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Modelling C02 em1ss10ns 
and uncertainty variance estimation • 

Zbigniew Nahorski and Waldemar Jęda 
Systems Research Institute, Polish Academy of Sciences, Newe/ska 6, PL-01-447 
Warsaw, Poland e•mail: Zbigniew.Nahorski@ibspan.waw.pl 

5 grudnia 2005 

Streszczenie. Uncertainty of reported greenhouse gases emissions obtained by 
aggregation of the partial emissions from all sources and estimated so far for sev­
era! countries is very high. Independent calculation of the estimates could confirm 
or question the values obtained up to naw. One of the aim of tWs paper is to 
propose statistical signal processing methods for doing it. They use the yearly 
reported observations while assuming tempora! smoothness of the emission curve. 
The considered methods are: a spline function smoothing procedure, a time-varying 
parameter model, and the geometńc Brownian motion model. They are verified on 
historical observations of the C02 emissions from combustion of the fossil fuels. 
The obtained estimates of variances agree in the range with those obtained from 
national inventońes. As an adclitional result, same regularities in observed curves 
were noticed. 

Keywords: modelling C02 emissions, nonparametńc methods, parametńc meth­
ods1 geometrie Brownian motion, estimation of variance. 

1. lntroduction 

The Kyoto Protocol contains obligations to decrease the em1ss1on of 
the greenhouse gases of 5.2% below 1990 level by the first period up to 
2008-2012. The greenhouse gas emission inventories of each country 
are monitored by the secretariat of the United Nations Framework 
Convention on Climate Change. However, the uncertainty ranges of 
the national accounts are big and in most times exceed, sometimes 
very considerably, the emission reductions agreed upon in the Annex I 
to the Protocol. 

The parties who signed the Annex I have to monitor their emissions 
starting from the base year, which is mainly 1990. This way a dozen 
of emission observations for each country are already available. This 
redundancy in observations could be perhaps favorably used to improve 
estimates ofindividual emissions in the commitment period 2008-2012, 
using statistical inference. They may be also used to estimate the pa­
rameters of the statistical distribution of the observation errors, this 

' Partia! financial support from the Polish State Scientific Research Committee 
within the grant 3PO4Gl2024 is gratefully acknowledged. 

9' © 2005 J(/uwer Academic Publishera. Printed in the Netherlands . 
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way providing independent assessment of the range of errors estimated 
up to naw by propagation of initial errors in calculations. Bath these 
tasks are addressed in the paper. The methods used are verified on data 
on CO2 emissions from combustion of the fossil fuels estimated for the 
years 1751 - 1998 (Marland et al., 1999). 

We consider three methods for estimating emissions and their vari­
ances: the smoothing splines (Wahba, 1990; Gu, 2002), a parametric 
model with a time variable coefficient, and the Brownian motion model. 
Other methods could be tried to salve the problem. A simple alter­
native would be to use another smoothing method. Those based on 
the wavelets might be promising ones (Debnath, 2002; Walter, 1994). 
Popular methods in the automatic control literature use the parametric 
models with calculation of the state errors following an earlier phase of 
the parameter estimation. In same of them, like in the extended Kalman 
fil ter, the parameters and the states are estimated simultaneously. To 
use this kind of methods, the parametric model is needed. Apart of 
that, most of them require quite long data samples to converge. 

Prediction of future emissions is of interest of many investigations, 
see e. g. (Kroeze et al., 2004; Manne & Richels, 2004; Riahi et al., 
2004), as it is connected, for example, with estimation of the national 
greenhouse gas balances in the commitment period or, on the global 
scale, with estimation of the supply and demand to predict the price 
of the tradable emission permits. Although the results presented in 
the paper could be also used for the prediction purposes, aur paper 
concentrates more on historical data and possibility of gathering useful 
informations from them. 

Thus, we estimate the variance of the observation errors, this way 
obtaining independent values of the uncertainty level. Although uncer­
tainties considered here are not exactly the same as those estimated as 
inaccuracies in inventories, the estimates turned out to be of similar 
range for both cases. This supports, in a sense, correctness of the 
methods applied for estimation of the inventory uncertainties up to 
now, at least for the fossil fuel emissions. 

To estimate the variance, different methods of modelling the emis­
sions were used . Applying them to the historical data some regularities 
were noticed. The emissions often follow piecewise exponential curves, 
particularly in the periods of steady growth. Much less regular data are 
observed in the decline periods. Highly irregular are periods of wars and 
that of change from growth to decline. 

