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Streszczenie. Uncertainty of reported greenhouse gases emissions obtained by
aggregation of the partial emissions from all sources and estimated so far for sev-
eral countries is very high. Independent calculation of the estimates could confirm
or question the values obtained up to mow. One of the aim of this paper is to
propose statistical signal processing methods for doing it. They use the yearly
reported observations while assuming temporal smoothness of the emission curve.
The considered methods are: a spline function smoothing procedure, & time-varying
parameter mode), and the geometric Brownian motion model. They are verified on
historical observations of the CO; emissions from combustion of the fossil fuels.
The obtained estimates of variances agree in the range with those obtained from
national inventories. As an additional result, some regularities in observed curves
were noticed.

Keywords: modelling CO; emissions, nonparametric methods, parametric meth-
ods, geometric Brownian motion, estimation of variance.

1. Introduction

The Kyoto Protocol contains obligations to decrease the emission of
the greenhouse gases of 5.2% below 1990 level by the first period up to
2008-2012. The greenhouse gas emission inventories of each country
are monitored by the secretariat of the United Nations Framework
Convention on Climate Change. However, the uncertainty ranges of
the national accounts are big and in most times exceed, sometimes
very considerably, the emission reductions agreed upon in the Annex I
to the Protocol.

The parties who signed the Annex I have to monitor their emissions
starting from the base year, which is mainly 1990, This way a dozen
of emission observations for each country are already available. This
redundancy in observations could be perhaps favorably used to improve
estimates of individual emissions in the commitment period 2008-2012,
using statistical inference. They may be also used to estimate the pa-
rameters of the statistical distribution of the observation errors, this
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way providing independent assessment of the range of errors estimated
up to now by propagation of initial errors in calculations. Both these
tasks are addressed in the paper. The methods used are verified on data
on COy emissions from combustion of the fossil fuels estimated for the
years 1751 - 1998 (Marland et al., 1999).

We consider three methods for estimating emissions and their vari-
ances: the smoothing splines (Wahba, 1990; Gu, 2002}, a parametric
mode! with a time variable coefficient, and the Brownian motion model.
Other methods could be tried to solve the problem. A simple alter-
native would be to use another smoothing method. Those based on
the wavelets might be promising ones (Debnath, 2002; Walter, 1994).
Popular methods in the automatic control literature use the parametric
models with calculation of the state errors following an earlier phase of
the parameter estimation. In some of them, like in the extended Kalman
filter, the parameters and the states are estimated simultaneously. To
use this kind of methods, the parametric model is needed. Apart of
that, most of them require quite long data samples to converge.

Prediction of future emissions is of interest of many investigations,
see e. g. (Kroeze et al., 2004; Manne & Richels, 2004; Riahi et al.,
2004), as it is connected, for example, with estimation of the national
greenhouse gas balances in the commitment period or, on the global
scale, with estimation of the supply and demand to predict the price
of the tradable emission permits. Although the results presented in
the paper could be also used for the prediction purposes, our paper
concentrates more on historical data and possibility of gathering useful
informations from them.

Thus, we estimate the variance of the observation errors, this way
obtaining independent values of the uncertainty level. Although uncer-
tainties considered here are not exactly the same as those estimated as
inaccuracies in inventories, the estimates turned out to be of similar
range for both cases, This supports, in a sense, correctness of the
methods applied for estimation of the inventory uncertainties up to
now, at least for the fossil fuel emissions.

To estimate the variance, different methods of modelling the emis-
sions were used. Applying them to the historical data some regularities
were noticed. The emissions often follow piecewise exponential curves,
particularly in the periods of steady growth. Much less regular data are
observed in the decline periods. Highly irregular are periods of wars and
that of change from growth to decline.

In Sec. 2 a basic notation is introduced. Sec. 3 presents the non-
parametric method based on smoothing splines. In Sec. 4 application
of a parametric method is discussed and some numerical results are
presented. Sec. 5 shortly discusses possibility of using the Brownian
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motion model for describing evolution of national CO; emissions in
time,. Sec. 6 concludes.

2. Notation used

By z(t), as a function of time, we denote the integral of the real emission
calculated on the interval (¢t — 1,t], where t is expressed in years. Thus,
the integral is calculated over the one-year-back period. In the sequel
we call z(t) the emission. The function z(t), as the integral of a positive
function, is continuous and positive. In the paper we assume that z(t)
is a smooth enough function. The emission balances provided by the
Annex I Parties are prepared by inventory of emissions from all involved
activities during a year. Due to uncertainties in assessing the exact
quantities and coefficients, they are in errors. To properly handle this
situation, integer values of ¢ are assigned to the end of consecutive years,
which means that the emissions can be only observed with errors in
integer time instants t;. We denote the observed (reported) values y(¢;)
or shortly y;. The index i begins here at 0 and takes the consecutive
integer values. The real emissions z(t;) = z; are unknown and can
be only estimated. Hats will mark the estimated values, so ; is the
estimated emission.

