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Abstract 

In the paper we propose two new non-parametric methods for the 

simulation of bootstrap-like samples of fuzzy numbers. The generated 

secondary samples are based on an input set (i.e., a primary sample) 

consisting of LFRNs (Left-Right Fuzzy Numbers). The proposed ap­

proaches utilize Monte Carlo method in a way, which, to some extent, 

resembles a bootstrap. However , contrary to the classical bootstrap 

approach, t he discussed methods are based on alpha-cuts of fuzzy 

numbers, which are generated in a new non-parametric way. There­

fore, these procedures give us an opportunity to create "not exactly 
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the same as previous" fuzzy numbers, and also lead to greater vari­

ability of the obtained output. 

1 Introduction 

Monte Carlo simulations are widely used for the numerical analysis of 

complex phenomena. For example, they are used in solving optimization 

problems, simulation of complex probabilistic models , evaluation of different 

properties of statistical tests, etc. A good description of main problems 

and applications of Monte Carlo simulations can be found in well-known 

textbooks , such as, e.g., Robert and Casella [23]. In general, Monte Carlo 

simulations are used when considered mathematical models are too complex 

for analytical evaluation. We face such problems very frequently when we 

have to deal with complex phenomena that are characterized not only by 

randomness , but also by fuzzy imprecision, as well. In all such cases for the 

description of real-life problems we may use the concept of fuzzy random 

variables. 

There exist several models of fuzzy random variables having different 

practical interpretation. They are described in a very good monograph by 

Couso et al. [3] or in overview papers [4, 5]. One of the two most popular 

approaches is called "ontic". This model was proposed in the seminal paper 

by Puri and Ralescu [19], and is based on the notion of set-valued mapping 

and random sets. Simulation methods of fuzzy random variables having 

"ontic" interpretation have attracted recently attention of many researchers. 

For example, Colubi et al. [2] consider simulation methods for different 

types of both one- and multidimensional fuzzy variables. They use these 
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methods for the analysis of asymptotic behavior of a fuzzy arithmetic mean, 

expressed in terms of the strong law of large numbers , and of the law of 

iterated logarithm. The process of simulation itself was thoroughly examined 

in the paper by Gonzalez-Rodriguez et al. [7]. They have proposed two 

different approaches based on the concept of support functions. The first 

one is related to simulations of Hilbert space-valued random elements with 

a projection on the cone of all fuzzy sets. The second one imitates the 

representation of elements of a separable Hilbert space for an orthonormal 

basis directly on the space of fuzzy sets. Both of these approaches were 

compared, and their comparison has shown that the second method is more 

adequate for modeling realistic situations. 

The second most popular interpretation of fuzzy random variables is his­

torically older, and is based on the model proposed in the papers by Kwak­

ernaak [14, 15]. In this model a fuzzy random variable describes imprecise 

(fuzzy) perception of an unobserved crisp random variable. This model has 

been applied for solving many real-life problems. Its applications have been 

described in numerous papers. For example, the authors of this paper used 

it to solve problems from such different areas as: pricing of financial and in­

surance instruments [17, 18] , estimation of the maintenance costs of a water 

distribution system [24] or Bayesian statistical decisions in reliability [11]. 

For nearly all such problems, Monte Carlo simulations of fuzzy random vari­

ables have been extensively used. They usually consisted in the generation 

of random hidden crisp origins, and respective membership functions (e.g., 

in a form of triangles with edges of random length). 

In this paper we focus on the one aspect of simulations related to the first , 
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"ontic" , aproach, namely resampling of sets of fuzzy numbers. The widely 

used in statistics resampling method , known as the bootstrap approach, 

has been applied in the analysis of random fuzzy data. For example, in [9], 

the weighted bootstrap approach for fuzzy numbers is used to calculate the 

standard error of the minimum inaccuracy estimator, and to construct an 

appropriate confidence interval. The bootstrap is also an important tool in 

evaluation of a distribution of a test statistic, if such a distribution is too 

complex for a direct calculation. For example, it is used for tests about the 

expected value of a fuzzy random variable (see, e.g., [6 , 8, 16]) , and other 

types of statistical tests in a fuzzy environment (see, e.g., [20, 21]). In the 

aforementioned papers bootstrap samples enable the authors of such tests 

to estimate a nominal significance level of a statistical t est via an empirical 

percentage of rejections of a true null hypothesis , and this bootstrap-based 

estimator serves then as an empirical benchmark for the considered statisti­

cal test. In our approach, described in this paper, we propose a more general 

resampling method, which consists in the modification of the existing boot­

strap procedure with the aim to improve statistical properties of bootstrap 

estimators, especially for small available samples of fuzzy observations. In 

contrast to the classical bootstrap, our method generates fuzzy numbers that 

may be different from the numbers included in the original sample. There­

fore , our new method of resampling may be considered as a bootstrap-like 

generation method. 

Our contribution in this article is fourfold . Firstly, two numerical methods 

for simulation of the left-right fuzzy numbers (LRFNs) are considered. These 

algorithms, similarly to the classical bootstrap method, utilize a primary 
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(initial) sample of random fuzzy numbers in order to generate secondary 

(bootstrap) fuzzy random samples. But, contrary to the classical bootstrap, 

these simulated secondary sets consist of values , which are "not exactly the 

same" as in the initial sample. In the first method, a modified direct method 

( coined the d-method, and described by a discrete probability distribution 

d(x)), an overall information about the a-cuts of the LRFNs from the primary 

set is used. In the second method ( coined the w-method) a mixed discrete­

uniform probability distribution w(x) is used for generation purposes. In 

this approach the information about the a-cuts of the observations from the 

primary sample is modified in a certain way using a non-informative uniform 

distribution. Both proposed methods are used to generate LRFNs, whose 

variability is in a certain sense greater than the variability of observations 

from the primary sample. However, this greater variability has been achieved 

without incorporatiou of any additional and specific assumptions about the 

general probability model for the initial population. Hence, both of these 

approaches are strictly non-parametric ones. 

Secondary, the outputs for these two methods are analyzed, using the 

most important statistical measures. For both small and moderate primary 

samples, and two types of the triangular fuzzy numbers, we check, if the 

generated secondary (bootstrap-like) samples well imitate statistical behavior 

of the initial population. In order to do this, mean and standard deviation 

are calculated, and applicability of the strong law of large numbers and the 

law of iterated logarithm has been confirmed. We also compare the simulated 

secondary samples for the two introduced methods with the output of the 

classical bootstrap approach. It seems, that the application of d(x) and 
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w(x) distributions in bootstrapping is very promising, because the generated 

triangular numbers "mimic" the values from the initial sample very well. 

Moreover, if the previously mentioned statistical measures are taken into 

account, these generated values sometimes behave even better than in the 

case of classical bootstrap approach applied for the same primary samples. 

Thirdly, for the same sizes of samples, and two types of the triangular 

fuzzy numbers, we check if the simulated values are "close enough" to the 

fuzzy numbers from the initial set. A level of this proximity is measured using 

four types of measures ( the supremum measure, the l1 metric, the Hausdorf 

distance extended to the metric, and the measure proposed by Tran and 

Duckstein [25]). Once again, the obtained results are compared with the 

outcomes for the classical bootstrap approach. The performed analysis con­

firms a thesis that fuzzy numbers generated using d(x) and w(x) distributions 

are very close to observations from the primary sample, used in the classi­

cal bootstrap. Therefore, the two simulation procedures introduced in this 

paper can be used to form the secondary (bootstrap-like) sample, which is 

"similar" , but also , in some way, different , in comparison to the initial set of 

observations. 

Fourthly, we check if these two new simulation algorithms can be success­

fully applied for solving some practical statistical problems. As an example, 

we have applied them for two statistical tests about the mean value of a 

population of fuzzy numbers. In these two tests , outputs for both small 

and moderate primary samples have been analyzed for three types of the 

triangular fuzzy numbers. As previously, we have compared three simulation 

procedures (the classical bootstrap, and our two methods based on the d(x) 
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and w(x) distributions). In all considered cases, a difference between a nom­

inal significance level of the test, and an empirical percentage of rejections of 

the true null hypothesis is used as a benchmark. Once again, the algorithms 

introduced in this paper show their promising potential, because the men­

tioned difference is usually lower for the proposed bootstrap-like procedures, 

based on the d(x) or w(x) distributions, than for the classical bootstrap of 

fuzzy random variables. 