In Sec. 2 a basie notation is introduced. Sec. 3 presents the non­
parametric method based on smoothing splines. In Sec. 4 application 
of a parametric method is discussed and some numerka! results are 
presented. Sec. 5 shortly discusses possibility of using the Brownian 
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motion model for describing evolution of national CO2 emissions in 
time. Sec. 6 concludes. 

2. Notation used 

By x ( t), as a function of time, we denote the integral of the real emission 
calculated on the interval ( t - l, t], where t is expressed in years. Thus, 
the integral is calculated over the one-year-back period. In the sequel 
we call x(t) the emission. The function x(t), as the integral of a positive 
function, is continuous and positive. In the paper we assume that x(t) 
is a smooth enough function. The emission balances provided by the 
Annex I Parties are prepared by inventory of emissions from all involved 
activities during a year. Due to uncertainties in assessing the exact 
quantities and coefficients, they are in errors. To properly handle this 
situation, integer values oft are assigned to the end of consecutive years, 
which means that the emissions can be only observed with errors in 
integer time instants t,. We denote the observed (reported) values y(t,) 
or shortly y;. The index i begins here at O and takes the consecutive 
integer values. The real emissions x(t;) = x; are unknown and can 
be only estimated. Hats will mark the estimated values, so i:; is the 
estimated emission. 

By o we denote the fraction of the emission to be reduced within 
the Kyoto obligations until the commitment period. Thus at the com­
mitment period the emission should be not greater than (1 - o)x0 • 

Obviously, the percentage reduction required by the Kyoto protocol is 
1000, but we often refer directly to o in per cents. The value of o is not 
greater than few per cents. 

As it is common to express obligations in percentages, it is useful to 
work not with the straight observations but with their logarithms. Let 
us denote X; = In (i:;/i: 0 ), thus X; is the logarithm of the normalized 
emission. As in our case x;/i:0 is close to 1, then it approximately holds 

v I i:; i:; i:, - i:o 
..1\i = n - ::::::: - - l = ---

i:o i:o i:o 
(1) 

Thus, X; may be interpreted as the relative change of i:; with respect 
to i:0 and may be expressed in percentages. 
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3. A nonparametric method 

3.1. BASIC ASSUMPTIONS AND SIMPLIFICATIONS 

We assume that the real process x; is observed with a multiplicative 
error Ci= UiXi, where 

E(u;) = m;, E[(u; - m) 2) =al, cov(u;, u1) = 'Yii 

Thus, the observation can be presented in the following way 

Yi = Xj + UjXj = (1 + u,)x;, i= O, 1, ... , N 

where Yi is the observed emission, x; the (unknown) real emission, and 
u; its relative uncertainty. 

The above dependencies are also true for i = O. Dividing sides and 
taking the logarithms we get 

y; = X· + In 1 + u; · 
' ' 1 + UQ 

where Y; = In y;fyo and X;= In x;/xo. For small uo and u; it approxi­
mately holds 

1 + u; 
In --- f'::i u; - uo 

1 +uo 
resulting in the expression 

Y; = X; + u; - uo 

The error v; = u; - u0 has the zero mean, E( v;) = O, and the variance 
a;, =a;+ a5 - 2-y;o =a;+ a5 - 2p;oa;ao, where p;o = r,o/a;ao is the 
cross correlation of u0 and u;. The covariance is equal to 

cov(v;, v1) = E[(u; - uo)(u1 - uo)] = 'Yii - 'Yio - 'YiO + aJ 

It equals zero, if all summands are equal. But generally the sequence 
is correlated, even if the original errors u; are not. We assume, how­
ever, that the correlation is negligibly small. As noticed by Wahba 
((Wah ba, 1990), sec. 4.9), correlation of errors may considerably worsen 
the smoothing results, as far as reconstruction of the original function 
is considered. 

3.2. SMOOTHJNG AND UNCERTAINTY ANALYSIS 

3.2.1. Smoothing splines 
Let us consider some abstract data z; generated by the following system 

Zj = f(t;) + e;, i= O, 1, 2, . . . , N 
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Rysunek 1. The interpolating spline (dashed curve) and the smoothing spline (solid 
curve) to some emission data ( dots). 

The vector 

e =(eo, ... , eN) ex N(0, C1 2I) 

where I is the identity matrix, contains the set of observation errors. 
We want to recover the function J(t), assumed to be smooth enough, 
knowing only the erroneous observations z;, i= O, 1, ... , N . For this we 
use splines. 