By 4 we denote the fraction of the emission to be reduced within
the Kyoto obligations until the commitment period. Thus at the com-
mitment period the emission should be not greater than (1 — d)zo.
Obviously, the percentage reduction required by the Kyoto protocol is
1004, but we often refer directly to & in per cents. The value of § is not
greater than few per cents.

As it is common to express obligations in percentages, it is useful to
work not with the straight observations but with their logarithms. Let
us denote X; = In (#;/0), thus X; is the logarithm of the normalized
emission. As in our case £;/ is close to 1, then it approximately holds

Ki=himil g T0 1)
g  To 0

Thus, X; may be interpreted as the relative change of #; with respect
to £g and may be expressed in percentages.
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8. A nonparametric method

3.1. BASIC ASSUMPTIONS AND SIMPLIFICATIONS

We assume that the real process z; is observed with a multiplicative
error €; = u;c;, where
E(w)=m  Ellwui-m)’]=0o],  cov(uu;) ="
Thus, the observation can be presented in the following way
yi =z +wir; = (14 w)w, i=0,1,...,N

where y; is the observed emission, z; the (unknown} real emission, and

u; its relative uncertainty.
The above dependencies are also true for i = 0. Dividing sides and

taking the logarithms we get

1 + U;

1+ug

where Y; = In y; /4o and X; = Inz;/2¢. For small uo and u; it approxi-
mately holds

Y;=X;+In

14w
In ——
1+ wug
resulting in the expression

AU — Ug

Yi=Xi+ui—u

The error v; = u; —ug has the zero mean, £(v;) = 0, and the variance
2 .
o2 = of + 0} ~ 2vip = 6} + 0§ — 2pip0;00, where pig = ¥io/0i00 is the
cross correlation of #g and u;. The covariance is equal to

cov(vi, v;) = Bl{u; ~ o) (uj — u0)] = vij ~ Yio — Vjo +

It equals zero, if all summands are equal. But generally the sequence
is correlated, even if the original errors u; are not. We assume, how-
ever, that the correlation is negligibly small. As noticed by Wahba
({Wahba, 1990}, sec. 4.9), correlation of errors may considerably worsen
the smoothing results, as far as reconstruction of the original function
is considered.

3.2. SMOOTHING AND UNCERTAINTY ANALYSIS

3.2.1. Smoothing splines
Let us consider some abstract data z; generated by the following system

zi=f(t)+e, i=0,1,2,...,N
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Rysunek 1. The interpolating spline (dashed curve) and the smoothing spline (solid
curve) to some emission data (dots).

The vector
e=(eg,...,en) ox N{0, o%1)

where I is the identity matrix, contains the set of observation errors.
We want to recover the function f(¢), assumed to be smooth enough,
knowing only the erroneous observations 2;,7 = 0,1,..., N. For this we
use splines.

In the interpolating splines an approximation 2(t) to f(t} is obtained
assuming that 2(t) is a polynomial of an order m (we use m = 3) on
each segment [ti,t;41),4 = 0,1,2,..., N — 1, satisfying #(¢) = z; and
having the continuous derivatives up to the order m—1 on the whole in-
terval (t;,tn). In the presence of noise the interpolating spline generally
quickly varies in time, overshooting and undershooting considerably the
function f(t).

Much better approximation can be achieved for noisy data using the
smoothing splines. Their idea is to find the function 2(t) that does not
need to go directly through the observed points z;, in order to get a
function with a smaller (m — 1)th derivative, see Fig. 1.

If we restrict our attention to the third order smoothing splines,
then the task is to find a function 2(t), which minimizes the sum

Tt - 2(0) 4 [ 00 @)

where
) =ai+ bt — ) ot — )+ di(t — t;)?

tetitivy), 1=0,1,...,N~-1
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The solution of the problem, for a given A, is delivered e. g. in Wahba
(Wahba, 1990) and can be written in a general form

dz(t)
dt
see also (Gu, 2002), where A4;; and By are coeflicients which do not

depend on the data z; and can be precomputed. Thus, both 2(z) and
d%(t)/dt are kernel estimators.

E(t) = a; = T;A;(N, M)z, =b; = 5 By; (N, M)z (3)

3.2.2. Uncertainty analysis
The solution depends on the value of A, This value is estimated by the
generalized cross validation method (Wahba, 1990) by minimizing over
A the criterion

Eﬁo[zi - éf(N’ ’\)]2 (4)
N+1-5N A:(N,X)

V(N,A) =

where 2; (N, A) is the solution of the problem (2), in which the observa-
tion 2; is dropped. The optimal value will be denoted A. The optimal
value of the criterion can be used as an estimate of o2, i.e.

