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Abstract. In the paper, the multi-attribute objects with repeating qualitative values of attributes are
considered. Each object is represented by a collection of multisets drawn from sets of values of the
attributes. Formalism of the theory of multisets allows taking into account simultaneously all the
combinations of attribute values and various versions of the objects. The effective procedure for
comparing such objects as well as groups of such objects is developed. The considered measure of
perturbation of one object by another is proposed as the difference of the multisets representing the
objects. The measure describes remoteness between the objects, and, in general, is asymmetrical, and
therefore cannot be treated as the distance. Next, we introduce the new measure of perturbation of one
group of objects by another group of objects and then generate the description of each group of objects
in the form of the classification rules to distinguish the considered groups. A practical illustration of
the proposed approach is carried out for the task of grouping of text documents described by multisets.

Keywords: Perturbation of multisets, multi-attribute qualitative objects, asymmetry of objects’
proximity.

1. Introduction

In data mining tasks there is a genuine ploblem ofu uemg a suitable measure of proximity between objects.
Here, we consider a pair of objects A and B mdlqatmg a distance measure and the similarity between these
two objects. Generally, a distance represents a quantitative degree and shows how far apart two objects are.
Meanwhile, similarity describes degree indicates how close two objects are. It is important to notice that
similarities focus on matching of relations between non identical objects while the differences focus on
mismatching of attributes. Usually, there is an additional assumption about symmetry of objects’ proximity,
i.e., the proximity of the object A to the object B is equal to the proximity of B to A.

However, there are many types of data proximity which are non-symmetric, e.g. in psychological
literature, especially related to modeling of human similarity judgments. It happens that considering two
objects one can notice that the object A is more associated with object B than the other way round.
Asymmetry may have various meaning. Possible examples are like telephone calls between cities, e.g. the
number of telephone calls from city A to city B can be different from the number of telephone calls from city
B to city A. Another case, the cost of transformation of figures, e.g. the figure “< ” is more similar to the
figure “ < 7, than the figure “c ” to the figure “< ”. This way, judging the similarity, e.g. Tversky found,
that the less prominent stimulus was more similar to the prominent stimulus [Tversky, 1977]. Thus, objects
can be viewed either as similar or as different, depending on the context and frame of reference [Goodman,
1972]. Sometimes researchers perform some preprocessing of the data to get symmetric. According to Beals
at. al. [1968], “if asymmetries arise they must be removed by averaging or by an appropriate theoretical
analysis that extracts a symmetric dissimilarity index”. On the other hand, asymmetry may carry out
important information, e.g. [Tversky, 1977, 2004], [Tversky and Gati, 1978], [Tversky and Kahneman,
1981]. Thus, it seems that the assumption of symmetry should not be established in advance, because often
asymmetry of data should not be neglected. !




We can distinguish qualitative properties describing objects in subjective terms as well as quantitative
properties describing objects in objective terms. The task of comparing of objects requires choosing proper
methods of data representation as well as the computer’s data representation. In general, quantitative data
represent numerical information about objects, such information may be measured, i.c., length, height,
weight, time, cost, etc. While, qualitative data represent descriptive information about objects. Quality
information are subjective and cannot be definitively measured. Thus, qualitative data can be observed but
not measured, for example beauty, smells, tastes, etc. In general, the qualitative data are described by sets of
attributes and the attributes are measured by nominal scales. Determination of similarities between
“qualitative” objects by using common diStance measures cannot be directly applicable for qualitative data.
The problem of defining of proximity mcasulcs seems to be less trivial for nominal than for real-valued
attributes.

In the present paper, we consider a finite, non-empty set of objects, each object is described by a set of
attributes, and each attribute is described by nominal values, and additionally it is assumed, that the values
of the attributes can be repeated in the object description. In other words, each multi-attribute object can be
presented in m copies or versions, and the descriptions of the copies may vary within the values of the
attributes. Such problems are faced when e.g. some object is evaluated by several independent experts upon
the multiple criteria, or the attributes of the object were measured in different conditions, or by different
methods. The multiple-valued atiributes can be processed using transformations like “averaging” or
“weighting”, or so on. However, in such a case, a collection of objects can have different structure. Therefore,
the new methods for aggregating such kind of objects are required. Formalism of the multisets theory allows
to take into account all possible combinations of attributes’ values simultaneously and therefore various
versions of the objects can be compared. It seems to be obvious that the multisets theory gives a very
convenient mathematical methodology to describe and analyze collections of multi-attribute qualitative data
with repeated values of objects’ attributes.

In the classical set theory, a set V is a collection of distinct values, v € V. If repeating of any value is
allowed, then such a set is called the multiset. Thus, the multiset S can be understood as a set of pairs, with
additional information about the multiplicity of occurring elements. Let us assume now, that every subset of
the set 7 of nominal values, in which repetition of clements is included, is called a multiset. The term

“multiset” was introduced by Richard Dedekind in 1898. A complete survey of multisets theory can be found
in several papers wherein appropriate opératibns and theit properties are investigated, e.g. [El-Sayed, Abo-
Tabl, 2013; Girish, and Sunil, 2012; Petrovsky, 1994, 2001, 2003; Singh, Ibrahim, Yohanna, and Singh, 2007,
2008; Syropoulos, 2001; Krawczak and Szkatuta, 2015b, 2015¢c, 2016]. For instance, an exemplary
description of the multiset {(1,a),(3,5),(2,c)} is understood that the set of three pairs is considered wherein
there is one occurrence of the element a, three occurrences of the element b, and two occurrences of the
element ¢, The applications of multisets theory can be divided into two main groups: in mathematics
(especially, combinatorial and computatlonal aspects) and computer science. The paper [Singh, Ibrahim,
Yohanna, and Singh, 2007] contains a comprehensive survey of various applications of multisets.