In the interpolating splines an approximation z(t) to f(t) is obtained 
assuming that z(t) is a polynomial of an order m (we use m = 3) on 
each segment [t;, t;+1), i= O, 1, 2, ... , N - 1, satisfying z(t) = z; and 
having the continuous derivatives up to the order m-1 on the whole in­
terval (t1, tN ) . In the presence of noise the interpolating spline generally 
quickly varies in time, overshooting and undershooting considerably the 
function f ( t). 

Much better approximation can be achieved for noisy data using the 
smoothing splines. Their idea is to find the function z(t) that does not 
need to go directly through the observed points z;, in order to get a 
function with a smaller (m - l)th derivative, see Fig. 1. 

If we restrict our attention to the third order smoothing splines, 
then the task is to find a function z(t), which minimizes the sum 

(2) 

where 

z(t) =a;+ b;(t - t;) + c;(t - t;) 2 + d;(t - t;) 3 

t E [t;, t;+i), i = O, 1, ... , N - 1 
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The solution of the problem, for a given .X, is de!ivered e. g. in Wahba 
(Wahba, 1990) and can be written in a generał form 

(3) 

see also (Gu, 2002), where A;j and B;k are coefficients which do not 
depend on the data z; and can be precomputed. Thus, both ż(t) and 
dż(t)/dt are kernel estimators. 

3.2.2. Uncertainty analysis 
The solution depends on the value of .X. This value is estimated by the 
generalized cross validation method (Wahba, 1990) by minimizing over 
.X the cri terion 

(4) 

where i;(N, .X) is the solution of the problem (2), in which the observa­
tion Ż; is dropped. The optima! value will be denoted i The optima! 
value of the criterion can be used as an estimate of a 2 , i.e. 

a2 (N) = V(N, >.) (5) 

The expression in the denominator of ( 4) can be interpreted as the 
degrees of freedom of the noise, in analogy to the degrees of freedom in 
the regression analysis. However, in contrast to the regression analysis, 
only consistency of the estimate for the smoothing splines has been 
proved theoretically ((Gu, 2002), th. 3.4), while other good statistical 
properties have been checked only on numerical simulations. 

The estimated variance of z(t;) is now 

aJ. (N) = a2(N)A;;(N, >.) (6) 

3.2.3. Application to real data 
The above analysis was applied for smoothing the data Y; = ln(y;/y0). 

Equation (6) has been used to calculate the estimates of the standard 
deviations a,, ( N) for the emission from the fossil fuels provided by 
Marland et al. (Marland et al., 1999), in the periods 1950-1998 and 
1970-1998. The value a,, (N) depends on the number of data used. 
This dependence is visible, although mostly not crucial, in the results 
presented in Table I for different time periods. For few cases, like e.g. 
Argentine, Canada, USA, reduction of the number of data caused big 
drop of the standard deviation value. 
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In ((Wahba, 1990), sec. 4.9) it is recommended to use at least 25-
30 observations when applied the smoothing splines. The data used in 
calculating the values in the left side of Table I contained 29 points, 
just satisfying the recommendations. However, for many countries, the 
corresponding standard deviations differ for different Jength of data. 
At least in some cases this is correlated with extreme values of .>., 
either very close to zero, like for Argentina, Canada and USA, or very 
high, like for Austria and Cuba. This phenomenon is also mentioned 
in ((Wahba, 1990), sec. 4.9). This may suggest that the data in the 
shorter sequence may be too short. 

The estimated values agree quite well with the common idea on 
the magnitude of errors made in calculation of the fossil fuel emission, 
believed to be of few per cents. They also agree well with the estimates 
calculated by other methods for few countries and collected in ((Gugele 
at al., 2003), Tab. 6). A little bigger figures obtained in some of our 
calculations may be connected with some additional factors that might 
have influenced the calculated estimates, as year-to-year variations in 
the weather conditions or variations due to change in economic factors 
of the countries. However, application of statistical paired Student test 
gives no reason to reject the hypothesis on equality of means of data in 
any two columns in Table I (the biggest value of thet statistic is equal 
to O. 78). This supports the claim on similarity of results obtained by 
different discussed here methods. 

4. Empirical parametric models 

In the previous section we noticed that the consecutive values in the 
emission sequence might be correlated. To better model this property, 
in this section we consider a set of values x; forming a time series 
consisting of N elements and introduce a difference model to describe 
the time evolution of the data. Then we motivate the choice of the 
model and finally present some results for fitting the model to the 
emission data for some countries. 