G (N) = V(N, ) ()

The expression in the denominator of (4) can be interpreted as the
degrees of freedom of the noise, in analogy to the degrees of freedom in
the regression analysis. However, in contrast to the regression analysis,
only consistency of the estimate for the smoothing splines has been
proved theoretically ((Gu, 2002), th. 3.4), while other good statistical
properties have been checked only on numerical simulations.

The estimated variance of 2(t;) is now

5% (N) = 6% (N)Ag(N, }) (6)

3.2.3. Application to real data

The above analysis was applied for smoothing the data ¥; = In(y;/yo).
Equation (6) has been used to calculate the estimates of the standard
deviations 3 (/) for the emission from the fossil fuels provided by
Marland et al. (Marland et al., 1999), in the periods 1950-1998 and
1970-1998. The value 63 (N) depends on the number of data used.
This dependence is visible, although mostly not crucial, in the results
presented in Table | for different time periods. For few cases, like e.g.
Argentine, Canada, USA, reduction of the number of data caused big
drop of the standard deviation value.
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In ((Wahba, 1990), sec. 4.9) it is recommended to use at least 25-
30 observations when applied the smoothing splines. The data used in
calculating the values in the left side of Table I contained 29 points,
just satisfying the recommendations. However, for many countries, the
corresponding standard deviations differ for different length of data.
At least in some cases this is correlated with extreme values of A,
either very close to zero, like for Argentina, Canada and USA, or very
high, like for Austria and Cuba. This phenomenon is also mentioned
in ((Wahba, 1990}, sec. 4.9). This may suggest that the data in the
shorter sequence may be too short.

The estimated values agree quite well with the common idea on
the magnitude of errors made in calculation of the fossil fuel emission,
believed to be of few per cents. They also agree well with the estimates
calculated by other methods for few countries and collected in ({Gugele
at al., 2003}, Tab. 6). A little bigger figures obtained in some of our
calculations may be connected with some additional factors that might
have influenced the calculated estimates, as year-to-year variations in
the weather conditions or variations due to change in economic factors
of the countries. However, application of statistical paired Student test
gives no reason to reject the hypothesis on equality of means of data in
any two columns in Table I (the biggest value of the ¢ statistic is equal
to 0.78). This supports the claim on similarity of results obtained by
different discussed here methaods.

4. Empirical parametric models

In the previous section we noticed that the consecutive values in the
emission sequence might be correlated. To better model this property,
in this section we consider a set of values z; forming a time series
consisting of N elements and introduce a difference model to describe
the time evolution of the data. Then we motivate the choice of the
model and finally present some results for fitting the model to the
emission data for some countries.

As we assumed that z; are positive we can define a new time series

z Birt — 2 '
FRLL 2 N W & . i=0,1,...,N—1
z; z;

Each element g; of a new time series can be interpreted as a relative
difference of the two consecutive elements z;;; and z;.
From the latter relation we can now formulate the following differ-

ence equation
Tip) = i = Gi%i, zo = z(to) (7)
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Tablica 1. Estimated standard deviations of observation errors for
different countries and two time periods, for two methads, in [%)].

| Years | 1950-1998 | 1070 -1998 | ~ 2000 |
l Country l smooth. I param. ] smooth. I param. I reported I
Argentina 2.3 0.7 04 0.1
Australia 1.8 0.5 0.9 0.5
Austria 2.7 0.9 1.1 1.0 1.0
Belgium 2.3 3.3 2.3 3.3 1.1
Brazil 1.9 1.1 1.3 1.7
Canada 1.9 0.8 0.5 1.8
China 4.7 7.1 14 1.7
Cuba 6.6 2.2 1.9 14
Egypt 3.4 14 2.6 1.1
Finland 4.8 1.3 3.8 3.6 3.0
France 2.3 3.0 2.3 11 < 2.5
Greece 2.8 0.9 2.2 0.9
Iceland 3.5 14 2.7 1.4
Ireland 4.3 1.2 2.2 2.2 < 1.0
Israel 34 2.2 2.0 0.9
Italy 1.6 2.3 1.3 0.7
Japan 2.7 4.8 1.8 24
Luxembourg 2.9 4.3 2.8 4.0
Mexico 1.7 2.1 1.7 2.0
Netherlands 2.8 0.9 3.7 14 1.5
New Zealand 1.8 0.8 2.9 2.1
Norway 4.2 2.0 5.2 3.3 1.5
Poland 1.5 1.8 1.8 2.2
Portugal 1.9 09 1.9 1.2
Romania 1.9 2.4 2.1 2.9
Spain 3.0 1.2 1.7 1.0
Sweden 2.5 1.1 2.3 1.4 1.0
Switzerland 3.3 4.3 1.9 1.0
Turkey 3.1 4.3 34 11
U. K. 1.6 0.5 14 0.7 2.0
USA 1.8 0.5 0.4 2.1 1.5
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Because y; = (14 i)z, then (7) can be transformed to