In this way, each multi-attribute qualitative object can be represented by a collection of multisets drawn
from the sets of nominal values ¥ of the attributes describing cach object. Following [Petrovsky, 1994, 1997,
2001, 2003] we will recall selected cases of qualitative data: evaluation of projects, retrieval of textual
documents, and recognition of graphic symbols. Case first, evaluation of research projects by experts using
predefined criteria with qualitative scale. This way, each project can be described in a form of a multiset,
wherein the number of the elements is equal to the number of evaluations with qualitative scale, while the
value multiplicity is equal to a number of experts evaluating the project. Case second, a collection of textual
documents described by qualitative attributes is considered. The lexical attributes like descriptors, keywords,
terms, labels, etc., express a semantic contents of documents. The description of each such document has the
form of a multiset, where the multiplicities are equal to numbers of values of the lexical units appearing in
the document. For many lexical units, the collection of such multisets constitutes another multiset. Case third
concerns a collection of graphic symbols and a collection of standard symbols. Each such graphic symbol



has a form of a multiset, where the multiplicity is equal to the valuation of the recognized graphic symbol
comparing to the standard symbols.

In our present work we develop the effective procedure for comparing the nominal-value data wherein
the attributes values are allowed to be repeated within the object’s description. For such kind of data
represented by multisets, the new asymmetric measure of remoteness between two multisets is developed.
Additionally, following Tversky’s suggestions about possible asymmetric nature of similarities between
objects, our aim is to verify asymmetry of objects’ proximity. Therefore, for data described by multisets we
develop the new mathematical tool which provide satisfactory comparisons of two objects and then also two
groups of objects. Although, there are known fairly many proximity measures of objects, however, usually
there is an assumption about similarity. But, it seems to be obvious that there are problems wherein the
direction of objects’ comparison is significant. The appropriate choice of the applied measure depends on
both properties of the objects considered and the nature of data under consideration.

This paper is a continuation as well as extension of authors’ previous papers on the perturbation of sets
[Krawczak, and Szkatula, 2014a, 2015a]. The term “perturbation of one set by another set” is used in the
general sense and corresponds to Tversky’s considerations about objects’ similarities [Tversky, 1977, 2004].
The considerations are based on the theory of the multisets and their basic operations. First, we define
a description of each multi-attribute object as a K-tuple of the multisets, i.e., an ordered collection of
multisets. Next, it is defined a novel concept of perturbation of one multiset by another multiset which
constitutes a new multiset. Then, it is shown that the perturbation of one multiset by another multiset is
described by a difference between these two multisets, and therefore the direction of the perturbation of
multisets has significant meaning. Due to normalization of the cardinality of this difference, the developed
measure of the perturbation ranges between 0 and 1, wherein 0 indicates the lowest value of perturbation
whilel indicates the highest value of perturbation. We propose two types of the measure of multisets’
perturbation. The first is called the measure of perturbation type 1, where the perturbation is normalized by
the arithmetic addition of these two multisets [Krawczak and Szkatuta, 2015b, 2015c¢]. The second is called
the measure of perturbation type 2 [Krawczak and Szkatuta, 2016], where the perturbation is normalized by
the union of these two multisets. Then, we developed a description of a group of objects as an ordered
collection of the multisets, and next a concept of perturbation of one group of objects by another group of
objects is defined. The perturbation represents the difference of the description of one group compared to the
description of another group. The direction of the perturbation of the groups has significant meaning also
therefore, that the difference of multisets (e.g. the arithmetic subtraction of multisets) is used. For example,
the methodology allows to generate classifications rules distinguishing the considered groups (e.g. the text
documents as shown in Section 5). These rules can be used to classify new objects to one of the prescribed
group. Another example of application of this:methodologyis possibility to evaluate groups’ distances in
order to solve clustering tasks, analogically to'the authors’ piévious paper [Krawczak and Szkatuta, 2014b].

The paper is organized as follows: Section 2 presents preliminary considerations on the asymmetric nature
of the similarity of data. In Section 3 we present the description of the perturbation methodology for multisets
and the mathematical properties of the measure of perturbation type | and type 2. In Section 4 we present the
measures of interactions between objects described by multisets. Section 5 presents the application of the
measures of objects’ perturbation for classification problem. The considered classification rules have the
form “IF certain conditions are satisfied THEN a given object is a member of a specific group”.
The developed methodology is explained by an illustrative example.

2. Asymmetry of data proximity

There are several ways to model asymmetries of proximity of data. The only assumption is, that a measure
of similarity or dissimilarity between two objects must be defined. Let us provide a short discussion of some
of such models, for instance the prospect theory, “salient” and “goodness” of the form, and “cost” of objects’

transformation.



Tversky and Kahneman prospect theory

Human perception can be modeled by the prospect theory developed by Tversky and Kahneman [Tversky
and Kahneman, 1981]. In outline, this theory describes people rationality in decisions involving risk. The
theory states, that people make decisions based on the potential value of losses and gains. The value function
is s-shaped and asymmetrical, see Fig. 1.
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Fig. 1. A hypothetical value function [Tversky and Kahneman, 1981].

The most evident characteristics of the pros‘;pect theory is that the same loss creates greater feeling of pain
compared to the joy created by an equivalent gain. For example, see Fig. 1, the feeling of joy due to obtaining
$100 is lower than the pain caused by losing $100.

“Salient” and “goodness” of the form
The issue of symmetry was extensively analyzed by Tversky [Tversky, 1997, 2004], who considered

objects represented by a sets of features, and proposed measuring of similarity via comparison of their
common and distinctive features. Such assumptions generate different approach to comparisons of objects.
Namely, comparing two objects A and B there are the following fundamental questions: "how similar are A
and B?", “how similar is A to B?" and "how similar is B to A?". The first question does not distinguishes the
directions of comparison and corresponds to symmetric similarity. The next two questions are directional
and the similarity of the objects should not be a symmetric relation, meanwhile. For example, comparing
a person and his portrait, we say that "the portrait resembles the person" rather than "the person resembles
the portrait” [Tversky and Gati, 1978].

The perceived similarity is strictly associated with data representation. In general, the direction of
asymmetry is determined by the relative “salience of the stimuli”. Thus, “The less salient stimulus is more
similar to the more salient than the more salient stimulus is similar to the less salient” [Tversky, 1977].
If the object B is more salient than the object A, then A is more similar to B. In other words, the variant is
more similar to the prototype than the prototype to the variant. A toy train is quite similar to a real train,
because_most features of the toy train are included in the real train. On the other hand, a real train is not as
similar to a toy train, because many of the features of a real train are not included in the toy train.