The paper is organized as follows. In Section 2 basic definitions of fuzzy 

sets and random fuzzy sets have been recalled. Moreover, we have presented 

the descriptions of statistical tests used for testing hypotheses about the 

expected value. Next, in Section 3, we describe the proposed algorithms 

for the generation of bootstrap-like secondary samples. Then, in Section 4 

we describe the results of the experimental verification of the properties of 

the proposed procedures. The application of the proposed new bootstrap 

procedures in statistical testing has been presented in Section 5. The paper 

is concluded in its last section. 

2 Mathematical preliminaries 

2.1 Fuzzy sets and random fuzzy sets 

Let us present basic definitions and notation concerning the simulation of 

fuzzy random variables which will be used in this paper. Additional details 

can be found in, e.g. , [4, 5]. 

For a fuzzy subset A of the set of real numbers IR we denote by µ;,_ its 

membership function /J,;,_ : IR -+ [O, l], and by .A(a) = {x : µ;,_ (x) ~ a} 
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the a -level set of A for a E (0, 1]. Then, A(O) is the closure of the set 

{x: µ;._ (x) > O}. 

A fuzzy number a is a fuzzy subset of IR for which µii is a normal, upper­

semicontinuous, fuzzy convex function with a compact support. Then, for 

each a E [O, 1], the a-level set a(a) is a closed interval of the form a(a) = 

[aL(a), aR(a)], where aL(a), aR(a) E IR and aL(a) ~ aR(a). 

A left-right fuzzy number (which is further abbreviated as LRFN) is a 

fuzzy number with the membership function of the form 

L (~=:) if x E [a, b] 

1 if x E [b, c] 

R (!=~) if x E [c, d] 

0 otherwise 

where L, R : [O, 1] --+ [O, 1] are non-decreasing functions such that L(O) 

R(O) = 0 and L(l) = R(l) = 1. 

A triangular fuzzy number a, denoted further by [aL, a0 , aRJ, is a LRFN 

with the membership function of the form 

0 otherwise 

where aL is a left end of its support, a0 - its core, and aR - a right encl of 

its support. 

8 



2.2 Measures of similarity 

To compare some properties of two fuzzy numbers, like their shape or 

location, various measures of similarity can be used. In this paper, we focus 

on classical measures: the supremum, the l1 metric , the Hausdorff metric for 

fuzzy sets (see, e.g., [26] for additional details), and the distance measure 

introduced in [25]. Of course, other types of measures of similarity can be 

also used to compare differences between the LRFNs generated according to 

methods described in Section 3. 

If a and b are fuzzy sets, then the supremum similarity measure is defined 

for their membership functions µa(x) and µ1,( x), as 

m= ( a, b) = sup /µa(x) - µ1,(x)/ 
X 

In the case of the li metric, an appropriate measure is given by 

There are various ways to extend the Hausclorf distance to a metric for fuzzy 

sets (see, e.g., [26]). In the following, we use 

mH (a, b) = fo 1 
max { /aL(a) - bL(a)/, /aR(a) - bR(a)/} da . 

This measure was proposed by Ralescu and Ralescu in [22]. 

The fourth distance measure was introduced by Tran and Duckstein [25], 

and it is given by 
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where w(a) is a certain weighting function. In the following w(a) = 1 is 

used, so each a-cut in the measure (1) has the same significance (see [25] for 

other possible types of the weighting function). 

2.3 Tests of a fuzzy mean value 

There are many types of statistical tests for an expected value of a fuzzy 

random variable (see, e.g., [6, 8, 12, 16]). We focus on only two of them, which 

will be used in Section 5 as examples of an application of the introduced non­

parametric simulation methods. 

The first considered test is an asymptotic test introduced in [12]. Let us 

assume, that a is a LRFN with a core, which is given by a single value. Then, 

we have 

The d2 distance between two LRFN s a and b is defined as 

d~ ( a, b) = Ima - mbl 2 + R2 Ira - rl + L2 Ila - lb l2 

+ 2 (ma - mb) (R1 (ra - rb) - L1 (la - lb)) , 

where 

111 
2 111 

L2 = - ILH\a)I da, L1 = - L(-ll(a)da 
2 0 2 0 

and R 1 , R2 are defined similarly (see [12]) . 

Using this distance, we have the following corollary, which was proved 

in [12]: 

Corollary 1. Let X 1 , X 2 , ... , Xn be a sample of LRFNs. Then 
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where 6, 6 , 6 are independent N(O, 1)-distributed random variables, and 

.\1 , .\2 , ,\3 are the eigenvalues of the matrix 

(

Cmxmx - L1Clxmx + R1Crxmx L2Clxmx - L1Cmxmx 

Clxmx - L1Clxlx + R1Crxlx L2Clxlx - L1Clxmx 

Crxmx - L1Crxlx + R1Crxrx L2Crxlx - L1Crxmx 

R1Cmxmx + R2Crxmx ) 

R1Clxmx + R2Crxlx 

R1Crxmx + R2Crxrx 

where Czy = IE(z - !Ez)IE(y - !Ey) for z,y E {mx,lx ,rx }. Moreover, an 

asymptotic test of the hypothesis 

H 0 : !EX= V against H 1 : !EX=/- V 

is formulated as follows: reject H0 , if 

nd~ ( X, V) > wLP , 

where w~ is the q-th quantile of a w2 distribution with respect to the eigen­

values >-1 , >-2,A3. 

The above mentioned w 2 distribution has a rather complex structure, 

which is known only for some special cases (see [12]). 

The second considered test was developed in [8 , 16]. It is based on a 

metric introduced in [l], which was generalized in [13]. The Dw metric for 

two LRFNs a, bis defined as 

(2) 

where 

d; ( a(a), b(a)) = 11 
(la (a,>-) - Ii, (a, >-)) 2 dW(>-) 

with fa. (a,>.) = >.aR(a) - (1 - >.)aL(a) , and W, <pare two weighting normal­

ized measures (see [l] for some examples of W, <p and further details). 

Then, we have the following corollary, which was established in [8]: 
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Corollary 2 . Let X 1 , X 2 , ... , Xn be a sample of LRFNs. In testing the null 

hypothesis 

Ho: JEX= V 

at the nominal significance level p, H0 should be rejected, if 

Di (x, vf 
--~-~ > Z1-p 1 32 

where Zq is the q-th empirical quantile of the bootstrap distribution, which is 

given by 

and with 

Di (x·,x)2 
52 . 

x· = ~ ~ x· 82 = - 1- ~ D'P (X~ X*) 2 

n L....,, '' * n-l L....,, w" ' 
i = l i = l 

where x; , X2, ... , X~ is a bootstrap sample obtained from the initial sample 

3 Generation of a secondary (bootstrap) sam­

ple 

Let A= {a1 , .. . , am} be a primary sample of LRFNs. These values are 

treated as an input set for the method proposed further in this paper. We 

assume that we do not have (and, moreover, we do not need) any additional 

information about a source (or a model) of the fuzzy numbers belonging to 

A . Note, however , that in many cases known from literature such additional 

information is often assumed (see, e.g. , [2 , 10, 11 , 17, 18, 24] for various 

approaches to the problem of fuzzy numbers modeling). Therefore, only a 
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strictly non-parametric way should be used to build a secondary (bootstrap) 

sample B = {b1, ... , bn} of LRFNs, which should be, in some way, "similar" 

to the fuzzy numbers from A. 

Let aJ(a) = [af(a), af(a)] be an a-cut of aJ for some a E [O, 1]. For 

simplicity, we assume that there are k + l possible values of a, so we have 

a E {a0 , a 1, . .. , ak}, where ao = 0 < a 1 < ... < ak = l. We also assume 

that af (1) = af(l) = aJ(l) for each aJ· However, this requirement can be 

easily relaxed in a simulation procedure presented further. 

During the first step of an initialization procedure ( a setup of simulation, 

see Algorithm 1), a set of cores C(l) is found, based on A. Hence, we have 

C(l) = {a1(l), ... , am(l)} . 