As we assumed that x; are positive we can define a new time series 

Xi+l Xi+l - Xi 
g;= --- l= -~--, 

Xi Xi 
i= O, 1, ... , N - 1 

Each element g; of a new time series can be interpreted as a relative 
difference of the two consecutive elernents x;+ 1 and x;. 

Frorn the latter relation we can now forrnulate the following differ­
ence equation 

xo = x(to) (7) 

opracowanie . tex; 5/12/2005; 12: 62; p. 9 
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Tablica I. Estimated standard deviations of observation errors for 
dilferent countries and two time periods, for two methods, in (%]. 

I Years 1950 - 1998 1970 - 1998 ~ 2000 

I Country \ smooth. I param. I smooth. I param. reported 

Argentina 2.3 0.7 0.4 0.1 

Australia 1.8 0.5 0.9 0.5 

Austria 2.7 0.9 1.1 1.0 1.0 

Belgium 2.3 3.3 2.3 3.3 1.1 

Brazil 1.9 1.1 1.3 1.7 

Canada 1.9 0.8 0.5 1.8 

China 4.7 7.1 1.4 1.7 

Cuba 6.6 2.2 1.9 1.4 

Egypt 3.4 1.4 2.6 1.1 

Finland 4.8 1.3 3.8 3.6 3.0 

France 2.3 3.0 2.3 1.1 < 2.5 

Greece 2.8 0.9 2.2 0.9 

Jceland 3.5 1.4 2.7 1.4 

lreland 4.3 1.2 2.2 2.2 < LO 

Israel 3.4 2.2 2.0 0.9 

Jtaly 1.6 2.3 1.3 0.7 

Japan 2.7 4.8 1.8 2.4 

Luxembourg 2.9 4.3 2.8 4.0 

Mexico 1.7 2.1 1.7 2,0 

Netherlands 2.8 0.9 3.7 1.4 1.5 

New Zealand 1.8 0.8 2.9 2.1 

Norway 4.2 2.0 5.2 3.3 1.5 

Poland 1.5 1.8 1.8 2.2 

Portugal 1.9 0.9 1.9 1.2 

Romania 1.9 2.4 2.1 2.9 

Spain 3.0 1.2 1.7 1.0 

Sweden 2.5 1.1 2.3 1.4 1.0 

Switzerland 3.3 4.3 1.9 1.0 

Turkey 3.1 4.3 3.4 1.1 

U. K. 1.6 0.5 1.4 0.7 2.0 

USA 1.8 0.5 0.4 2.1 1.5 

opracowanie.texj 5/12/2006; 12:62i p.10 
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Because y; = (1 + u;)x;, then (7) can be transformed to 

1 + Ui+l 
Yi+l = (1 + g;)~y; 

Dividing both sides by y0 and taking Jogarithms yields 

1 + u;+ 1 
Y;+1 = ln(l + g;) +In~+ Y; 

or approximately 
Y;+l - Y; ,:::: g; + u;+1 - u; 

from where an estimator [J; can be designed as 

[J; = Y;+1 - Y; 

Under our assumption on uj's we have 

E(g;) = E(Y;+1 - Y; + u; - u;+J) = X;+1 - X;= ln(l + g;),:::: g; 

11 

(8) 

Thus the estimator is approximately unbiased . Its approximate variance 
is 

var([J;) = E(Y;+1 - X;+1 - Y; + X;) 2 = 
= E(u;+I - uo - u;+ uo) 2 = E(u;+1 - u;)2 = u/+1 - 21;,;+1 + ul 

4.1. ESTIMATION OF THE PARAMETER g; 

The expression (8) was used to estimate the function g; for few coun­
tries from the previously mentioned data of C02 emission from the 
fossil fuels (Marland et al., 1999). Some chosen results are presented 
in Figs. 2-5. The smoothing splines were used to smooth the points 
obtained from (8) with the formulae (3). For each country, in the left 
panel the observations ( dots) and their smoothing spline approxima­
tions (solid lines) are depicted. The right panel shows the estimates 
of the function g;. The dots represent the points calculated using the 
formula (8). The bold solid line is obtained by smoothing these poin ts. 
The dashed lines show the 95% confidence intervals of the estimates. 