The psychological nature of human perception was discussed among others by Tversky and Gati [1978].
They hypothesized, that both “goodness of form” and complexity contribute to the salience of geometric
figures. Moreover, they expected that the "good figure" to be more salient than the "bad figure".
To investigate these hypotheses, they conducted two sets of eight pairs of geometric figures. In the first set,
one figure in each pair (denoted p) has “better” form than the other figure (denoted g). In the second set, one
figure in each pair (denoted p) was “richer or more complex” than the other (denoted ¢). Example two pair
of figures from each set are presented in Fig. 2 and Fig. 3.
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Fig. 2. Example of a pair of figures from set 1, used to test the prediction of asymmetry [Tversky and Gati,1978].
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Fig. 3. Example of a pair of figures from set 2, used to test the prediction of asymmetry [Tversky and Gati,1978].

A group of 69 respondents were involved in the experiment whom two elements .of each pair were
displayed side by side. The respondents were asked to choose one of the following two statements: "the left
figure is similar to the right figure," or "the right figure is similar to the left figure". The order of the presented
figures were randomized so that figures appeared an equal number of times on the left as well as on the right
side. In results, more than 2/3 of the respondents selected the form "¢ is similar to p".

Within the second experiment, the same pairs of figures were used. One group of respondents was asked
to estimate (on a 20-point scale) the degree to which the figure on the left was similar to the figure on the
right, while the second group was asked to estimate the degree to which the figure on the right was similar
to the figure on the left. In results the hypothesis was confirmed that the average pairs’ similarity of the
figures ¢ to the figures p, S(g,p), was significantly higher than the average pairs’ similarity of the figures p
to the figures ¢, S(p,q).

These experiments confirmed their hypothesis that similarity is asymmetrical, but it does not clarify the
concept of “goodness of the form”.

“Cost” of transformation
The objects’ distance may be referred as a fransformational distance between two objects. Such distance

is described by the minimal costs (the smallest number of elementary operations) of transformation by
a computer program of the first object’s representation to the second object’s representation. This concept is
known as Levenshtein’s distance [Levenshtein, 1966]. The developed measure of perturbation concept can
be regarded as an extension of Levenshtein’s distance. However the concept perturbation is evidently much
more general because is bidirectional and concérns nominal-valued attributes.

According to Tversky [1977] as well as Garner and Haun [1978], the objects’ transformations involve the
operations of additions and deletions. It seems that deleting of feature typically requires a less complete
specification than addition of its. Each comparison of the representations has a “short” and a “long”
transformation, the arrows indicate the temporal order of stimulus presentation.

Such transformations for the exemplary shapes A and B can be illustrated in Fig. 4. In order to generate
the right figure from the left, the bottom line should be deleted. In the opposite case, the process of adding
bottom line is more complex because requires specification of “what” and “where” exactly to add.
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Fig. 4. Example of two shapes A and B [Garner and Haun, 1978].

Also can be considered the overall transformation distance between two representations, which is
characterized by the number of steps required to change one representation to other [Hodgetts et.al., 2009].
They distinguished three general transformations for comparing shapes: 1) create a new feature, that is
unique to the target representation; 2) apply feature, this operation takes a feature created via step 1 and
applies it to one or both of the objects in the target representation; 3) swap feature between a pair of objects,
c.g. shape or color. The transformation from the exemplary pair of two shapes A to the pair of two shapes B,
and in the opposite direction, can be illustrated in Fig. 5.

transformation (short)

transformation (long)

Fig. 5. Example of two pairs of two shapes A and B [Hodgetts et.al., 2009; Hodgetts and Hahn, 2012].

Let us consider first case, in order to calculate the transformation distance from the pair of shapes A to
the pair of shapes B. Then, there are required to use only one transformation apply for existing square, i.e.,
apply(square)=1. In the second case, the transformation distance from the pair of shapes B to the pair of
shapes A requires using two transformations, creation of a new triangle and application of this new triangle,
i.e., create(triangle) + apply(triangle)=2. Thus, the transformation distance from the pair of two shapes A to
the pair of two shapes B is “short” (requires one operation), whereas the transformation from the pair of two
shapes B to the pair of two shapes A is “long” (required two operations). Applying a feature that is currently
available is simpler than introducing a new feature.

In the next section we present the description of the perturbation methodology for multisets.

3. Matching of multisets

Let us consider the multisets defined in so-called multiplicative form [Meyer and McRobbie, 1982;
Petrovsky, 2010], drawn from a non-empty and finite ordinary set ¥ of nominal-valued elements,
V=fv, gV s Vig 2, Vie{l, 2, L=1},
Definition 1 (Multiset). The multiset S dravim ﬁ'bm the ordinary set V- can be represented by a set of ordered
pairs:

S ={(kg(v),v)}, VvelV [€))

where kg:V — {0,1,2,...}.



In (1) the function kg (.) is called a counting function or the multiplicity function, and the value of kg (v)

specifies the number of occurrences of the element v € in the multiset S. The element which is not included
in the multiset S has its counting function equal zero.. The multiset space is the set of all multisets with

elements of ¥, such that no element occurs more than m times, and is denoted by [F'1".
Definition | can be formulated in the following way

S= (ks (v)v)), (ks (V,),v,) o (ks (v,) v, )} )
understood that the element v, € V' appears k¢ (v,) times in the multiset S, the element v, € V' appears
ks (v,) times and so on. In the case where & (v,) = 0 then the element v, € V' is omitted.