For simplicity of notation, we assume that the set C(l) is already ordered, 

i.e., a1(1) :S a2(l) :S ... :S ak(l). 

During the second step of a initialization procedure, sets of incremental 

spreads for all of possible a-cuts are constructed. Let 

(3) 

be a difference between left ends of a-cuts for ai+l and ai, for the given fuzzy 

number aJ. We call such a difference an incremental left spread for the level 

i. In the same manner, we have 

(4) 

which is a difference between right ends of a-cuts for ai and ai+l, for the 

given fuzzy number aJ · It will be called as an incremental right spread for 

the level i. Then the sets of left and right incremental spreads, given by 

SL(ai) = {sf(ai), ... ,s;,'.. (ai)} , SR(ai) = {sf(ai), ... ,s~(cti)} (5) 
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Algorithm 1: Initialization procedure 
Input: A primary sample A.= {a1 , ... , cim}, a number of possible 

a-cuts k + l. 

Output: Sets of the cores and the spreads for A.. 

Find a set of values of the cores C(l) = {a1 (1), . .. , am(l)} and order it 

increasingly; 

for i t- k - 1 to O do 

for j t- 1 to m do 

Find an incremental left spread sf(ai) = af(ai+1) - af (ai); 

Find an incremental right spread sf(a;) = af(ai) - af(ai+1); 

Append sf(ai) to a set SL(ai) and sf(a;) to a set SR(ai); 

end 

Order sets SL(ai) and SR(ai) increasingly; 

end 

for ak- l , ak- 2, ... , o:0 can be found. It should be noted, that the construction 

of (5) has to be made from the highest value of a to the lowest one (i.e. from 

a core of a fuzzy number to its support). We also assume, in the same manner 

as for the set of cores C ( 1) , that each of the sets ( 5) is already ordered, so 

for all o:i. 

Let us illustrate this initialization procedure with a numerical toy-example. 

Example 1. Suppose that our primary sample consists of only three tri­

angular fuzzy numbers [O, 1, 3], [1, 2.5, 5] and [1 , 3.5, 5]. We consider only 3 

different a-levels: a 2 = 1 (cores), a 1 = 0.5, and a 0 = 0 (supports). For these 
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data the set of cores is C(l) = {1, 2.5, 3.5}. The ordered sets of incremental 

left spreads are SL(a 1) = {0.5, 0.75, 1.25}, and SL(a0 ) = {0.5 , 0.75 , 1.25}, 

respectively. The ordered sets of incremental right spreads are SR(a1 ) 

{0.75, 1, 1.25}, and SR(a0 ) = {0.75, 1, 1.25}, respectively. 

Now, the secondary sample B, which consists of n fuzzy numbers, can be 

generated. In order to do this, we use one of further proposed two methods, 

based on two kinds of distributions. 

3.1 The d-method based on a discrete distribution d(x) 

Let us start from a description of a generation procedure in case of the 

d-method, based on a discrete probability distribution d(x). In the proposed 

procedure two steps are necessary to construct a fuzzy number bj E B, if 

j = 1, . .. , n (see also Algorithm 2). 

Firstly, a value of a core bj(l) is found , using a uniform discrete distri­

bution for the values from the set C(l). It means, that the generated value 

bj(l) = C is a random element taken from the set C(l) according to the 

probability distribution d(x). In this paper we assume that d(x) is uniform 

on C(l), i.e. 
1 

Pr (C = a1(l)) = d(a1(l)) = - , 
m 

if l = 1, ... , m. Therefore, we randomly (and uniformly) pick up a single 

value from the set C(l) and treat it as the core of the new, constructed 

LRFN bj. 

Secondly, consecutive a-cuts of the given bi are found, starting from its 

core and ending at its support. Thus, we proceed from bi(ak-i) until bj(O), 
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For each ai, a value of a left end of the a-cut of bj is found, using 

(6) 

where SL(ai) is an independently drawn random value from the set SL(ai)­

Once again, the uniform discrete distribution d(x) is used, for which 

( L L ) L l Pr S (ai) = s1 (ai) = d(s1 (ai)) = - , 
m 

where l = l , ... , m. In the same manner, a right end of each a-cut of bJ is 

constructed, using 

(7) 

where SR(ai) is independently drawn from the set SR(ai), using the same 

uniform discrete distribution d(x). Formulas (6) and (7) mean, that the new 

left ( or right, respectively) end of ai-cut is constructed, based on subtracting 

(or adding) a random element from the set SL(ai) (or SR(ai)) from (to) the 

previously generated left (right) end of Cti+1-cut. Therefore, this new fuzzy 

number bJ is approximated using intervals for the cosecutive values of a (from 

1 at the top to O at the bottom). 

The generated in this way fuzzy number bJ is, in a certain sense, similar 

to the LRFNs from the primary sample A. The core of bJ is one of the "true" 

cores from C(l), and its spreads are drawn from the "true" spreads belonging 

to SL(ai) or SR(ai)- It is easily seen that we have 

1 ~ _ £ 1 ~ £ - £ lEC = - ~ a1(l) = a(l) , JES (ai) = - ~ s1 (ai) = s (ai) , 
m m 

l=l l=l 
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so the expected values of core and spreads of b1 are precisely equal to the 

respective means for LRFNs from A. In the same way, 

1~ - 2 2 l 2 
VarC = - L (a1(l) - a(l)) = sa{l) , VarS "(ai) = B8L(ai), 

m 
l=l 

then b1 exactly "imitates" statistical behaviour of the samples from A , with­

out necessity of introducing any additional knowledge about the model, which 

(perhaps) creates the primary sample. 

Now, let us continue our example by showing how the secondary bootstrap­

like sample is constructed. We will show the construction of only one element 

of this sample. The remaining elements are constructed in the same way. 

Example 1 (Continued). The core of a new element of the secondary sample 

is, in this example, randomly chosen (with equal probabilities 1/3) from the 

set {l , 2.5, 3.5}, and let this chosen value be equal to bf(l) = bf(l) = l. 

Then, we take randomly (also with equal probabilities 1/3) the left and 

right incremental spreads on the remaining two a-levels. Suppose that for 

a = 0.5 we have chosen Sf(0.5) = 0.75 , Sf(0.5) = 1.25, and for a = 0 

we have chosen Sf (0) = 1.25, Sf(0.5) = l. Thus, the respective a-cuts of 

the new element b1 of the secondary sample, calculated according to (6)- (7) , 

are defined by the following limits: bf (0.5) = - 0.25, bf(0.5) = 2.25, and 

bf(0) = - 1.5, bf(O) = 3.25. 
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3.2 Thew-method based on a mixed discrete-uniform 

distribution w(x) 

We can be also interested in an additional level of "freedom" in creation 

of the secondary sample B. It is easy to see that if bi is generated using the 

method described in Section 3.1 (i.e., using the uniform discrete distribution 

d(x)) , its core is exactly equal to one of the values from C(l) . Also its spreads 

are given by the respective values from the sets SL(o:i) or SR(o:i)-

But creation of a more <liversified sample B can be fruitful in some cases. 

Because of such diversification the values from B could be "closer" to the 

(unknown) hidden model , than the samples from A, especially if a number 

of the elements in A is strictly limited. Consider, for example, the case when 

there are only two fuzzy numbers in A described by only two o:-cuts. The 

random numbers bj, generated using the method described in Section 3.1, 

have no more than two possible values of a core and four possible left / right 

ends of its support. Moreover, if a more classical resampling method is taken 

into account (like the "classical" bootstrap), then these two elements from A 

are repeated many times during a construction of the LRFNs from B. Thus, 

no new " knowledge" about other possible outcomes which can be possibly 

"produced" by the unknown model can be obtained. 

Of course, apart from the introduction of the diversification, the sec­

ondary sample B should be still enough "similar" to the primary set A. If 

such a requirement is not fulfilled, then our knowledge resulting from B can 

be misleading, and our suppositions about the original source (i.e., the model 

of A) can be incorrect. But no strict prior knowledge about the model for 

the primary sample was previously assumed in this paper. Therefore, a pro-
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posed generation method should be a strictly non-parametric one, without 

any additional, more detailed, assumptions. 