Table I depicts also the estimates of the standard deviation of the 
errors u;+1 - u;. From the comparison with the values obtained from 
smoothing it can be seen that both estimates of the standard deviations 
are of the same order, although not always very close to each other. 
Notice, however, that values from smoothing correspond to the stan­
dard deviations of the errors u; - u0 , while those from the parametric 
model to u; - u;_ 1 , what might partly cause the differences. 
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Rysunek Il. Results of smoothlng and estimation of the function g for Australia 
in the years 1950-1998. Left panela: dots - logarithms of observations, solid lines 
- smoothed logarithms of observations. Right panels: dots - estimates of fli from 
the formula (8), the bold solid lines - their smoothed continuous approx.ima­
tions1 the normal thickness dashed lines --:- the 95% confidence intervals of these 
approximations. 
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.. •1970 - 1.!190", . .. . .. 
Rysunek 9. Resu.lts of smoothing and estimation of the function g for Austria in 
the years 1950-1998. Left panels: dots - logarithms of observations, solid lines -
smoothed logarithms of observations. Right panels: dots - estimates of bi from 
the formula (8), the bold solid lines - their smoothed continuous approxima­
tions, the normal thlckness dashed lines - the 95% confldence intervals of these 
approx.imations. 

4.2. PIECEWISE EXPONENTIAL MODEL 

Although the estimated functions !J(t) in the previous section vary 
in time, in many periods their patterns resembles the constant value 
lines. To better investigate this question !et us start with examining of 
few curves. Figs. 6 and 7 contain emission curves y; and logarithmic 
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Rysunek 4. Results of smoothing and estimation of the function g for Poland in 
the years 1950-1998. Left panels: dots - logarithms of observations, solid lines -
smoothed logarithms of observations. Right panels: dots - estimates of §i from 
the formula (8), the bold solid lines - their smoothed continuous approxima­
tions, the normal thickness dashed lines - the 95% con.fidence intervals of these 
approximations. 

1970 1990 

In 103 tC In 103 tC 

-0.05 ·. 
Rysunek 5. Results of smoothing and estimation of the function g for USA in 
the years 1950-1998. Left panels: dots - logarithms of observations, solid lines -
smoothed logarithms of observations. llight panels: dots - estimates of {Ji from 
the formula (8), the bold solid lines - their smoothed continuous approxima­
tions, the norma! thickness dashed lines - the 95% confidence intervals of these 
approximations. 

curves Y; = ln(y;jy0 ),t0 = 1990, for the em1ss10n data (Marland et 
al., 1999) for Australia and USA. It can be seen that the data evolve 
approximately along piecewise exponential curve, and the logarithmic 
curves are approximately linear. 

Thus, the exponential growth models describe quite we!! develop­
ment of data only in some definite intervals. These intervals are the 
periods of constant developmen t conditions. One can easily distinguish 
in the figures the period of the 19th century industrial revolution or 
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Rysunek 7. Emissions for USA with fitted piecewise exponential cw-ve (left) and 
their logarithms with fitted straight lines (right), in millions of metric tons of C. 

the period of the post-war prosperity of 1950s-1970s. However, even for 
USA, Fig. 7, and more visible for the European countries like Poland 
or Austria, Figs. 8 and 9, it can be easily noticed that there are periods 
where the assumption on the simple constant parameter g (and there­
fore the growth along the exponential curve) can not be true. This is 
particularly visible in the periods of the World Wars and Great Crisis of 
1930s,and the energy shocks of 1970s-1980s. Also smaller ripples can be 
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Rysunek 9. Emissions for Austria with fitted piecewise exponential curve (left) and 
their logarithms with fitted straight lines (right), in miilions of metric tons of C. 

distinguished and explained, like for example in the case of the Polish 
transformation period. 

The fit of this simple piecewise exponential model is quite good 
in the periods of growth or decay. In the period of steady growth it is 
almost perfect. In the decay periods the emission is often more volatile. 
War and transition periods, like those of 1970s in the West Europe or 
1980s in Poland, are highly irregular and were skipped from fitting. 

The results obtained are generally quite similar for both methods. 
The error variance estimates calculated by the regression method (para­
metric model) turn out to be usually greater than those calculated 
by the smoothing splines. This seems to be connected with too big 
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Rysunek 11. Estimates of g for Australia. Solid line - piecewise exponential model, 
dashed line - smoothing. 

simplicity of the exponential model used. However, the good fit of the 
piecewise exponential model seems to be an important observation. lt 
means that in the past the emissions have followed approximately the 
exponential functions in defined longer periods. The jump from one 
such segment to another is mostly connected with a big political or 
economic change. 