Let us consider two multisets §, and S, , such that S,,5, e [']", where a collection of multisets [V']"

is drawn from the set V' = {v,,v,,..,v,} of nominal elements,

Sy ={(ks, ). v1), ks, (v2),v2),eoosllleg, (v1)5v 1)} 3
Sy ={lky, (7)1, (g, (v,),v)s. (g, (v, ),v,)}
According to [Krawczak, and Szkatuta, 2015b, 2015c, 2016] the following basic operations and notions
of the multisets can be distinguished.
o The union of multisets
SpuSy ={(ks,us, ),V): YVEV, kg (s, (v) = max ks, (v), ks, ()} }.

o The intersection of multisets
§inS, = {(k\'us (v)v): VveV, \ln\) = mm{k\, (V) k.sz }}-

o The arithmetic addition of multisets ‘'
8, @8, ={lks as, V).V): WEV, kgas, () =k (")‘*‘ksz (V)}
o The arithmetic subtraction of multisets
5,08, = {(ks,as', (v)v): Vvel, k.s’,(-)s, )= max{ks‘ (V) =k, (v),0}}.
o The symmetric difference of multisets
S1AS, ={(kg a5, W),v): VYV EV, kgpg, (V)= |kS| (V) =k, (")l} .
On the basis of the authors’ previous research, the new asymmetric measure of proximity between two
multisets §, and S, is introduced. The details of the proposed approach are presented below.

3.1. Concept of multisets’ perturbation
Comparison of the first multiset §, to the second multiset S, is meant that the second multiset is

perturbed by the first multiset, while comparison of the second multiset S, to S, is meant that the first

multiset is perturbed by the second one. It is important to notice that the direction of the perturbation has
significant meaning. In other words, one multiset can perturbs another multiset with some degree.
In [Krawczak and Szkatuta, 2015b, 2015c, 2016], there was developed the definition of a novel concept of

perturbation of one multiset S, by another multiset S, , denoted by (S, -.S,), which is interpreted as

a difference between one multiset and another multiset, S,0S, , in the following way:
(Sy > 8,) = 8,08, ={(kg, 5, ("), V): VeV, kg, (v) =max {ks, (v) —kg, (v),01} ()

The counterpart definition is similar

(S 8)) = 5,08, = {(k.s'z»-psl W) Yvel, kg, g ()= max{ksz ) “ks, (v),0}} (%)



The interpretation of the perturbation of one multiset by another multiset is presented in the following
example.

Example 1. There is considered the following set V' = {a,bcd,e} and two exemplary multisets
S, ={(,a),(l,e)} and S, ={(1,a),(1,d),(3,e)} > S, S, €[]'. The perturbation of the multiset S, by the
multiset 8 is the empty multiset, because (S, S,)=5,0S,=0. The perturbation of the multiset S, by
the multiset S, is the following multiset (S, - §;) = 5,05,={(1,d),(2,e)} .

=)

Note, that each finite multiset drawn from the ordinary set of L elements can be shown as a point in
L- dimensional space. For example, assume that =2, then the multiset {b,a,b,b} can be written in

a simplified form as {(1,a),(3,b)} (since the order of elements is irrelevant) and by omitting the names of the

elements, we get the point (1,3) in 2-dimensional space.
The geometrical interpretation of the proposed concept of the perturbation in 2D spacc is provided below.

3.2. Geometrical interpretation of multisets’ perturbation

Let us assume that card(V)=2, i.e., ¥ = {v,v,}, and then consider two multisets S,,S, [V']", denoted
by 8y ={(ks,(n),v)), (ks (v3),v,)}, and S, ={(ks, (). v),(ks, (v,),v,)} . Each considered multiset can be
represented as a point in 2-dimensional space, see in Fig. 6, and these two points have the following
coordinates (kg (7)), kg, (1)) and (ks, (s, (1)) respectively.

According to (4) and (5), the perturbation of an arbitrary multiset S, by other multiset S| is interpreted
as a new multiset described as follows [Krawczak and Szkatuta, 2015b, 2015¢, 2016]:

(S 28,) =588, ={(ky, 5, () ):) )k o5, ()iv2)}= {(max g, (v) kg, (1), 03, ), (max kg, (v) — ks, (v,),0},v,)}-

And, in the opposite case, the perturbation ofthe multlSct S, bythemultiset S, has the similar definition,
[Krawczak and Szkatula, 2015b, 2015¢, 2016]".

(85 58)) =506, ={(kg, s, )1 ks, ())¥= {(max s, (v}) = kg, (v),0},v)),(max &g, (v;) —kg, (%),04,v,)}-

The two-dimensional geometrical interpretations of the perturbations for the exemplary multisets S'; and
S, are presented in Fig. 6. Within the figure, there are indicated two perturbations, i.e., the perturbation
(S;S,) in the left figure, and (S, .S;) in the right figure.

k(vy) k(vy)
O - L (mm) [N ) U 5 (m,m)
S, i S, i
kg, (v) P E ko) |-+ v E
ks, (v2) =0 \ ' ksyns, (2 ))'[ \ !
ks, (v2) S E ks (v | e » S, i
i Ksos, (7)) 2 kyyos (M1=0 E
©.0) ks (On) ks, () (m.0) k(w) 00 kg (v) ks, () (m,0) k(v)

Fig. 6. The graphical interpretations of perturbations of the multisets S, and S, . The arrows indicate the
directions of the perturbation.



Analyzing Fig. 6, one may notice that for the exemplary multisets §,,5, e [']", the perturbation of one
multiset by another creates a new multiset, obtained as the subtraction of these two multisets. Thus, the
multisets’ perturbation describes difference between multisets, and therefore the direction of the perturbation
cannot be neglected. The following conditions kg, g, (v)) = kg, (v) — kg, (v)) and kg, 5, (1,)=0, as well as
kyrss, ) =0 and kg g () =kg, (v,)~kg, (v,), are satisfied. The segments marked by the thick lines indicate
positive values of the counting functions kg, s, (v,) and kg, 5 (v,) , respectively. In the case of the
perturbation (S, +S5,), the beginning of the segment is the point (kg, (1), kg, (7)) and the end of the segment
is the point (ks, (), g, (7)) - While, for the opposite perturbation (S, - S;), the beginning of the segment is
the point (kg, (v), ks, (v,)), and the end is'the point (kg, (v), ky, (v,)) -

The cases shown in [ig. 6 have been especially selected in order to obtain the perturbations as single-

element multisets, just indicated by the thick lines. Thus, the first perturbation, depictured at left side of
Fig. 6, can be rewritten in the following multiset form

(S 83) = {lky, 155, (0 v ) (kg y5, (V2D 2} = {(k (v) = kg, (), 1,),(0,v,)}
while the second perturbation, depictured at right side of Fig. 6, can be rewritten as
(S 8)= {(k.\',Hs, Vv, (ks s, (V) vy} = {(Ox‘ﬁ)»(ksz (v2) - ks, (v2)v2)}

Next, we will present details of the proposed approach of the measure of the perturbation of one multiset
by another multiset.