If we do not want to introduce in statistics any prior knowledge, we 

have to use so called non-informative probability distributions. A commonly 

used model of such a distribution is a uniform density for an interval [c, d], 

denoted further by U([c , d]). We will use this density in the construction of 

the probability distribution used for generation purposes. 

3.2.1 The w(x) distribution, and its properties 

Let 

(8) 

be a strictly increasing sequence of m values, without their repetitions. We 

propose a density w(x) which is the composition of discrete (atomic) and 

continuous parts given by the following formula 

1 1 1 
w(x) = -11.(x = x1) + -w12(x) + -w2 3(x) + ... 

2m m ' m ' 
1 1 + -Wm- 1 m(x) + -11.(x = Xm) , (9) 
m ' 2m 

where 
1 

w1-11(x) = ---11.(x E [x1-1, xi]) . 
' Xt -Xt- 1 

(10) 

If X ~ w(x), where w(x) is given by (9), then X = x 1 or X = Xm with 

an atomic probability 2!,,. Hence, the first value x1 or the last one Xm from 

the sequence (8) are selected with equal probabilities. Otherwise, one of 

the intervals [x1_ 1 , xi], for l = l, ... , m - 1, is designated with identical 

atomic probabilities ~. When such a single interval is selected, we have X ~ 
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w1_ 1,1(x), so the output xis generated using the uniform density U([xi - 1 , xi]), 

which is described by (10). 

Therefore, w(x) can be seen as a certain generalization of the discrete 

distribution discussed in Section 3.1. The pdf w(x) also generates values 

from the same interval [x1 , Xml, but they are more diversified - apart from 

values directly equal to the ones from the sequence (8), all x E [x1 , Xm] can 

now be obtained. 

Statistical characterizations of the density w(x) are summarized in the 

following lemma: 

Lemma 1. Let X ~ w(x), where w(x) is a pdf described by (9) and (10). 

Then 

and 

1 m 

!EX = - L X; = X ' 
rn 

i=l 

Proof. From (9) and (10), we have 

m-1 

!Ex __ 1_ _1_ ~ ~ X; + ,'E;+1 
- X1 + Xm + L..,, 

2m 2m m 2 
i = l 

and 

m-1 2 2 2 

V X 1 2 1 2 1 L X; + x;xi+1 + xi+1 ( _ ) 2 ar = -x +-x +- -------- x 
2m 1 2m m m 3 ' 

i = l 

which concludes the proof. • 

From Lemma 1 we see that if X ~ w(x), then the expected value of 

X is precisely equal to its mean x. But the variance s! of X is not equal 
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to a classical estimator, i. e. the standard sample variance s2 . A difference 

between the variances s! and s2 can be important for the intended diversity 

of the LRFNs in the second sample B. We have 

( 
m-1 ) 2 2 1 12 12 1 1 

S - S = - --x - -x + - X1X2 + - "X (x·+1 - x·) 
w m 6 1 6 m 3 2L'' ' ' 

i=2 

which leads to the following remark: 

Remark 1. If m -+ oo and x; > 0, thens! - s2 2: 0. Therefore, a diversity 

(measured by a variance) of X ~ w(.r) is not lesser than a diversity of 

X ~ d(x) , if only a size of a sample is large enough, and all x; > 0. 

3.2.2 Generation procedure 

Now, to generate a fuzzy number b1 E B, if j = 1, ... , n , instead of the 

discrete distribution d(x) , the previously introduced density w(x) is used (see 

also Algorithm 3). However, an overall procedure of a construction of b1 is 

similar to the previous case, which is described in Section 3.1. 

During the first step, a value of a core b1(1) = C is drawn using the 

distribution w(x) based on the elements from the set C(l), so C ~ w(x), 

where x E C(l). Next, consecutive a-cuts of the given b1 are calculated, 

starting from the value ak-l and ending at a 0 = 0. For each a;, a value of 

a left end of b1(a;) is equal to (6), where SL(a;) is an independently drawn 

random value from the set SL (a;), using the distribution w(x) for the set 

SL(a;). In the same way, a right end of b1(a;) is given by (7), where SR(a;) 

is independently drawn from the set SR(a;), using the respective distribution 

w(x) for this set. 

Let us continue our example using the method of generation described in 
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this subsection. We will show the construction of only one element of this 

sample. The remaining elements are constructed in the same way. 

Example 1 (Continued). Let us start from the generation of the core of a 

new fuzzy number. According to the density function w(x) defined by (9) 

there are four possibilities for choosing this value: take 1 with probability 1/6, 

take a randomly chosen (using the uniform distribution) number from the in­

terval [1, 2.5] with probability 1/3, take a randomly chosen number from the 

interval [2.5 , 3.5] with probability 1/3, take 3.5 with probability 1/6, (see also 

Figure 1). Suppose that the second option has been chosen, and a new core 

has been set to b1 (1) = 1.75. Now, consider the left and the right spreads for 

a = 0.5. For choosing the value of the left incremental spread there are also 

4 possibilities: take 0.5 with probability 1/6, take a randomly chosen num­

ber from the interval [0.5, 0.75] with probability 1/3, take a randomly chosen 

number from the interval [0.75, 1.25] with probability 1/3, take 1.25 with 

probability 1/6. Suppose that the first option has been chosen, and a new 

left incremental spread has been set to Sf (0.5) = 0.5. Similarly, for choos­

ing the value of the right incremental spread there are 4 possibilities: take 

0.75 with probability 1/6, take a randomly chosen number from the interval 

[0.75, 1] with probability 1/3, take a randomly chosen number from the in­

terval [1, 1.25] with probability 1/3, take 1.25 with probability 1/6. Suppose 

that the third option has been chosen, and a new right incremental spread 

has been set to Sf(0.5) = 0.8. Now, consider the left and the right spreads 

for a = 0. For choosing the value of the left incremental spread there are 4 

similar possibilities: take 0.5 with probability 1/6, take a randomly chosen 

number from the interval [0.5, 0.75] with probability 1/3, take a randomly 
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chosen number from the interval [0.75, 1.25] with probability 1/3, take 1.25 

with probability 1/6. Suppose that the second option has been chosen, and a 

new left incremental spread has been set to Sf (0) = 0.6. Similarly, for choos­

ing the value of the right incremental spread there are 4 possibilities: take 

0.75 with probability 1/6, take a randomly chosen number from the interval 

[0.75, 1] with probability 1/3, take a randomly chosen number from the in­

terval [1 , 1.25] with probability 1/3, take 1.25 with probability 1/6. Suppose 

that the fourth option has been chosen, and a new right incremental spread 

has been set to Sf(O) = 1.25. Finally, the new generated element of the 

secondary sample is the fuzzy number defined by its core bi(l) = 1.75, and 

two a-cuts defined by their respective limits: bf (0.5) = 1.25, bf(0.5) = 2.55, 

and bf (0) = 0.65, bf(0) = 3.8. 

w(x) 

0.5 

0.4 

0.3 

0.2 

0.1 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Figure 1: A plot of the density w(x) for the set C(l) in Example 1 
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4 Properties of bootstrap-like secondary sam­

ples 

After the introduction of the d-method and the w-method, we can nu­

merically compare secondary samples, which are generated using these ap­

proaches. Moreover, we also apply a classical bootstrap in order to verify, 

if there are any significant differences among this widely used simulation 

method (see, e.g., [8, 9, 16, 21] for a more detailed discussion) and the algo­

rithms proposed in this paper. 

Let us start from a certain population Pn0 , which consists of n 0 LRFNs. 

From this population, we randomly draw m elements. Let these elements con­

stitute a primary sample Am· Afterwards, using the fuzzy numbers from this 

primary sample, three methods (i.e., the classical bootstrap, the d-method, 

and the w-method) are used to generate a secondary sample Bn , which con­

sists of n elements. 

In our numerical experiments different experiment setting are used: a 

moderate population Proo (for which n0 = 100) together with a small primary 

sample A5 (where m = 5) and a moderate secondary sample 8 100 (where n = 

100), and a rather big population Pzoo with a moderate primary sample Arno , 

and a rather big secondary sample 8 200 . It allows us to compare outcomes 

for the classical bootstrap, the d-method, and the w-method, if preliminary 

information about a model (which is available only via a primary sample) is 

very sparse (in the case of A 5 ) or relatively abundant (for Arn0). 

