-cut is given by 

For the !ower end it of the 1)-Cnt the eąuation 

,rył (1 Ó) - I 

( Xb + - Xb)"'' -1 + (1 - ó)di - '7 

provides 

xt = -(1 - ó)ib - di(l - ó)(l - ')i) 

Finally, the 1)-Cut of the munber Di is obtained applying the modi­
fied interval calculus rules (9) and (10) for the sum of the 1)-cnts of the 
nnrnbers ie and -(1 - ó)xb, Thus 

l I 

Di""= Di+ (1 - ()[if.,'(l - '7:;-:,r) + d/,(1 - ó)(l - '71 )) (18) 

Dx"1 = m - (1- ()[d~(1- '71) + dW- 6)(1 - '7ł)J (19) 

The above eąuations show dependences of Di:'Jl and Di"" on '7, that is 
they are the reverse functions of the two brnnches of the mernbership 
function µbi(x), see fig. 6. 

Let us now transform (18) to 

Di:'l"-Di 
1-----

dbc 

d~1)Ih;' + dU1 - ó)1) 1h{ 

dg+ di(l - ó) 

where dbe is given by (10), and define 'Y&e t.o satisfy the eqnation 

if.:''7 1h ;' + di(l - ó)'71hl :,b-
d:, + db (1 - ó) = '7 ,, 

From the above 

l 
1bc = --------~ 

l d~17 1h~' +d~(t-6),,1hi 
og„ d~+dl(I-ó) 

log') 

In the spirit of earlier additional definitions we also define 

for ')'; = O or 'Yb = O 

(20) 

(21) 

Now it is possible to write the right brnnch of the rnembership function 
as 

-Y" ( ) ( X - Di )-y" 
J.lX1,c X= 1-~ be 

be 

(22) 
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Likewise we get 

l x-Dx ' 1•J .. (x) = (1 + -d-1-)
7
"' 

be 

where di., is given by (9), and 

with 

logi) 

for -y~ = O or -y~ = O 

15 

(23) 

(24) 

Now, the most right 0<th part of the a.rea under the membership 
function (22) is 

l Dx+d;:., x - Dx • & x 1 • 
A,. = (1 - --,-)7••dx = ~(l - ~) +-r,, 

Di+"• d'bc 1 + 'Ybe ~c 

and the a.rea under the entire membership function (22) - (23) is 

lrD„ x - Dx ..;., hDz+~, x - Dx • 
A = (1 + --) "'dx + (1 - --)7••dx = 

Di-d(, di., Di ci;:,, 

di., ~e =--+--
1 + -rL 1 + -rt: 

(25) 

Because A,. = a,A, then its solution for x,., denoted xbco, has the form 

(26) 

and finally the compliance condition is 

• { [( d/,, 1 + -yi.:,) ] ~} .,.. ( l ') • Xe + 1 - 1 + JU ---1 O< •• abc :$ - u Xb 
U/ie 1 + 'Ybc 

(27) 

This condition is analogous to (17) . For the intervaJ case -rfe = -yt, = 
O and (27) reduces to (12). For the symmetric distribution dbc = ~e = 
dbe and -rlc = -yi.:, = 'Ybc and it reduces to 

(28) 

The condition (28) has been derived in (Nahorski and Horabik, 2007). 
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4.2. EMISSION TRADING 

The formula for the eflicient ernission can be quite easily obtained for 
the symmetric distribution (28) using derivations similar to interval 
case. Before the trade the buying party has to satisfy the condition 

xf + [1 - (2a) ~ Jd/!; $ (1 - ó8 )xf 

and after buying Es emission units from the seller it becomes 

1 

xf - E5 + [1 - (2a) ~](df + P;S R~) $ (1- ó8 )xf 

Then the efficient ernission is 

(29) 

However, the problem becomes more difficult for the asymmetric dis­
tributions, as then the uncertainty distribution bounds die and dl:c enter 
nonlinearly in the compliance condition (27). This is why linearization 
is now used to obtain the result. The exact derivation is presented in 
(Nahorski and Horabik, 2008b). This way the following expression for 
the eflicient emission is obtained 

dlS I 

E0 11 = Es { 1 - {1 - [(1+ ~s )a] i+,~,
9 

}R:;5} (30) 
C 

It genera.lizes expressions for simpler cases. In particular, for the known 
limit case the following substitution should be made: 'YbcB --+ "1"8 . For 
the symmetric distributions the substitutions are: d~s --+ ds, <f:'§ --+ ds, 
'YbcB --+ "ff, which provide (29). For the interval uncertainty: 'Yi:c8 --+ O, 
whlch gives (14). 