3.3. Measure of multisets’ perturbation

Again, let us consider two multisets S,,S, e[V']", ¥V ={v,,v,,...,v,}. The perturbation of one multiset by

another constitute a new multiset, and there is a problem of estimating numerical values of the multisets’
perturbations. For this purpose, we give two proposals of defining the measure of the perturbation of one
multiset by another multiset, which values range between 0 and 1. Value 0 indicates the lowest value of the
perturbation measure while 1 is the highest value. The definitions are based on the cardinality of the multiset

as a function that assigns a non-negative Hre;‘il number to cach finite multiset S e [V]", i.e., carc(S)=Zk:(v)‘
v o ve/

At the beginning the arithmetic subtractioi of two multisets, $,08,, is determined and its cardinality is

described, and then the result is normalized.
Here, we propose the measure of perturbation type 1 of one multiset by another with normalization done

by the use of the arithmetic addition of these two multisets S, @ S, , and another measure of perturbation
fype 2 with normalization caused by the union of two considered multisets S, U S, .

First, let us consider the measure of the multisets’ perturbation type 1 of the multiset S, by the
multiset S, . This measure of the perturbation is calculated in the following way [Krawczak and Szkatula,
2015b, 2015¢].

Definition 2 (Measure of perturbation type 1). The measure of perturbation type 1 of the multiset S, by the
multiset S, , denoted by Per} (S, S,), is defined by a mapping Per)s :[V1' [V ] —[0,1], in the
JSollowing manner:

L
kg, (v)—k S Vi
o 5,) = card(S,08,) _ 2 () ks, O : 6)

L
Z (ks| (v)+ ksz v)
i1

Per} (s
e card(S, ® S,)



The intuitive meaning of the above definition can be given as follows, namely the measure of perturbation
of one multiset by another is understood as the total number of elements appearing in the multiset which is
created as the arithmetic subtraction of these multiset. The measure is normalized by the total number of
elements within the multiset created by arithmetic addition of these multisets. The normalization causes that
the measure is not greater than 1.

In the counterpart case, the measure of perturbation of the multiset S, by the multiset S, is defined in

the similar way:
L

3T card(8,08,) _ E(ksz Gk .

T
D ks, (v)+ks, (v)))
i=1

(7

Pel',",s S, =S

card(S, ®S))

The definitions of these two cases are similar, however the difference is involved in the directional
character of the arithmetic subtractions §\®S, and S,®S,, respectively.
The measure of multisets’ perturbation type 1 satisfies the following properties:

Corollary 1. The measure of perturbation type 1 of the multiset S, by the multiset S, satisfies the following
conditions

1) 0< Peryg (S, 8,)<1.

2) Peryg (S - 8y)=0 ifand only if ks (v,) =k, (), Vie{l,2,..,L}.

3) If Vie{l,2,..,L}, ks (v,)=0, and 3k, (v)>0, i€{,2,..,L}, then the condition Perlg(S; 5 8,)=1 is

satisfied.

Proof. See [Krawczak and Szkatula, 2015b, 2015¢].

Now, the measure of the perturbation type 2 is defined in the following way [Krawczak, and Szkatuta,
2016).
Definition 3 (Measure of perturbation type 2). The measure of perturbation type 2 of the multiset S, by the
multiset S, denoted by Peris(S, 1 S,), is defined by a mapping Perls : [V1"x[V]" = [0,1], in the following
manner:

L
Z (kg, (v ) ksmsy (V).

Pe"AIZIS (S, 1 §,)=_card(S5,0S;) _ ,-I=|_,‘A - ; (8)
card(S; U S,) > max{ky, (v)), ks, (v)}
=]

The definition of the counterpart case is similar

L

card(s,05,) _ ;(k“z () =gy, () o

p_— I
card(S, V5)) > maxtks, (v,),ks, (v)}

i=l

Pe/;f,s (S, 8)=

The remark is the same, i.e., the difference relies on using the arithmetic subtractions §®S, and S,0S, ,

respectively. The measure of perturbation type 1 of multisets differs from the measure of perturbation type 2
with respect to different form of the denominator. Namely, in the Definition 2 there is the arithmetic addition

S, @S, , while in Definition 3 there is the union of multisets S, US,.
The measure of perturbation type 2 of one multiset by another set satisfies the following properties:



Corollary 2. The measure of perturbation type 2 of the multiset S, by the mulfiset S, satisfies the following
conditions
1) 0<Perde(S, - 8,)<1.
2) Per(S, > 8,)=0 if and only if ks (v,)=ks s, (), Vie{l,2,...,L}.
NI Vie{l,2,.,L} , ky(v)=0, and Fkg(v)>0, ie€{l,2,..,L}, then the condition
Pergs(S) > 8,) =1 is satisfied.

Proof. See [Krawczak and Szkatuifa, 2016].

The idea of multisets’ perturbation we will be now illustrated by the following example.

Example 2. Let us consider the set ¥ ={a,b,d,e}, i.e., L=4, and two multisets S|, S, e[V]“’ drawn from the
ordinary set ¥, where for example S, ={(l,a),(l,e)} and S, ={(,a),(1,d),(3,e)}. Due to Definition 2, the
measures of perturbation type 1 is calculated in the following way:

4 4
Z (ks, )= kx,ns, ) Z (ks, v)- ks,ns, o))
Pery(S, 5 S,) =4 =05 Per(S, > 8) == ==-
DUy, (v) kg, (v)) Dk, () +kg (v)))

i=} a

In the subsequent subsection we provide the geometrical interpretations of the proposed measure of the
multisets’ perturbation in 2D and 3D space.

3.4. Geometrical interpretation of measure of multisets’ perturbation

In order to demonstrate the meaning of the measures of the perturbation both type 1 and type 2, of
a multiset S, by another multiset S, i.e., Pery(S, - S,) and Perjs (S, - S,), as well as the counterpart
cases, i.e., Peryg (S, S,) and Perl (S, - S,), we draw some geometrical interpretations of the measures
of the perturbations of the multisets in 2D and in 3D.