For simplicity, only triangular fuzzy numbers will be considered, i.e. , only 

two a -cuts (where a 0 = 0 and a 1 = 1) are used to construct the whole 
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LRFN. Of course, both the d-method and the w-method can be easily used 

to generate the second sample, even if more a -cuts are considered. However, 

the simplest types of LRFNs (like the triangular or the trapezoidal numbers) 

seem to be used very often in practical situations. 

In the following numerical experiments, two types of triangular numbers 

are considered as a model for the population Pno· The first one (which is 

furt her abbreviated as the "type 1 number") is a fuzzy number with an ex­

pected symmetrical spread, where the centre is random and has the standard 

normal distribution N(O, 1), and the semiwidths of the support are given as 

independent chi-square variables with 1 degree of freedom. A similar LRFN 

is discussed in a detailed way in [2]. The second kind (the "type 2 number") 

of a fuzzy number has a strictly non-symmetrical shape. In this case, the 

center points are described by the gamma distribution with a shape param­

eter 1 and a scale parameter 2, and the semiwidths of the support are drawn 

from independent exponential distributions with parameter 1 (for the left 

spread) or 2 (for the right spread). 

We are interested in an analysis of mutual relations between a primary and 

a secondary sample for the different generation procedures and the mentioned 

types of LRFNs. Therefore, properties of both the primary sample and the 

generated, secondary set, are statistically summarized using a sample mean 

versus a population mean, which are calculated for the support and the 

center of a fuzzy number. From a statistical point of view, also diversity of 

the simulated fuzzy numbers is very important. Thus, a standard deviation 

is also found for the support and the center of LRFN in the case of the second 

(i.e., generated) sample. 
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Moreover, the simulated fuzzy numbers should give us some additional 

"insight " into the model, which is (generally) completely unknown and "hid­

den" in data from the primary sample. In an ideal situation, LRFNs from 

the second sample should be (in some way) "similar" to the numbers from 

the primary sample, but, simultaneously, not exactly "the same" as the ele­

ments from A m, and also "very close" to the population. T herefore, values 

of some classical measures (see Section 2) are evaluated for each possible pair 

of fuzzy numbers, which consists of one "old" LRFN (i. e., from A), and one 

"new", generated number (i.e., an element from B). The obtained measures 

are also summarized using common tools , like minimum, maximum, mean, 

and standard deviation. Afterwards, we can point out , if some generation 

method produces fuzzy numbers which are "the same as", "similar" or only 

"close" (and to what extent) to the LRFNs from the primary sample. 

4.1 Small primary sample, type 1 fuzzy number 

Based on the small sample A5 of type 1 of triangular fuzzy numbers, 

three moderate secondary samples 8 100 were generated, using the classical 

bootstrap, the d-method, and thew-method. Then, means for the core Xe 
(see Figure 2), the left end of the support Xl (see Figure 3) and the right 

end XR (see Figure 4) for each of the simulated samples were calculated. 

From now on, obtained results for the bootstrap are marked with circles in 

the graphs, for the d-method - with diamonds, and for the w-method - with 

squares. Horizontal bold lines depict means of the primary sample A for the 

core Xj, for the left end of the support X f and for the right end X fi, and 

axes of respective graphs start exactly in the means of the population (for 
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the core Xe, for the left end of the support XL and for the right end XR)-

V 
60 80 100 

-0.5 

- 1.0 

Figure 2: Small primary sample, type 1 fuzzy number: means of the core 

as functions of the secondary sample size n ( the bootstrap - circles, the 

d-method - diamonds, thew-method - squares) 

As it is seen, each of the simulation method behaves generally well. In 

each case, after generation of 30 - 40 fuzzy numbers, a mean of the secondary 

sample X* approaches a respective mean of the primary set XA. Moreover, 

an application of the d-method or the w-method seem to have some advan­

tages, if they are compared to the classical bootstrap. For example, the 

means for these two approaches are, in general, closer to XA (i.e., a mean of 

A5 ) , than in the case of the bootstrap. The respective graphs are also much 

smoother. Surprisingly, in the case of the w-method, the respective mean 

is also closer to "the real" result - a mean of our unknown model , i.e., the 

population Aoo. 

Apart from the comparison of the means, a diversity of the generated 

LRFNs should be also considered. Hence, standard deviations for the core 

( see Figure 5), for the left end of the support ( see Figure 6) and for its right 
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V 
40 60 80 100 

- 0.5 

-1.0 

Figure 3: Small primary sample, type 1 fuzzy number: means of the left end 

of the support as functions of the secondary sample size n (the bootstrap -

circles, the d-method - diamonds, the w-method - squares) 

0.0 

- 0.5 

-1.5 

-2.0 

-2.5 

-3.0 

Figure 4: Small primary sample, type 1 fuzzy number: means of the right 

end of the support as functions of the secondary sample size n ( the bootstrap 

- circles, the d-method - diamonds, thew-method - squares) 
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Figure 5: Small primary sample, type 1 fuzzy number: standard deviations of 

the core as functions of the secondary sample size n ( the bootstrap - circles, 

the d-method - diamonds, the w-methocl - squares) 

20 40 60 80 JOO 

Figure 6: Small primary sample, type 1 fuzzy number: standard deviations 

of the left encl of the support as functions of the secondary sample size n ( the 

bootstrap - circles, the d-methocl - diamonds, the w-methocl - squares) 
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20 40 60 80 100 

Figure 7: Small primary sample, type 1 fuzzy number: standard deviations 

of the right encl of the support as functions of the secondary sample size n 

(the bootstrap - circles, the d-methocl - cliamoncls, the w-methocl - squares) 

encl (see Figure 7) are plotted. These graphs are marked in the same way 

as previous ones. In the each of these cases, a standard deviation of the 

secondary sample is the lowest , if the w-method is used. 

Now, we compare the three secondary samples, which are generated using 

the considered simulation procedures, but with a help of the measures , which 

were recalled in Section 2. Let us assume that l(ai , b_i) is a value of some 

measure l(., .) of similarity between LRFNs ai E A and bi E B. Then, the 

30 



following notation is used 

MinMin = min{min l(a;, bJ)}, MinMax = min{max l(a; , bJ)}, 
J ' J ' 

MaxMin = max{minl(a;, bJ)} , MaxMax = max{maxl(a;, bJ)} , 
J ' J ' 

1 n - 1 n -
MeanMin = - L min l (a;, bJ), Mean Max = - L max l (a;, bJ), n , n , 

j = l j = l 

1 n - 2 

StDevMin =;;;, L ( min l(a;, bJ) - MeanMin) , 
j=l 

1 n - 2 

StDevMax = ;;;, L ( min l(a;, bJ) - MeanMax) 
j=I 

The respective measures of similarity are summarized in Table 1 (if 8 100 

is simulated using the bootstrap approach) , Table 2 (in a case of the d­

method) and Table 3 (for the w-method). Of course, the bootstrap only 

repeats fuzzy numbers, which are already present in the primary sample. 

Therefore, MinMin and MinMax values for the measures m 11 , m00 and mH 

are strictly equal to zero. But in a case of the d-method, even the values of 

these measures are more diversified, so we have StDevMin > 0. The same 

applies for the w-method. Therefore, these two approaches produce LRFNs, 

which are more diversified ( "not exactly the same" in some way) than the 

numbers from A5 . However, the generated LRFNs are also "similar" (in 

a sense of the applied measures) to the fuzzy numbers from the primary 

sample, because the obtained MinMin and MeanMin values are very close to 

zero. It seems that using the w-method is more fruitful than the d-method, 

because MinMax, MaxMax and MeanMax values are generally lesser for this 

first approach, and MeanMin values are very similar. Hence, even LRFNs, 

which are "maximally" distant from the fuzzy numbers from the primary 

sample, are "closer" in the case of the w-method than for the d-method. 
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Let us analyze the noticed similarity in another way. In order to do this, 

an additional independent sample '7;00 which consists of 200 fuzzy numbers 

of type 1 was generated. Then, three secondary sets B200 are sampled based 

on A 5 , using the bootstrap, the d-method, and the w-method. We find a 

LRFN from each of B200 , which is the nearest to some fuzzy number from 

7;00 in a sense of one of the measures mt,, m 00 , mrv, mH, i.e. a value 

MinMin = min{min l(t bj)} , 
J ' 

where ii E 7;00 and bj E B200 , is calculated. The obtained minimal values 

of these measures for respective pairs of LRFNs are given in Table 4, and 

for each of the measure its minimum is emboldened. As it is seen, if the w­

method is used, then a fuzzy number is generated, which is the most similar to 

some element from 7;00 . In some way, this new independent sample 7;00 gives 

an additional insight into the "true model", because it is a supplementary 

sample from the unknown source, which models our LRFNs. Therefore, the 

w-method produces fuzzy numbers, which are the nearest to this model in 

the considered case. Note, that because the bootstrap only repeats elements 

from the primary sample, then for this method the obtained values of the 

measures are even 6 - 7 times greater than for the best match. 

