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Abstract

Importance of feature selection techniques in multidimensional data
analysis is nowadays beyond doubt. It is especially so in such learning
tasks which are characterized by a very high dimensionality and a low
number of learning examples. An alternative approach to well known
and commonly used selection methods (e.g. backward, forward, step-
wise) is to use the Akaike Information Criterion (AZC) for feature
selection investigating the whole feature set simuitaneously.

An experimental approach to feature selection suggested in the
paper is based on so-called AIC Ilnprovement Matrices, which describe
the situation in the whole feature set. Besides paying attention to AIC
selection algorithms refer also to correlation between features in the
data set.

Keywords: AIC, Akaike criterion, feature selection, data sets, data
mining.

1 Introduction

One of the key problems in data mining is to search the best approximating
model g such that

}/‘i ‘:g(xi,17xi,2)'"7xi,p)5i)7 (1)



where Y is the dependent variable, x1,z3,...,z, are realizations of ran-
dom explanatory variables X1, Xp,..., Xp, € is a random factor and 1 =
1,2,...,n,.

We assume that function g depends on some parameter §. We can
consider many approximation functions, each parameterized by some @ from
the possible parameter space ©. Since we have got features to describe
their influence on the dependent random variable ¥ (the target), we can
think of selecting the best approximating model ¢ in terms of selecting
the best feature set to describe the target [4]. Thus each parameter @
denotes some candidate feature set. However feature selection is not only
an optimal choice of one feature set in order to describe the target in the
best possible way. We should be aware that each modelling often faces
problems of complexity, executability and significance.

In this paper we propose an experimental approach to select a few
most important features which influence the target. Our method is a com-
petitive to popular forward, backward and stepwise selection methods. It
is based on the Akaike information criterion AZC ([1}). Taking into
account accuracy and complexity models with the lowest AZC indicator are
supposed to have good predictive properties (see [5]).

Although formulated on the ground of information theory, the Akaike
information criterion is applied for different tasks, like state-space model
selection [2], problems related to time series and regression [6], ensemble
neural networks [10], etc. Some improvements of the original AIC criterion
were also proposed, e.g. its bootstrap variant [9].

We try to cope with both - relevance to the target and predictive accu-
racy - to deal with large data sets as well as controlling relations between
features.

The paper is organized as follows: In Sec. 2 we describe the main idea
of the contribution. Next, in Sec. 3, we describe the so-called AZC matrices
and explain their possible usefulness in variable selection. Then we present
our main algorithm (Sec. 4) which is later illustrated on the leukemia data
set (Sec. b).

2 The objective

Let us assume a data set with n observations with a target ¥ (being contin-
uous or discrete, e.g. binary) and ¢ continuous variables features) given by
a matrix X;. We can build many models with the dependent variable Y and
descriptive variables from the X,. Under established criteria one can select




an optimal model and hence obtain some features defining this model. Ac-
cording to common methodology of feature selection we can use the model
accuracy as the performance measure (so called wrapper method). There-
fore we select the model with the highest predictive accuracy and regard the
features used by this model as the optimal features. Unfortunately each
wrapper introduces its own bias when estimating the accuracy, i.e. why
a wrapper taken to features selection determines the type of the model to
be finally trained {8]. Moreover, in a large data set processing wrappers
may be quite difficult or even impossible due to the wrapper’s handicap of
handling high dimensional data.

The objective is to look at interactions between features and simul-
taneously pay attention to descriptive properties of more than one feature
to the target. The idea is to select the best features according to predic-
tive accuracy improvement which results from adding a second feature to
a single feature model.

Here we use the AZC measure as a measure of a model’s predictive
accuracy. Therefore we will use regression to provide AZC indicator. The
approach implies that the number of features ¢ in the model should be less
than the number of observations n.

3 A7ZC Matrices

Let us adopt the following notation: my; stands for a regression model
based on the y ~ v; + v; formula, m; denotes a regression model based on
the y ~ v; formula and mg stands for a regression model where a model is
described only by an intercept (i.e. ¥ ~ 1 formula).

Let us consider a matrix of simple regression models each with a single
descriptive feature or intercept only (Tab. 1). We call this matrix basic
model matriz.
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Table 1: Basic model matrix



In this case a variable connected with a row is called the basic vari-
able and a model with this variable and the intercept is built in each cell
corresponding to this row, apart from the cells on the diagonal which are
filled by simple target ~ intercept models. Now we add a variable corre-
sponding to a column to each model existing in the basic model matriz.
We receive the so-called full model matriz (Tab. 2).
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Table 2: Full model matrix

The full model matriz is symmetrical since model m; ; is identical with
m;,; for each 4,7, i # j.