Case 2D
Let us assume that ¥ ={a}, i.e., L =card(V) =1, and consider the following two multisets §,,5, e[F']’,

denoted by S| ={(k, (@), @)}, and S, ={(kg,(a),a)} . According to Eq. (6) and (7) the measures of
perturbation type 1 have the following forms: . @+ . =~

O b @ o @ k@

P .1‘ S S.) =
erus (519 55) ks, (@) +ks, (@) ks, (@) +kg, (@)

and according to Eq. (8) and (9) the measures of perturbation type 2 have the following forms

ks, (@) = kg s, (@) ks, (@) = ks, ~s, (@)

, PerZ (S, s S,)= .
max ks, (a),ks, (@) i (52 1 1) max {ks, (a), ks, (@)

Peris (S > §,) =
Additionally, it is assumed, that the counting function for the multiset S, equals 2, i.e., kg (a)=2; while
the counting function for the multiset S, is.changed from 0 to 5, i.e., kS2 (a)e{0,1,2,3,4,5} . In this way, we
consider the pairs of the multisets: S, and S, , where the multiset S, is fixed, i.e., S, ={(2,a)} and the second
multiset S, is changed as follows: §,={(0,a)}, S,={(La)}, S,={Qa)}, S,={B,a)}, S,={Ea)},



S, ={(5,a)}. Fig. 7 shows comparisons between the values of the measures of the perturbations for such

pairs of the multisets S, and S, .

Peryis (1) Perdg(.)
i (I
\
0,9 09 F—F—
0,8 \ 0,8 \
0,7 \ 0,7 .\
0,6 \ 0,6 \

0,5 \\ | 0,5 /

0,4 . - — /‘ 0,4
0,3 ! 0,3 \ - // -
0,2 \ 0,2 - o
0 v 0 g e )
0 1 2 3 4 5 0 1 2 3 a 5
kg, (@) ks, (@)

Fig. 7. The measures of perturbations Per),(.) and Perl(.): the perturbation (S, S,) - the blue lines, the
perturbation (S, ;) - the red lines. The value of ks, (a) is equal 2 and kg, (a) is changed from 0 to 5.

In the left figure, there are displayed the measures of the perturbation type 1, denoted by Peri(.), while
in the right-hand figure there are displayed the values of the measures of the perturbation type 2, denoted by
Perts(.), for the pairs of the multisets S, and S, .

The figures display changes of the values of the perturbation measures with respect to the values g, ()

(which are changed from 0 to 5), for fixed value of the function kg (a)=2. For the first case of the

perturbation (S, - 5,), the measures Per), (S, = S,) and Perls(S, - S,) (indicated as the points on the
blue lines in Fig. 7) are equal 0 for kg (a)=2<kg, (a)<5. Forthe second case of the perturbation (S, =5;) ,

the values of the measures of the perturbation: Pery;s(S, > ;) and Perfy(S, > S)) (indicated as the points
on the red lines) are equal 0 for 0< kg, (a) <kg () =2. It is interesting to note that the both curves are convex.

Cuse 3D
Now, let us consider a case characterized by ¥ ={a,b},i.e., L=card(V)=2, and two exemplary multisets

8, ={(ks, (@),a), (kg (b),b)} and S, ={(kg, (a),a), (ky, (b),b)}, Where S, S, e[V]". It is assumed additionally, that the
value of each counting function for S, is equal 2, i.c., ky (a)=2 and kg (b)=2; while the values of the
counting function for §, are ranged between 0 and 4, i.c., kg, (@), ks, (b) €{0,1,2,3,4} . In this way, we
consider the pairs of the multisets S, and.S, ,; where ,tl]é‘.lnllltiset S, is fixed, i.e., S| = {(2,a),(2,b)} and
the second multiset S, is changed as follows

S, ={0,a), (0,6)}, S, ={(0,a), (1,b)}, S, ={(0,a), (2,0)}, S, ={(0,a), 3,6)}, S, ={(0,a), (4,6)},
SZ _—‘{(l,fl), (O,b)}’ SZ = {(lva)’ (])b)}’ S2 ={(l,a)s (z’b)}’ Sl ={(I,a), (3:b)}’ Sz ={(l‘a)) (4ab)} 3

S, ={4a), 0,0)}; S, ={(4a), (1,)}, S, ={(4a), (2,B)}, S, ={(4a), 3,0)}, S, ={(4.a), (4,0)}.



As an example of 3D case, let us consider the measure of perturbation type 2 for the multisets S, and

S, , denoted by Pers(S, - S,), and described by Eq. (9):

2
Z(k.s’2 (\’,) - /(szr\\'[ (\l,')) - kS, (a)+ k.s', (b) _ kSlr'\S, (a) _ kSzmSl (b)

Pergs(S, > §) == =— :
S max{ks (v,) ks, ()} max{kyg (a), kg, (a)}+max{k (b), kg, (b)}
§ Vi s R, Vi

i=l

Thus, each considered measure of perturbation type 2, for the fixed multiset S, ={(2,a), (2,5)} and for
changing the multiset S, = {(ks, (a),a), (ks, (b),b)} (i.e., for changing values of kg, (a) and kg, () from 0
to 4), can be represented as a point on a plane in Fig. 8. In a 3-dimensional space, each such a point has the
following coordinates (kg, (a), ks, (b), Perjys(S, - S))).

PL’",\zlx(Sz - 8)

I

3/4
12

1/4

0o 1 2 3 4 ks, (b)
Fig. 8. The changes of the measure of the perturbations.

Fig. 8 shows, that the measure of the perturbation type 2, denoted by Perf(S,+>S,), is equal 0 if
kg (@)€{0,1, 2} and kg (b)e{0,1,2}. The value of the measure of the perturbation is greater than zero if

ks, (@) € (3,4} or kg, () (3,4}

3.5. Comparing proximity measures
Let us consider two multisets S, and S, , drown from the set ¥ ={v,,v,,...,v, } of nominal elements, such
1 2 13 V2oV >

that S,,S, €[I]". It is important to mention, that there are several known measures which can be applied for
comparison of two multisets. Comparing proximity measures can be analyzed analytically, where two
measures are considered equivalent or one measure is expressed as a function of the other measure,
or empirically, for a given data set. Both cases are discussed below.