4.2 Small primary sample, type 2 fuzzy number 

Now we analyze the three considered simulation procedures, if the small 

primary sample A 5 consists of the strictly non-symmetrical triangular fuzzy 

numbers (i.e., the previously mentioned LRFNs of "type 2"). Graphs of the 

means (for the core - see Figure 8, for the left end of the support - see Figure 

9, for the right end of the support - see Figure 10) are very similar to the 
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case, which was described in Section 4.1. Once again, these means for the 

d-method and the w-method are, in general, closer to the respective means 

of the primary sample, than in the case of the bootstrap. Their graphs are 

also very smooth. Moreover, the plots of the standard deviations behave 

reasonably well (for the core - see Figure 11, for the left end of the support -

see Figure 12, for the right end of the support - see Figure 13). The obtained 

values are the lowest, if the w-method is used. 

2.5 

100 

0.0 

Figure 8: Small primary sample, type 2 fuzzy number: means of the core 

as functions of the secondary sample size n (the bootstrap - circles, the 

d-methocl - diamonds, the w-methocl - squares) 

Also the characteristics of the similarity measures, which were introduced 

in Section 4.1, can be found in this case (see Table 5, Table 6 and Table 7 for 

the respective summaries for the different simulation approaches). In general, 

the conclusions are similar as in the case of the type 1 fuzzy numbers, i.e., the 

bootstrap only repeats LRFNs from the primary sample, and the d-method 

and the w-method produce more diversified output, which is still similar (in 

the sense of the considered measures) to the values from A5 . But a decision, 
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Figure 9: Small primary sample, type 2 fuzzy number: means of the left end 

of the support as functions of the secondary sample size n ( the bootstrap -

circles, the d-method - diamonds, the w-method - squares) 

Figure 10: Small primary sample, type 2 fuzzy number: means of the right 

end of the support as functions of the secondary sample size n ( the bootstrap 

- circles, the d-method - diamonds, the w-method - squares) 
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Figure 11: Small primary sample, type 2 fuzzy number: standard deviations 

of the core as functions of the secondary sample size n ( the bootstrap -

circles, the d-method - diamonds, the w-method - squares) 

Figure 12: Small primary sample, type 2 fuzzy number: standard deviations 

of the left end of the support as functions of the secondary sample size n ( the 

bootstrap - circles, the d-method - diamonds, the w-method - squares) 
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Figure 13: Small primary sample, type 2 fuzzy number: standard deviations 

of the right end of the support as functions of the secondary sample size n 

(the bootstrap - circles, the d-method - diamonds, thew-method - squares) 

if the d-method or thew-method is better suited, when a "maximum" distant 

criterion is taken into account, is not so straightforward now. As it is seen, 

MinMax values are lower for the d-method, but MaxMax and MeanMax are 

lower in the case of the w-method. 

And once again, we analyze the supplementary, independent sample 7;00 

of LRFNs of type 2. The fuzzy numbers from this set are compared with 

three samples 8200 which were generated using the classical bootstrap and the 

two methods introduced in this paper. As in Section 4.1 , LRFNs from 7;00 

and each of 8 200 are compared in order to find pairs of fuzzy numbers , which 

are the most similar. The obtained minimal values of measures can be found 

in Table 8. Also in this case, the w-method generates fuzzy numbers which 

are the nearest to some element from the set 7;00 , apart from the measure 

m 00 , for which the d-method gives the best result. The classical bootstrap 
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gives values , which are even 2 - 3 times greater than the best matches. 

4.3 Moderate primary sample 

In practical situations, apart from small statistical samples, which consist 

of only a few values, larger samples are also used. Therefore, we also analyze 

the behavior of a moderate primary sample, for which m = 100 (i.e. A100), 

and a respectively simulated secondary sample B200 , which is rather a big 

one, especially comparing to the previous examples (now we haven= 200). 

As it turns out, general conclusions for both type 1 and type 2 of LRFNs are 

very similar to the outcomes for the small sample, which were summarized in 

Section 4.1 and Section 4.2 . Hence, we may omit a more detailed discussion, 

in order to present other, but in some way, supplementary approach. 

Up till now, we have discussed a convergence speed of the mean of the 

secondary sample .X* to the "true" (but, in general, unknown) mean of the 

population .X. And, in our reasoning, three "focal points" ( a core, a left and 

a right end of a support) have been taken into account. In [2] the authors 

consider an application of LIL (the law of iterated logarithm) as a tool for 

a convergence diagnosis for the simulated fuzzy numbers . Therefore, we will 

also analyze the behavior of a distance between fa/ ✓2n log log n.X* and 

.X as a function of the secondary sample size n. To keep consistency with 

our previous analysis, the three mentioned "focal points" will be still in the 

centre of our attention. Hence, a distance for a core 

fa 1.x· -XI 
✓2n log log n c ' 

(11) 

and similarly defined measures for a left and a right end of a support, will be 

further used, instead of the supremum distance, which is considered in [2] . 
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Because the secondary sample 5 200 is rather big, the convergence speed 

for (11) and rest of the similar measures, as functions of n, is now more 

visible. We restrict our analysis only to type 1 of fuzzy numbers, but the 

obtained conclusions are also similar for the type 2. The calculated distances 

as functions of the secondary sample size are plotted in Figure 14 (the core), 

in Figure 15 ( the left end of the support) and in Figure 15 ( the right end of the 

support). As it is seen, the bootstrap approach is the worst one, especially 

for larger values of n, because the obtained distances are, in general, more 

distant from zero for this simulation method. Both the d-method and the 

w-method produce the relatively well behaving output. 

50 100 150 200 

Figure 14: Moderate primary sample, type 1 fuzzy number: LIL distances 

for the core as functions of the secondary sample size n ( the bootstrap -

circles, the d-method - diamonds, thew-method - squares) 
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Figure 15: Moderate primary sample, type 1 fuzzy number: LIL distances 

for the left encl of the support as functions of the secondary sample size n 

(the bootstrap - circles, the d-method - diamonds, thew-method - squares) 

50 100 150 200 

Figure 16: Moderate primary sample, type 1 fuzzy number: LIL distances 

for the right end of the support as functions of the secondary sample size n 

(the bootstrap - circles, the d-method - diamonds, thew-method - squares) 
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5 New bootstrap-like sample as a tool in sta­

tistical tests 

Apart from the statistical properties of the simulated LRFNs, a possibility 

of an application of the d-method and the w-method in practical statistical 

cases is also investigated. Two types of tests for the expected value of the 

fuzzy numbers are then considered (see Section 2.3 for additional details and 

respective notation) as an appropriate example. 

The first one is a bootstrapped version of the test proposed in [12] (see 

Corollary 1). From now on, it will be called as the K-test (from its author's 

name) for the expected value. The second test is the procedure developed 

in [8, 16] (see Corollary 2) . It will be called as the GRMCG-test for the 

expected value ( also based on the authors' names). In this case, we apply 

a standard uniform density as the weight normalized measure cp in Dw(a, b) 

metric (2) (see [l, 16] for additional details and other approaches). 

As an initial sample in each of these tests , three types of triangular fuzzy 

numbers are simulated. Type 1 and type 2 are described in Section 4. Type 

3, which was considered in [12], is a fuzzy number, where the random center 

has the standard normal distribution N(O, 1), and the spreads of the support 

are independently drawn from the standard uniform distribution U([O, l]). 