5. Geometrie Brownian motion 

Geometrie Brownian Motion is the most often used stochastic process 
in financial economics theory, and in our case may be considered as an 
useful alternative from a practical point of view. In severa! calculated 
cases it was found to be not a better model than others, even being a 
reasonable mapping of probabilities within the time. 
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5.1. GEOMETRIC BROWNIAN MODEL FOR THE EM!SSIONS 

model, 

For a signal x(t) that follows a geometrie Brownian motion, the sto­
chastic equation for its variation in time t is 

dx = gx + axdz (9) 

where dz = c:dt112 is the Wiener increment, c - standard norma! distri­
bution, g is the drift, and a is the volatility of x. 

In the above equation the first term on the right hand side is the 
expectation (trend) term and the second term is the variation term 
( deviation from the trend or uncertainty) . 
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The geometrie Brownian motion is a log-norma] diffusion process 
with the expected value of x at the time t (starting at t 0 = O) 

E[x(t)] = x0 e9' 

and the standard deviation SD 

SD[x(t)] = xoe9'Je"'' - l 

This is illustrated in Fig. 14. 

(10) 

(11) 
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5.2. ARITHMETIC BROWNIAN MODEL FOR THE LOGARITHM OF THE 

EMISSIONS 

Due to its simplicity, it is useful to work with the logarithmic diffusion 
equation. Letting X= In x, and using ltó's lemma we find that x follows 
the arithmetic (or ordinary) Brownian motion 

1 
dX = dln x = (g - 2a 2)dt + adz (12) 

SO 

dX = g'dt + adz 

where g' = g - ½a 2• The variable X follows an arithmetic Brown i an 
motion with the drift g' and volatility a . 

We should note here, that although the volatility term is the same 
in (12) as in of the geometrie Brownian motion for x (9), the element 
d(ln x) is different from dx/x due to the different drift expression (so 
called ltó 's effect). 

The drift parameter g can be estimated as the average value of 
ą set of differences of the logarithms In x; - In Xi-I• Using the same 
historical series we can get an estimation of the volatility a by taking 
the standard deviation of In x; - In x;_ 1 , as for the parametric model of 
Sec. 4. They can be inserted in equations (10) and (11) to obtain the 
characterization of the process in time. 

The calculations, not presented here, give bigger estimates of the 
standard deviations than those depicted in Table I, comparable to the 
piecewise exponential model of Sec. 4. These bigger values seem to be 
mainly caused by constant value of g in the model. 

6. Conclusions 

Nonparametric and parametric methods for modelling the greenhouse 
gas emission phenomena and for estimating the parameters are pro­
posed in the paper. They differ in degree of smoothing and precision of 
fitting the observations. Comparison of the methods used reveals that 
the parametric method of Sec. 4 gives in many instances simpler, less 
volatile curves, although it is more sensitive to the smoothing interval. 
The smoothing method of Sec. 3 is more accurate and better empha­
sizes the ripples in data. The parametric piecewise exponential model 
glves the most rough but also most simple description, showing generał 
trends in evolution of emission data. 

One of the main goals of the paper was to estimate the standard 
deviation of the errors. Some signal processing methods are proposed 
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and preliminary results are presented. They are based on the published 
observations of the emissions from the fossil fuels (Marland et al., 
1999) and therefore do not cover the whole emissions reported within 
the Kyoto agreement. Moreover, the volatility of observations may be 
related not only to the observation errors but also to such factors as 
changing weather conditions and rapidly changing economic situation 
of the country. These phenomena might have contributed to increase 
of the estimated variance. 

With these reservations, the calculations performed for the fossil 
fuels indicate that the empirical approach gives reasonable estimates, 
comparable to the estimates obtained so far by the methods recom­
mended by IPPC (IPCC, 2000a). Or, to be more cautious, the partia! 
results obtained here do not falsify the uncertainty estimation proce­
dures applied up to now for the inventories. The present knowledge 
does not allow us to state definite conclusions as yet. 

An interesting relation between the piecewise exponential growth of 
the C02 emission curve and the country economic development may 
well be also true for other gases. An open question is how removal of 
the greenhouse gases by sinks, also included in the full calculation of 
the greenhouse gas balance of countries, may behave. Evolution of this 
type of data in time will be possible to analyze when longer historical 
records will be available. 

The proposed approach can be used to better estimate the real 
emissions, by filtering out errors, and possibly for prognosis. The latter 
application might be important as an alternative to the scenarios built 
on the basis of technological and economic assumptions. But such ap­
plication it is stili rather risky until more will be known on dependence 
of the emissions on the economic and weather conditions. 
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