In comparison with the formula (14) for the interval uncertainty, the 
formulas (29) and (30) depend on parameters 'Yfc or 'Y/:c8 of the emission 
buyer uncertainty distributions. This would complicate considerably 
the market, as the traded quota depends in such case both on the 
seller and the buyer uncertainty distributions. This problem will not 
be discussed in this paper. 

4.3. EQUIVALENCE OF APPROACHES 

Let us notice that actually the fuzzy approach formulas (17) and (27) 
can be considered equivalent to the interval approach ones (6) and (12), 
provided appropriate values of a are chosen for both cases. Eąuiva­
lence of the compliance checking formulas causes also equivalence of 
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the emission trading counterparts. Denoting the interval case by the 
subscript 1 and the fuzzy case by F, and equaling the effective emitions 
EeJ J,F = Ee//,/, after simple algebraic manipulations we arrive at the 
following condition 

If the cases cq = O (no noncompliance risk) and -y;:fl = O (interval 
d"'5 S uncertainty) are excluded, then for O < cr1, crF ~ d•s+d's and ')'~ > O 

=h= • • 
Cl/ > ClF 

Dependence of cr1 on c,F and -rl:f is shown in 'ThbJe I. The resu]ts 
show that et/ rises quickly when -rl:c8 rises. In cases considered in our 
calculations estimates of -rt:f close to or much higher than 1.5 were 
obtained. Then, practically it seems that cr1 2'. 0.3 should be taken 
even for small values of etF, 

An interpretation of these results is quite straightforward. Within 
the considered family of distributions ignorance of the uncertainty dis­
trilmtion in the interval case requires bigger reduction. To obtain the 
same effective emitions as for the fuzzy uncertainties, a bigger substitu­
tional noncompliance risk should be adopted in the interval approach. 
Thus, for cr1, at least the values 0.3 or higher should be taken to com­
pensate for ignorance of the exact knowledge of the uncertainty interval 
distribution, even if a small noncompliance risk is actually meant. 

5. An example 

In the example the data from the Monto Carlo simulation presented 
in (Ramirez at al., 2006) are used. Uncertainty distributions of three 
gases emissions, carbon dioxide CO2 , methane CH4 and fluorine F, 
are considered. The uncertainty distributions were chosen to illustrate 
the proposed rules of trade. They are depicted in fig'S. 7, 8 and 9 to­
gether with fits of the distribution functions (15). It is assumed that 
each emission is related to different companies, called CO, CH and F, 
respectively. Table II contains parameters of the distributions . 

We do not consider the compliance, and only the trade. Let us then 
suppose that the three companies mentioned: CO, CH and F, want 
to trade with each other. The uncertainty of emission in the company 
CO is small, less than 4%, while in the rest it is around 38%. On the 
other hand, the shape of the uncertainty distributions of CO and CH 
are similnr, with values of -y of the order 2 - 2.5 for the !ower and 4 -
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Table I. Dependence of crr on aF and 'Y:cs. 

ap l 'Y"tcs - 0.1 0.5 1.5 2 2.5 

d~/d; = 0.2 

o.os 0.06 0.13 0.20 0.27 0.33 0.37 

0.10 0.12 0.20 0.29 0.36 0.41 0.45 

0.15 0.18 0.27 0.35 0.42 0.47 0.51 

0.20 0.23 0.32 0.41 0.47 0.52 0.55 

0.25 0.28 0.37 0.46 0.51 0.56 0.59 

~/d: =0.5 

0.05 0.06 0.12 0.18 0.24 0.28 0.32 

0.10 0.12 0.19 0.26 0.31 0.35 0.39 

0.15 0.17 0.25 0.32 0.37 0.41 0.44 

0.20 0.22 0.30 0.37 0.41 0.45 0.47 

0.25 0.27 0.35 0.41 0.45 0.48 O.SO 

d~/d'; = 1 

o.os 0.06 O.li 0.16 0.20 0.23 0.26 

0.10 0.12 0.17 0.22 0.26 0.29 0.32 

0.15 0.17 0.22 0.27 0.31 0.33 0.35 

0.20 0.22 0.27 0.32 0.35 0.37 0.38 

0.25 0.27 0.32 0.35 0.38 0.40 0.41 

Table Il. Parameters of the distributiona. 

Distribution d' [Tg] ..,, -,u du [Tg] 

co, 4.8 2.6 4.5 6.9 

CH, 4.3 2.1 3.9 6.7 

F 2.0 1.4 1.4 3.1 

4.5 for the upper branch, while the shape of F is close to triangulnr, 
with 'Y equal 1. In Table III the values of Eeff are depicted for three 
assumed trades, when each company at tum is the seller while other 
are buyers. Two values of the original noncompliance risk a = 0.05 or 
0.1 were ossumed and substitutional values of a1 are given in the right 
side of the table. Most of them are of the order of 0.4. For CO, with 

GHG07ZNJHrev.tox; 19/10/2009; 14 : 33; p.18 



19 

X 

154 158 162 166 [Tg] 

Fiyure 7. Fit of a membership function µ}(x) to the histogram for emission of C02. 

small uncertainty, the values E;11 are only sligtly smaller than 1. The 
vnlues E;11 and E;11 m·e much smaller, around 0.8 - 0.9. 