For each of these types of the fuzzy numbers, three different simulation 

procedures (the classical bootstrap, the d-method and the w-method) are 

used to generate an input random sample for the test. A number of the 

elements in such a sample n is varying, so both small and medium sample 

sizes are considered, i.e., we set n = 5, 10, 30,100. Also a few values of 
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the number of bootstrap replications r (namely r = 100,200, 1000) are used 

to generate a respective bootstrapped distribution of the test statistics, in 

order to investigate a possible influence of this parameter. In each of these 

experiments, the whole resampling procedure is iterated 100000 times (see, 

e.g., [6, 8, 16, 21] for additional details of such an approach). 

Based on the respective statistics in each of the tests of the expected 

value, an empirical percentage of rejections p at the nominal significance 

level p = 0.05 for the true null hypothesis is then computed. This estimated 

value is widely used as a benchmarking tool for the bootstrapped version 

of the statistical tests (see, e.g., [6, 8, 16, 20, 21]). Then, three considered 

simulations procedures can be directly compared. 

In general, the simulated values of p for all of the approaches are very 

close to one another, and the overall properties are very similar. Especially, 

the empirical percentages of rejections converge to one another for larger 

values of n and r (liken= 100 and r = 1000). However, there are also some 

significant differences. In order to emphasize them, in each of the experiment 

a value of p, which is nearest to the true value of significance level of p, is 

emboldened. 

Let us start from the K-test of the expected value. As it is seen for the 

fuzzy numbers of type 1 (see Table 9), type 2 (see Table 10) and type 3 

(see Table 11) , a comparison of the simulation approaches seems to be quite 

simple. In each of these cases, the d-methocl leads top, which is nearest to 

the assumed significance level p, apart from a few exceptions. For all of them 

the classical bootstrap approach gives the most "true" answer. But even for 

these exceptions, differences between the empirical percentages of rejections 
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for the d-rnethod and the classical bootstrap are not very significant (about 

0.001- 0.002). And these differences favor the d-method especially for smaller 

values of n and r. Moreover , in overall, the classical bootstrap occupies a 

second place in measuring a proximity between p and p. 

For the GRMCG-test, an analysis of the differences between p and p is 

not so straightforward. In the case of type 1 of the fuzzy numbers (see Table 

12) , p seems to be nearest to the true significance level for the w-method 

(when a smaller number of the elements in the initial sample is taken into 

account, i.e. n = 5, 10) or for the d-method (for larger values n = 30,100). 

Especially for the small samples, the classical bootstrap approach gives the 

worst answers and differences in the estimation between the bootstrap and 

one of the other approaches are quite important (about 0.008- 0.01). 

However, when type 2 of the fuzzy numbers is analyzed (see Table 13) , 

the picture is not so clear. Firstly, for n = 5, 10, the estimated percentages of 

rejections favor the classical bootstrap approach, and the other approaches 

give larger values of p. In these cases, the differences between the applica­

tion of the classical bootstrap and other simulation methods are quite clear 

(even equal to 0.012- 0.015) . Secondly, for n = 30, 100, the outputs are more 

accurate, if the d-method or the w-method are used. Then, the differences 

among various simulated pare quite small (about 0.001- 0.002). 

In the case of type 3 of the fuzzy numbers (see Table 14) , it seems that , in 

overall, the d-method or the w-methocl produce the most accurate estimators 

of p. It can be seen especially for the smaller samples (n = 5, 10) , for which 

the classical bootstrap approach gives an estimator of the rejection rate is 

about 0.004 smaller than for the other methods. For the largest sample 
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(n = 100), the d-method is favored, but once again, the differences among 

various simulated values of p are quite small. 

Taking into account the whole analysis, it is not possible to point out 

the undoubtedly best simulation procedure, which gives the most accurate 

values of p. However, the application of the d-method and the w-method 

looks promising, especially for smaller initial samples. 

6 Conclusions 

In this paper we propose two simulation algorithms for the generation of 

left-right fuzzy numbers, i.e. , the d-method and thew-method . Both of these 

approaches, based on the resampling paradigm, utilize the primary sample 

of fuzzy numbers in order to randomly generate the secondary bootstrap­

like sample. This generation is based on a-cuts of LRFNs, and a strictly 

non-parametric approach, without necessity of taking additional assumptions 

about a source ( or a model) of the primary sample. Then, we have compared 

numerically the outputs generated using the classical bootstrap with the 

outputs generated by our two (the d-method, and the w-method) proposed 

methods. In the examples of such comparisons, which are presented in this 

paper, both the small and the moderate samples of the two types of LRFNs 

have been analyzed. Moreover, the similar simulated samples for three types 

of LRFNs are compared in the bootstrapped versions of two tests of the ex­

pected value. We have shown that the properties of the introduced methods 

are very promising. Both our new methods, the d-method and thew-method, 

produce LRFNs, which are "similar" to the elements of the original popula­

tion and the primary sample, but also "more variable" in comparison to the 
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case of the classical bootstrap. Moreover, in some cases of the considered 

tests of the expected value, our benchmarking tool (a difference between the 

nominal significance level of the test and the empirical percentage of rejec­

tions of the true null hypothesis) indicates the supremacy of the d-method 

and the w-method over the classical bootstrap. The proposed methods have, 

in comparison to the classical bootstrap, one disadvantage, when considered 

fuzzy numbers have their "natural" limits (e.g., when their supports must 

contain only non-negative numbers). In such a case it may happen that some 

generated elements of a secondary (bootstrap-like) sample may not fulfil such 

requirements . One can introduce certain modifications (e.g. , a simple cur­

tailment) in order to make them reasonable , but the consequences of such 

modifications require consideration in the future research. 
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Algorithm 2: Secondary sample generation for the d(x) -method 
Input: Sets of the cores and the incremental spreads for A, a number 

of LRFNs in a secondary sample n , a number of possible 

a -cuts k + l. 
Output: A secondary sample B generated using the discrete 

distribution d(x). 

for j +- l to n do 
Randomly draw a value of a core bj (1) from the set C (1) , using a 

discrete uniform distribution form elements ; 

for i +- k - l to O do 
Randomly draw a value of a left incremental spread SL(ai) 

from the set SL(ai), using a discrete uniform distribution for 

m elements; 

Find a left end of the ai-cut bf (ai) = bf (ai+1) - SL(ai); 

Randomly draw a value of a right incremental spread SR(ai) 

from the set SR(ai) , using a discrete uniform distribution for 

m elements; 

Find a right end of the a i -cut bf(ai) = bf (ai+1) + SR(ai); 

end 

Construct bj from the obtained a-C'uts and append it to B; 

end 
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Algorithm 3: Secondary sample generation using the w(x)-method 

Input: Sets of the cores and the incremental spreads for A , a number 

of LRFNs in a secondary sample n, a number of possible 

a -cuts k + l. 
Output: A secondary sample B generated using the distribution w(x). 

for j +- 1 to n do 
Randomly draw a value of a core bj(l) from the set C(l), using the 

density (9) form elements; 

for i +- k - 1 to O do 
Randomly draw a value of a left incremental spread SL(ai) 

from the set S L(o:i), using the density (9) form elements; 

Find a left end of the o:i-cut bf(o:i) = bf(o:i+1) - SL(o:i); 

Randomly draw a value of a right incremental spread SR(o:i) 

from the set S R(o:i), using the density (9) form elements; 