Let us calculate the AZC over the proposed models. Assume that AZC;;
stands for an AZC of a regression model based on the y ~ v; + v; formula;
AZC; denotes AZC of a regression model based on the y ~ v; formula and
AZCy equals to AZC for the regression model based on the y ~ 1 formula.

The AZC matrix corresponding to full model matriz will be called a full
AZC matriz, whereas AZC matrix corresponding to basic model matriz will
be called a basic AZC matriz. Both matrices are presented in Table 3 and
4.
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Table 3: AZC for full model matrix

Each AZC index tells us how “good” is the model. In particular, AZC;
gives information about a “predictive goodness” of feature v;, .AZCq tells
about a predictive accuracy of the model with the intercept, which is a
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Table 4: AZC for basic model matrix

mean of a target, whereas AZC; ; shows how good are predictive properties
of features v; and v; in describing the dependent variable.

If after adding a variable to the existing model AZC of the new model
gets lower, then it means that this new variable has a positive impact on
describing the target together with the existing variable. We can say this
new variable “helps” the previous variable. The lower is the new AZC
(in comparison to the AZC of the previous model), the better predictive
progress has been made. Taking the foregoing into account we can consider
two kinds of AZC predictive accuracy improvement:

e absolute improvement

ATAC = ATC(basic model) — AZC(full model), (2)

o relative improvement

ATC(basic model) — ALC( full model)

AZC(basic model) @

RIAC =

Let us consider a matrix AZA%¢ containing the following elements:
ATAFC = ATC; ~ ATCyy fori#j

and

AT = ATC, — ATC,.

Analogously, we can construct a matrix RZ4Z°. If given nondiagonal
element in AZ*TC or RZA%C is positive then variables corresponding to
that element’s coordinates describe the target better than a single variable
corresponding to the row coordinate. According to the sign of diagonal
elements we can distinguish two kinds of variables:



o if AIfllc (or lefc) is positive then we will call v; a strong vari-
able,

o if AIﬂIC (or szfc) is negative then we will call v; a weak vari-
able.

A strong variable can describe the target better than only an intercept,
whereas a weak variable cannot do this. However, it is possible that a weak
variable describes the target fairly well together with other variable.

Experimental methods are based on a conjecture that if each two fea-
tures from some feature set F' have good predictive accuracy, then F' might
have good predictive accuracy too. For example, having F' = {v;,v;, v}
with RZAC being positive for each pair, we may expect that a model based
on the features from F would have good predictive accuracy.

4 Filtering the most helpful features

Since the data size is huge (thousands or hundreds of features) a model
cannot be directly applied to the whole data set. We pay attention on
the AZC improvement as a general result of developing model with two
variables in comparison with the model with a sinle variable. We came up
with that methodology not only for the reason of a very good and intuitive
matrix representation of two variable models, but the conjecture that it is
possible to “approximate” the predictive accuracy of multivariable model
by predictive accuracy of many bivariable models. Being more precise, if
we consider many bivariable models on the basis of some feature set (every
combination of two features appears) which all have a positive predictive
accuracy improvement (adding second feature to the first lower the AZC),
the multivariable model based on the whole feature set may present good
predictive accuracy too.

The algorithm goes forward starting from a single feature and adding
another features. Thus an important question arises: Which feature to
choose as the starting one? It is so important because the first feature
selection determines (at least to a certain degree) further variables. Hence
the first feature should be chosen as good as possible both with respect to
the target and to other features.

Below we propose three selection methods:

1. the best column sum in AT (or RZ4C) matrix;




2. the best column sum in AZ“ZC (or RZAZ€) matrix among only those
columns which have the maximal number of positive elements;

3. the best element on the diagonal.

Using the first approach we indicate a feature which generates the high-
est usefulness in all feature sets. The second method starts from the pres-
election of features that can bring profit to the highest number of all other
features (positive elements), and then marks out the most desired one (the
best column sum). According to the third approach we simply choose the
strongest feature among all available.

Let us adopt the following notation: FF will denotes a final feature set
(i.e. a set containing finally selected features), F'L will stand for a features
left set (i.e. a set of available features we have at the beginning of each
step of the algorithm) and FC will stand for a features candidate set (i.e.
a set containing candidates to F'F).

Now we are able to present the main algorithm for selecting features
based on AZC improvement:

Algorithm

1. Select the first feature (using any method described above) and add
this feature to F'F. Mark the initial feature set without the first

feature by F'L.