Let us notice that for the fuzzy distribution there is no unique 
substitutional risk parameter Ctf related with the seller, because it also 
depends on who is the buyer. This is what causes problems in the 
tracie as compared to the interval case. A solution to avoid it might 
be that a common value 0.4 or a smaller one, like 0.35, is taken for OJ 
to organize the market with a substitutional interval uncertainty. This 
way the market schedulled in (Nahorski et al., 2007) can be applied. A 
market with substitutional risk parameters 0t1 dependent on the buyer 
is, however, an interesting question. lt will be considered elsewhere. 

6. Conclusions 

The paper deals with the problem of checking compliance of pollutant 
emission with a given limit in the case when the observed emission 
values are highly uncertain with asymmetric uncertainty distributions. 
High uncertainty should be also considered in trading in emission per­
mits, which is frequently used to minimize the emission abatement cost, 
and this is also clone in the paper. Asymmetric uncertainty is evidenced 
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X 

12 16 20 24 [Tg] 

Figure 8. Fit of a membership function µ~ (:,:) to the histogram for emiosion of CH, . 

by recent investigations, and particularly by Monte Carlo simulations 
of uncertainty distributions. 

An interesting case3 of an asymmetric distribution of uucertainty 
is connected with the risk in valuing forest carbon offsets causecl by 
accidental losses, e.g. due to wildfires (Hurteau et al., 2009). The un­
certainty there has a specific one-sided distribution. This case entered 
already the implementation stage in the U. S. forest carbon storage 
project (Mignone at al., 2009) . However, the solutions applied there 
take into account that the related uncertainty is eventuo.!ly resolved in 
the future, as the damages are known after they have happened. This 
is in opposition to the case discussed in this paper, where uncertainties 
are inherent part of data considered in all stages of decision making. 

A market with the effective emission permits has been outliued in 
earlier pnpers (Nahorski et al., 2007; Nnhorski and Horabik, 2008n) for 
the symmetric case. That construction is valid also in the asymmetric 
case discussed in this paper. 

3 This direction of research has been brought to our a.ttention by one of 
undisclosed reviewers. 
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X 

6 8 10 12 [Tg] 

Figure 9. Fit of o. membership Cunction µ~(x) to the histogram for emission of F. 

The idea. proposed in this pa.per lies in grounding the derivations in 
the fuzzy set a.pproach. A family of fuzzy numbers depending on free 
pa.rameters is introduced. These para.meters can be chosen to appro­
priately shape the distribution of uncertainty. The a.pproa.ch provides 
the closecl form formulas, which can be used for designing a market 
for the eflicient emission permits. However, for the most generał ca.se of 
an asymmetric membership functions a closed analytical so!ution could 
not be found. An a.pproximate solution was considered for this case and 
a generalized rule for compliance has been derived. 

Application of the fuzzy numbers and considera.tion of a.symmetric 
clistributions enabled us to much more precisely determine the required 
level of reduced inventories to get high likelihood of fulfilling the given 
limit or reduction. Moreover, the better accura.cy in determining the 
level give rise to better scaling the amounts of emission emitted by 
pa.rties for using them in trading, w!Jich bas a. mea.sura.ble financial 
meaning. Approximating distribution by a. function dependent on pa.­
rameters allowed us to derive the analytical expressions for reduction 
of emissions and for sca.ling the traded emissions. The distribution 
parameters have been a.cquired by fitting the distribution functions 
to the dnta from the Monte Carlo simulations. 
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To.ble III. Effi.cient ernissions in the trade and substitutional vnlues 
of a1 for interval uncertainty. 

Emission R" E!11 E~11 S:11 a} a} a} 

a= O.OS 

co 0.043 seller 0.86 0.86 0.21 0.36 

CH 0.385 0.98 seller 0.85 0.39 0.36 

F 0.371 0.97 0.75 seller 0.39 0.37 

a= 0.1 

C02 0.043 seller 0.89 0.90 0.28 0.41 

CH. 0.385 0.99 seller 0.88 0.44 0.42 

F 0.371 0.98 0.79 seller 0.44 0.42 

The results obtained are generalizations of the results derived for 
the interval and symmetric uncerta.inty models. However, it was shown 
that the rules for the interval case can be used instead of the gen­
eralized ones, provided the appropriately higher value of the risk of 
noncompliance is substituted in the interval case. 