Find a right end of the o:i -cut bf(o:i) = bf(o:i+1) + SR(o:i); 

end 

Construct bj from the obtained o:-cuts and append it to B; 

end 
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m11 mcxo mro mH 

MinMin 0 0 0.000736245 0 

MaxMin 0 0 1.53948 0 

MeanMin 0 0 0.019812 0 

StDevMin 0 0 0.154899 0 

MinMax 3.5179 1 4.99107 3.58809 

MaxMax 3.5179 1 11.012 3.73185 

MeanMax 3.5179 1 10.9518 3.73042 

StDevMax 0 0 0.599078 0.0143039 

Table 1: Small primary sample, type 1 fuzzy number: measures for the 

bootstrap 

m1, mcxo mro mH 

MinMin 0 0 0.000736245 0 

MaxMin 2.62947 0.801501 2.13371 2.0113 

MeanMin 0.0980749 0.210644 0.0417063 0.0697916 

StDevMin 0.271452 0.219908 0.211372 0.204192 

MinMax 4.12642 1 17.5908 5.74315 

MaxMax 4.41593 1 21.6322 5.74315 

MeanMax 4.22721 1 19.0016 5.74315 

StDevMax 0.137404 0 1.9228 0 

Table 2: Small primary sample, type 1 fuzzy number: measures for the d­

method 
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m11 moo mrD mH 

MinMin 0.0100468 0.211763 0.000652598 0.0100467 

MaxMin 1.02656 0.955989 0.415887 0.97555 

MeanMin 0.0880436 0.223415 0.022968 0.0770365 

StDevMin 0.166473 0.0737455 0.0723465 0.143194 

MinMax 4.07298 1 14.4999 3.85217 

MaxMax 4.07298 1 19.3633 5.74315 

MeanMax 4.07298 1 16.7118 4.84823 

StDevMax 0 0 2.26648 0.804912 

Table 3: Small primary sample, type 1 fuzzy number: measures for thew­

method 

m11 moo mrD mH 

Bootstrap 0.0415538 0.310524 0.00157894 0.0262274 

d-method 0.0186548 0.0918212 0.000502853 0.0156908 

w-method 0.00643799 0.0626196 0.000242158 0.00595363 

Table 4: Small primary sample, type 1 fuzzy number: minimal measures for 

the comparisons with the independent sample T;,00 
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m1, moo mrD mH 

MinMin 0 0 0.0324768 0 

MaxMin 0 0 0.417745 0 

MeanMin 0 0 0.0391855 0 

StDevMin 0 0 0.0429783 0 

MinMax 3.40761 1 46.4003 6.82781 

MaxMax 5.52281 1 53.2759 8.27309 

MeanMax 5.41894 1 53.1464 8.22917 

StDevMax 0.452897 0 0.740394 0.201653 

Table 5: Small primary sample, type 2 fuzzy number: measures for the 

bootstrap 

m11 moo mrD mH 

MinMin 0 0 0.0324768 0 

MaxMin 0.364996 0.0654479 1.8041 0.184694 

MeanMin 0.0217277 0.00916271 0.122545 0.017279 

StDevMin 0.0616384 0.0227096 0.182615 0.0449755 

MinMax 5.52281 1 55.9515 8.45778 

MaxMax 7.54289 1 65.602 8.7359 

MeanMax 7.41111 1 61.854 8.68305 

StDevMax 0.367233 0 3.03121 0.109105 

Table 6: Small primary sample, type 2 fuzzy number: measures for the d­

method 
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m11 m,oo mrv mH 

MinMin 0.0481819 0.0333 0.0625318 0.0275902 

MaxMin 0.725874 0.494869 0.804754 0.40568 

MeanMin 0.0652436 0.0415227 0.124169 0.0388207 

StDevMin 0.0866392 0.0499653 0.143116 0.0592306 

MinMax 5.60831 1 58.8443 8.59327 

MaxMax 7.46832 1 63.1713 8.7359 

MeanMax 7.35736 1 61.6798 8.69881 

StDevMax 0.439196 0 2.00388 0.0625592 

Table 7: Small primary sample, type 2 fuzzy number: measures for the w­

method 

m11 moo mrv mH 

Bootstrap 0.0649436 0.202817 0.0260107 0.0371561 

d-method 0.0587924 0 .0782876 0.0109019 0.0305752 

w-method 0.051629 0.098061 0.00938974 0.0302706 

Table 8: Small primary sample, type 2 fuzzy number: minimal measures for 

the comparison with the independent sample 7;,00 
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n 5 10 30 100 

r 100 

Bootstrap 0.16024 0.10113 0.07006 0.06263 

d-method 0.14617 0.09448 0.067571 0.06127 

w-method 0.1668 0.10129 0.07117 0.06283 

r 200 

Bootstrap 0.15438 0.09583 0.06558 0.05714 

d-method 0.1378 0.08804 0.06363 0.05636 

w-method 0.16153 0.09723 0.06464 0.0571 

r 1000 

Bootstrap 0.14834 0.08961 0.06109 0.05449 

d-method 0.13435 0.08354 0.05954 0.05195 

w-method 0.15875 0.09133 0.06169 0.0541 

Table 9: Simulated values of fj for the K-test, type 1 of LRFNs 
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n 5 10 30 100 

r 100 

Bootstrap 0.22788 0.15132 0.09559 0.07145 

d-method 0.22117 0.15006 0.09534 0.07049 

w-method 0.23952 0.1579 0.09693 0.07106 

r 200 

Bootstrap 0.22278 0.14885 0.0923 0.06783 

d-method 0.2184 0.14639 0.09096 0.06748 

w-method 0.23506 0.15312 0.09303 0.0686 

r 1000 

Bootstrap 0.21723 0.14492 0.08758 0.06296 

d-method 0.2153 0.14143 0.08865 0.06188 

w-method 0.23495 0.14697 0.08841 0.06429 

Table 10: Simulated values of p for the K-test , type 2 of LRFNs 
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n 5 10 30 100 

r 100 

Bootstrap 0.17526 0.10734 0.0729 0.0643 

d-method 0.16805 0.10808 0.07281 0.06385 

w-method 0.18535 0.11309 0.07356 0.06466 

r 200 

Bootstrap 0.16682 0.09992 0.06944 0.05768 

d-method 0.16205 0.10241 0.06901 0.05714 

w-method 0.18389 0.10714 0.06958 0.05945 

r 1000 

Bootstrap 0.1615 0.09987 0.06424 0.055 

d-method 0.15917 0.09716 0.06578 0.05404 

w-method 0.17689 0.10472 0.06509 0.05627 

Table 11: Simulated values of p for the K-test, type 3 of LRFNs 
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n 5 10 30 100 

r 100 

Bootstrap 0.03375 0.04906 0.0562 0.05892 

d-method 0.04047 0.05229 0.05618 0.05827 

w-method 0.0422 0.04994 0.05747 0.05981 

r 200 

Bootstrap 0.02988 0.04449 0.05184 0.05395 

d-methocl 0.03659 0.04611 0.05224 0.05331 

w-methocl 0.03869 0.04621 0.05132 0.05405 

r 1000 

Bootstrap 0.02748 0.03862 0.04817 0.05064 

d-methocl 0.03412 0.04158 0.04862 0.04952 

w-method 0.03524 0.04234 0.04844 0.0514 

Table 12: Simulated values of p for the GR.MCG-test, type 1 of LR.FNs 
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n 5 10 30 100 

r 100 

Bootstrap 0.08495 0.08385 0.06892 0.06107 

d-method 0.09687 0.0857 0.06792 0.06094 

w-method 0.0986 0.08808 0.06904 0.06037 

r 200 

Bootstrap 0.07903 0.08167 0.0635 0.05769 

d-method 0.093 0.08148 0.06348 0.05743 

w-method 0.09391 0.08245 0.06545 0.05754 

r 1000 

Bootstrap 0.07574 0.07701 0.06077 0.05299 

d-method 0.08984 0.07804 0.06129 0.05176 

w-method 0.09241 0.07787 0.06038 0.05383 

Table 13: Simulated values of p for the GRMCG-test, type 2 of LRFNs 

58 



n 5 10 30 100 

r 100 

Bootstrap 0.03593 0.05029 0.05763 0.05949 

d-method 0.03923 0.05274 0.05812 0.05941 

w-method 0.03936 0.05256 0.05744 0.06028 

r 200 

Bootstrap 0.03141 0.04413 0.05423 0.05346 

d-method 0.03491 0.04529 0.05355 0 .05321 

w-method 0.0356 0.04599 0.05282 0.05517 

r 1000 

Bootstrap 0.02805 0.04163 0.0489 0.04992 

d-method 0.03221 0.04089 0.05046 0.05001 

w-method 0.03155 0.04306 0.04887 0.052 

Table 14: Simulated values of fj for the GRMCG-test, type 3 of LRFNs 
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