14uip

yier = (14 gi) T7a ¥

Dividing both sides by y¢ and taking logarithms yields

1+ u;
Yis1 =In(1+4g;) +1n —lﬁ}-'i"yé
or approximately
Yipr = Yim gi+ i1 — w4

from where an estimator §; can be designed as
gi=Yin - Y; (8)
Under our assumption on ;’s we have
E@) =EVin~Yi+tw-ur)=Xin - Xi=ln(l+g) ~ g

Thus the estimator is approximately unbiased. Its approximate variance
is
var(§i) = E(Yiy1 — Xip1 — Vi + X)) =

= E(ujy1 —uo — 4 +u0)? = E(uip1 — )’ = U.'2+1 — 29441 + 0}

4.1. ESTIMATION OF THE PARAMETER g;

The expression (8) was used to estimate the function g; for few coun-
tries from the previously mentioned data of CO; emission from the
fossil fuels (Marland et al., 1999). Some chosen results are presented
in Figs. 2-5. The smoothing splines were used to smooth the points
obtained from (8) with the formulae (3). For each country, in the left
panel the observations (dots) and their smoothing spline approxima-
tions (solid lines) are depicted. The right panel shows the estimates
of the function g;. The dots represent the points calculated using the
formula (8). The bold solid line is obtained by smoothing these points.
The dashed lines show the 95% confidence intervals of the estimates.

Table I depicts also the estimates of the standard deviation of the
errors ;41 — %;. From the comparison with the values obtained from
smoothing it can be seen that both estimates of the standard deviations
are of the same order, although not always very close to each other.
Notice, however, that values from smoothing correspond to the stan-
dard deviations of the errors u; — ug, while those from the parametric
model to u; — u;_;, what might partly cause the differences.
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Rysunek 2. Results of smoothing and estimation of the function g for Australia
in the years 1950-1998. Left panels: dots ~ logarithms of observations, solid lines
— smoothed logarithms of observations. Right panels: dots - estimates of g; from
the formula (8), the bold solid lines ~ their smoothed continuous approxima-
tions, the normal thickness dashed lines - the 95% confidence intervals of these

approximations.
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Rysunek 8. Results of smoothing and estimation of the function g for Austria in
the years 1950-1998. Left panels: dots — logarithms of observations, solid lines -
smoothed logarithms of observations. Right panels: dots — estimates of g from
the formula (8), the bold solid lines — their smoothed continuous approxima-
tions, the normal thickness dashed lines - the 95% confidence intervals of these

approximations.

4.2. PIECEWISE EXPONENTIAL MODEL

Although the estimated functions §(¢) in the previous section vary
in time, in many periods their patterns resembles the constant value
lines. To better investigate this question let us start with examining of
few curves. Figs. 6 and 7 contain emission curves y; and logarithmic
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5.2. ARITHMETIC BROWNIAN MODEL FOR THE LOGARITHM OF THE
EMISSIONS

Due to its simplicity, it is useful to work with the logarithmic diffusion
equation. Letting X = In z, and using It6’s lemma we find that = follows
the arithmetic {or ordinary) Brownian motion

dX =dinz = (¢ - %D’Z)dt +odz (12)

S0
dX = ¢'dt + odz

where ¢’ = g - %02. The variable X follows an arithmetic Brownian

motion with the drift ¢’ and volatility .

We should note here, that although the volatility term is the same
in (12) as in of the geometric Brownian motion for z (9), the element
d(ln z) is different from dz/z due to the different drift expression (so
called Ito's effect).

The drift parameter g can be estimated as the average value of
3 set of differences of the logarithms Inz; — In z;_;. Using the same
historical series we can get an estimation of the volatility o by taking
the standard deviation of In z; —In ;_1, as for the parametric model of
Sec. 4. They can be inserted in equations (10) and (11) to obtain the
characterization of the process in time.

The calculations, not presented here, give bigger estimates of the
standard deviations than those depicted in Table I, comparable to the
piecewise exponential model of Sec. 4. These bigger values seem to be
mainly caused by constant value of g in the model.

6. Conclusions

Nonparametric and parametric methods for modelling the greenhouse
gas emission phenomena and for estimating the parameters are pro-
posed in the paper. They differ in degree of smoothing and precision of
fitting the observations. Comparison of the methods used reveals that
the parametric method of Sec. 4 gives in many instances simpler, less
volatile curves, although it is more sensitive to the smoothing interval.
The smoothing method of Sec. 3 is more accurate and better empha-
sizes the ripples in data. The parametric piecewise exponential model
gives the most rough but also most simple description, showing general
trends in evolution of emission data.

One of the main goals of the paper was to estimate the standard
deviation of the errors. Some signal processing methods are proposed
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