Although the fits of the functions presented in this paper to the data 
are quite good, except perhaps in the central part of the uncertainty 
interval, a question of a possible better fit to the data has been risen 
by one of the undisclosed reviewers. As this is certainly possible with 
a more flexible class of functions, a possibility of obtaining close ana­
lytical solution may be a challenging problem. It will be a subject of 
further investigations. 

Appendix: Fuzzy sets and fuzzy numbers 

To introduce the notion of a fuzzy set Jet us first consider a classical 
set A from an universe U. It can be conveniently described by the 
characteristic function XA defined as 

{
lifuEA 

XA(u) = O ifu ,t A 

whlch says that a point u E U belongs to the set, if XA (u) = 1, or does 
not belong, if XA(u) = O. 

In a fuzzy set the characteristic function XA is generalized to take 
any value from the interval [O, 1 ). It is then called a membership Junction 
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and is denoted µA. The value of a membership function µA(u) reflects 
the degTee of acceptance of the point u to the set. Thus, a fuzzy set is 
characterized by the set A and the membership function µA. Then, an 
usua] set is a special fuzzy set with the membership function being the 
characteristic function. A comparison of a membership function and a 
characteristic function of a set is shown in fig. 10. 

A fuzzy set can be also fully characterized by a farnily of so called 
77-cuts4 denoted by AlJ, i. e. points of U, for which the value µA(u) 
assumes at least the value 77, see fig. 10, where an example of a 7rcut 
for 77 = 0.5 is depicted. 

1 XA 

u 

m-p1 m m+pr 

Figu.1-e 10. The characteristic function and a membership functions of the set A. 

Two additional notions connected with a fuzzy set are worth to 
mention. One is the support, called supp A, which is the set of points 
"• for which the membership function is positive, i. e. : 

supp A= {u EU: µA(u) > O} 

Another definition of the support may be formulated using 77-cuts, as 

supp A = !,~ A,1 

The second notion is the core of the fuzzy set, ca.lled core A, which is 
the set of points, for which the membership function is equal 1, i. e.: 

core A= {u EU: µA(u) = 1} 
4 Here we call as the 11~cut of a fuzzy set A the notion usuaUy cnlled the a•cut, 

i.e. the set A,1 = (x E supp A/1,,.(:r) ,". 11), for ry E (O, l]. 
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Using the notion of the ry-cuts we may also write 

core A= A1 

A fuzzy set A is called a fuzzy number, if it satisfies three additional 
conditions: 

1. core A consists of only one point. 

2. The membership function does not increase starting from the core 
point toward both sides. 

3. Every ry-cut is a ( connected} close interval. 

A weaker definition of a fuzzy number is often used, with the fu-st 
condition repiaced by 

l' There exists a point belonging to the core A. 

But in this paper we use the stronger former defin.ition. 
The ry-cuts for a fuzy number form a family of intervals. Each in­

terval can be interpreted as our conviction in precision of knowledge of 
the core value. Values of the level '7 close to 1 mean that we are well 
convinced that the core value is precise. Small values of '7, close to O, 
mean that our conviction is small. See also (Dubois and Prade, 2005} 
for more forma.I discussion of this subject. Calculations performed on 
fuzzy numbers allow us to process whole this knowledge in common. 

Technically, two functions defined for nonnegative argurnents may 
be introduced, L and R, (Bandemer, 2006}, such that they luwe the 
unique va.lue 1 at O, L(O} = R(O} = 1, equa.l zero for arguments greater 
or equal 1, L(u) = R(u) = O for u ;:: 1, and are not increasing. Then, 
given core A = { m}, the membership function of a fuzzy number may 
be constructed using the above functions as its left and right branches 

µ~(u)=L(~) 
Pl 

for u$ m (31) 

(u-m) µA(u) =R --
Pr 

for u;:: m (32} 

where Pl and Pr are scale parameters, see Fig. 10. Let us denote the 
fuzzy number constructed this way as A(m,p1,Pr)LR· 

Although operations on fuzzy sets or fuzzy numbers can be defined 
in a mare generał context, they are first restricted only to fuzzy numbers 
described in the above LR form. For two fuzzy numbers A(m,p1,Pr)Ln 
and B(n, qi, qr)LR the following operations are defined, see (Dubois and 
Prade, 1978): 
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1. Addition 
A+ B = (m + n,pz + Ql,Pr + Qr)LR (33) 

2. Multiplication by a positive real number c 

cA = (cm,cpi,cpr)LR (34) 

3. Multiplication by a negative real number c 

cA = (cm, lclPr, lclp1)RL (35) 

with interchange of the function L and R in (31) and (32) 

1 (cm-u) µcA(u)=R ~ for u :5 cm 

µ~A(11) = L(u1:1:) for";:: cm 

In the generał case intervaJ caJculus for the 17-cuts can be used to 
get the appropriate operation. 
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