Empirical case

used distance measures, namely Chebychev (du“h)‘,m (Sw5 )_ max 'kb'(y/) kg, (v, )l) Manhattan
ie{l,2

( dz\'lzmhullun (S! > SZ ) = Zlks, ("i) _kSz (Vi )[ )i and the Euclidean distance (dE (Sl ’ SZ) = \/Z(ks, (V ) kSZ (V )) )
i=

=l



Let us assume that L=2 and let us consider two exemplary multisets S ={(ks, (a),a), (kg (b),0)} and
Sy ={(ks, (a),a),(kg, (b),b)} drown from the set V' = {a,b}, where §,,S, e[V]’. It is assumed additionally,
that kg (a)=2, kg (b)=3, and kg, (a)=3, kg, (b)=1. In this way, we consider the pair of the multisets
S, ={@2,a),(3,b)} and S, ={(3,a),(1,b)} . The multisets ,S; and §, can be represented as points in 2D space
specified by the coordinates k(a) and k(b), namely as points (2,3) and (3,1), respectively. And then, there
arises a problem of calculation of degrees of proximity between these two multisets.

According to (4) and (5), the perturbations for the multisets S, and .S, are interpreted as the new
multisets, described as follows:

(S 5,)= {(max{kg, (a) kg, (a),0},a), (max{kg (b) —kg, (0),0},6)} ={(0,a),(kgs, (0),0)} = {(0,@),(2,b)},

(S,8,)= {(max {kg, (a) — ks, (), 0}, a), (max {ky, (&) — kg, (6),0,6)} ={(kg,,,5, (@), (0,b)} ={(1,),(0,5)}.
The values of nonzero counting function of proposed perturbations are kg, g, (b) =2 and kg, (a)=1.

The graphic illustration of the selected measures and the counting functions of proposed perturbations, for
the fixed multisets §'; and S, , is shown in Fig. 9.

k(b)

I - L L U SR,
s tamnanian St 51)
...... 3. S cassnsiel bus ¥
v i /' \
— —
Acngpysner (S155) k(sl.aszlj (©) A suctidean(S1+52)
S
...... Pl ;
%k(Sp..;sl)(a) !

0 ' 2 3 s ki)

Fig. 9. A graphical illustration of few selected measures for fixed multisets S, and s, .

[t is easy to confirm that the different criteria of evaluation of the distances between multisets will lead to
different results. Obviously, the Chebyshev measure d,,, ... (S,,5,) =2 (the purple segment) as well as

Euclidean 'y, (S1,S,) = V5 (green segment) and Manhattan d,,,,...(S;,S,) =3 (the red path shows one
of possible realization) are symmetric. However, if the direction of comparison of multisets cannot be
neglected, then the counting functions k., (b)) =2 and kg, (a)=1 of the perturbations (two black
segments) may be used. Thus, it is obvious that it is impossible to indicate which measure is better in general.
In other words, there does not exist the best measure for evaluation of proximity between two arbitrary
multisets and the choice depends on the nature of data under consideration.

Analytic case i ‘ .
The different measures known in the literature can be expressed as some functions of the measures of

perturbations type | of one multiset by another multiset [Krawczak and Szkatula, 2015b, 2015c], or the



measures of perturbations type 2 [Krawczak and Szkatula, 2016]. These measures can be spread into two
components, which correspond to the directional two perturbations. In the following corollaries we present
several very important properties of the select few measures, in which there is involved our idea of the
perturbation measures.

For example, the Bray-Curtis dissimilarity (d/x—r(SnSz):M) [Bray, Curtis, 1957], that is
’ card(S, ®S,)

popular in the environmental sciences, can be rewritten in such a way that the equivalent definition contains
the sum of the measures of the perturbation type 1.

Corollary 3. The sum of the measures of the perturbation type I satisfies the following condition
dy(81,8;) = Perys (S, 8,) + Perys (S, 8)) .
Proof. See Appendix.

card(S,AS,) ) [
card(S,VS,)

Likewise, the equivalent definition of the Steinhaus distance (dy(S,,S,)= Deza, and

Laurent, 1997], can be obtained as follows.

Corollary 4. The sum of the measures of the perturbation type 2 satisfies the following condition
dg(81,8,) = Perys (S, Sy ) + Peryig (S, > Sy ).
Proof. See Appendix.

Thus, the introduced measures of perturbations of one multiset by another multiset can be used to provide
equivalent interpretations of the distances between two multisets.

Equipped with the fundamental definitions about the perturbation of multisets, in the forthcoming
sections, we will define a description of the multi-attribute object with repeating nominal values of attributes,
as an ordered collection of multisets. Next, the concept of the measure of perturbation of one multiset by
another multiset is adopted to all multisets within describing the considered object and the group of such

objects. ‘

4. Multiset approach to multi-attribute objects

Let us consider a collection of multi-attribute qualitative objects U={¢,}, indexed by n, n=1,2,...,N. The
objects are described by K attributes 4 ={a,,..,a,} indexed by, j=1,...,K . The set Vo =V Vo ooy,
is the domain of the attribute a ed, j=1,..,K, where Lj denotes the number of nominal values of the
attribute a, LjZZ. Then we assume, that the considered multi-attribute objects can be characterized by
repeated values of the attributes. We have additional information, how many times each value Vi €Va,s for

i=1,2,.,L, and j=1,.,K, is repeated for the object ect/, where the number of j=1,...,K determines

the considered attribute « ;.

4.1. Description of multi-atiribute object

Assuming, that the objects are represented by their descriptions, the description of an object e is denoted
by G, , and can be represented by an ordered collection of multisets, see the following definition,

¢
i



Definition 4 (Description of object). Every object e, e e U, can be represented by an ordered collection of
K multisets S, y» 7 =12,.... K, drawn from the ordinary seis of nominal values V, =V VeV, ) of the

attributes a;, described as follows
G, =<8 ey S2u2ieys Sk a(ke) > (15)

where the multiset S; ; o, €[V, 1" ie, 1<card (S, ) <m for je{l,.,K}.