2. Repeat until F'L is empty:

¢ Choose feature candidates into F'C' as those features f. in FL
which fulfill the following condition

(RI{4° > 0,RIFIf > 0) V(f € FF). (4)

¢ Compute the weight of each feature candidate f, € FC either

- as
Wihp = 2 (RTFF + RTAEF), (5)
ferr
or as
Wiep = > RI{C (6)
feFF



e Take such f. € FC which has the highest candidate weight

W}—l:;F and add it to F'F.

e Update F'L set by excluding the selected feature fc from FC,

ie.

FL::FC\{fC}.

3. Return F'F as the final feature set.

Please note, that we may consider a similar algorithm taking ATATC

instead of RZALC,

5 Illustrative example

For better understanding let us consider the following example.

Example

Consider a logistic regression model for a leukemia data set with the fol-

lowing features:

leukemia.exp = {g48, ¢49, ¢g50, ¢65, ¢88, ¢92,
9134, g136, ¢139}

and a binary target Y.

g98, gl12, ¢133,

BT o T T ] U | U | Ug |y
|| 0,08 |-0,012 | 0,003 [ 171 70,088 | 0,052 | 0,067 | 0,037 [0
vy || -0,007 | 0,080 | 0,002 [ 0,070 | 0,080 | 0,061 | 0,054 |
vy | -0,012 | -0,023 | 0,008 50,2 0,058 | 6,077 | 0,055 | 0,036
vy 0,089 | 028 0,136 574 -0,026. 10,1247 0,036 | 0,000
vs. | 0,035 | 0,000 | 0,083 [0 072067] 0,029 | 0,050 | 0,046
wg || 0,081 | 0,058 | 0,065 | 0,096 0,092 | 0;169 0,072 | 0,029
urc| 0,020 | 0,063 [ 0,070 |G : 0,i56.1 03106 1| 0,070 | 0,037
“vge )| 0,072 | 0,060 | 0,074 | 516 4] 0,084 | 0,006 | 0,080 [ 0,079

= uge ] 0,085 | 0,067 | 0,068 [[0:E 70,054 | 0,077 | 6,092 | 0,067
supgov[f051240] 0,005 [0124 0,022 [:0;115.] 0,058 | 0,015
e 0,051 | 0,060 | 0,082 0,080 | 0,041 | 0,048 | 0,046
vy |10 380 TS G 01387 ] 0,074 | 0,070 |07

Table 5: leukemia.exp.AIC.perc.matrix






2nd selection
e We choose feature candidates into feature candidates set F'C:
FC := {v1,v2,v3,v7,v8, V10, V11, V12 }

We removed vg and vg, because RIAIC < 0 and RIAIC = 0.
e We check the welght of each feature candldate fC € FC:

ch,(,“,) o ] v v va v e v
0.175 | 0.213 202187 0.153 | 0.094 | 0.170 0035 0.214

o We take f, € FC to FF as a feature candidate with the highest
candidate weight VVJ?IFF - in this step we add vs.

FF := {vs,vg,v3}.
e We update F'L set:
FL := {v1,vz,v7,v8, V10, V11, V12 } -
374 selection
e We choose feature candidates into feature candidates set F'C:
FC = {v7,vs,v10, V11, V12}
o We check the weight of each feature candldate fo € FC:

W}fﬁvmuwa} V7| Vg s Uln
o 0.230 | 0.150 | 0.338

o We take fC € FC to F'F as a feature candidate w1th the highest
candidate weight I/V}{?F - in this step we add vy3.

Fr.= {’U5,’U4,’U3,’U12}.
e We update F'L set:

FL = {U7, ’Ug,’Ulo,’Uu}.

4th selection
e We choose feature candidates into feature candidates set FC:

FC = {vy,vs,v10,v11}
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than the first model with backward selection (i.e. Model 2). The backward
selection applied to the third model has not only still improved the AZC
index and reduced the dimensionality but has also made the coefficients

significant.

6 Conclusions

A method suggested in this paper was prepared as an alternative to tra-
ditional selection methods especially for situations with multidimensional
data. The most difficult problem we have to face in the project is a possible
conflict between AZC minimization and improving significance of models’
coefficients (the best models may appear as models with insignificant coeffi-
cients), since such model is completely useless for prediction. Both criteria
are not independent and in some situations may lead to opposite conclu-
sions: F-statistic value for testing assessment on two models (full model
versus reduced) can be low which means that the reduced model is supe-
rior to the full one, while - in the other hand - AZC¢y — AZC cguceq is
below zero which indicates that the full model is superior ([3], pp. 27-28).
This undesired paradox definitely needs to be elaborated.
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