In Definition 4, the description of the prescribed object e is denoted by G, , while each consisting multiset
represents respective attribute a;, j=1,2,...,K . This way the subscript j,/(j,e), for j=1,...,K , specifies
that we consider the attribute q; ofthe object e, while the multiset S, ,, ., represents this attribute description.

Each j-th multiset S, ,, ., (the number of / specifies which attribute a; is considered) can be represented by

a set of I; pairs
S/,l(_i,a)z{(ij 1Gie) (vil(/ c))’vil(/' a)) = ]’2:-"’L } =
={s, ;0 CuGadMiti0) Ks; 0 CrGed VoG > Es, o O i)V 0.0} (16)
where v, A for j=1,..,K . The value ks e )( i) » Tor i=12,.,L, , specifies the number of
occurrences of the value v, ,; v, in the multiset S, ,,,,. Another subscript i,/(j,e) specifies which
element v,

it(j,e)
the applied notation states, that for the object e, and for the attribute a;, the value V| ;. ean appears

from the set 7, ={y, V2oV, 7 for the attribute a;, and for object e, is considered. Thus,
5 V2, «

ks, )0y O, ,(,L)) times, the value v, ;(; .y eV appears kg (v, ) times, and so on. Thus, it is obvious that
1il.e

each multiset S J.1(j,e) tepresents the sepalatc attribute a; which take the values v, ;) €Vysi=h.K.

4(je)

Example 3. In this example let us consider the object e described by two attributes 4 ={a,,a,}, where the
sets ¥, ={v;,vy1,v3}» and 7, —{"12:"22} ale “the' domains of this attributes, respectively. According
to (15), the object e can be dcscnbcd by an ‘ordered collection of two multisets in the following form:
G, = <8 1> S2.s(2.e) > - According to (16), the exemplary multisets S, ,,, and S, ,,,, have the form

Sl,r(l,e) = {(2,1’1'1),(0,112‘,),(],Vl,)}:{(2,\’,‘1),(1,\’3'1)} and Sy i) = {(zyVl,z)s(O,vz,z)}:{(251’1,2)} . Thus, the

description of an object e can be written in the following multiset form G, ={(2,v,,),(1,v5,)},{(2,v,)}.
a]

A single object ¢ is characterized by a lack of repetitions of values of all attributes, and each attribute a; ,
J=1.,K, can take only one value Vi ) EV . Because the value V) ;) appears once in the

multiset S, Citpjey) =1+ In th]s case, the multiset §, ., for j=1,..,K, in (16) is

i) > then ks, s
reduced to the form S, ;. ={0 Vi, en)}> WhETe Vi) 50 ev,, - The index of i(j)e{l,2,...L;} specifies
what value for the attribute @; is considered. This way the description of a single object ¢ is reduced to
the form

Ge. =< Sl./(l,u,)x Sz_:(z,e,p "-:SK,I(K,L']) >=< {(Lvi(l),l(l,c,))}) {(1)"i(2),l(2,u|))}r ---a{(],"I(K),I(K_q D> (17



where Vi) € V(,]_ for j =1,..., K. Such notation states that the attribute a;, j=l,., K, takes only one
value Vi ;) for the object g. The index i()),/(j,e,), for je{l,2,..,K}, i(j)e{l,2,..,L,}, specifies
which value of the set Vo, = (1o Va e "l‘j,/} is used in the description of the single object ;. Thus, (17)

can be treated as a generalization of representation of a single object e; by multisets.

Let us again consider two objects ¢ and ¢ , and their descriptions G, and G, , where
Gy = <8ty Saia)y Skike) > and G, =<8 ey S2i(2iea)s Sk (K ey) > - The arithmetic addition of

multisets is a new multiset, and can be applied to all multisets of descriptions G, and Gez. In this way we

can introduce a definition of the join between the descriptions of objects.

Definition 5 (Join between descriptions of objects). The join between the description of an object ¢ and the

description of an object e, is described as follows

Gu| ®Gu2 == Sl,/(l,e[) @’Sl,r(l,ez): SZ_I(Z,L']) D S5.12.8,) ""SK,I(K'gI) GBSK,:(K,“) >. (18)

The definition says, that the description of two joined objects is again a collection of K multisets. Each
such j-th multiset, j=1,., K, is constructed as the join of two multisets S,,,.,®S, ;. describing the

attribute «; for the objects ¢ and e, respectively.

Case K =1
Now let us consider another special case, for K =1, i.c., an object e is described by a single attribute

A={a},and theset ¥, ={v,v,,,..,v;,;} is the domain of this attribute. Each object e can be represented
by a single multiset S, ,, ,, drawn from the ordinary set of values V,,I . In this case, the description of each
object e defined in (15) is reduced to the form G, =<8, 00 > Where S; . is the multiset Sl_,(l"ﬂ) eV, 1",
and is defined by (16), and now can be written in the following form '

S = {(ks,‘,(,‘,_,) (Vl,/(u))a"l./(l.e)): (ks,‘,“,‘,) ("2,:(1,«))s"z.r(x,e))’ -~-’(ks,“(,lk, ("1,1_/(1,e)):"1.,,:(1,e))} ) (19)

where v, .0y € Y, » for i(1) € {1,2,.., L;} . The index i(1),1(1,e) specifies which value vy, ., €V, of the

attribute @, is used in the object e . Foi' the dbject ¢ and for the attribute @, the value Vi), i(l,e) appears

ks, 0.0y Vic01.9) times in the multiset S,‘,(l"‘,)‘, for i(l)e {1,2,..., L;} .

Next, we will present details of the proposéd approach of the measure of the perturbation of one object
by another object.

4.2. Measure of objects’ perturbation

There are considered two objects e,,e, € U, described by K attributes A={a,,...,a,} and the set
Vn/ :{vl./"VZJ‘"""}L,J} is the domain of the attribute aed, j=12,.,K. According to (15), the respective
descriptions are following:

G, =<8 ey S2ize)> oSk k)

Guz =< Sl,A(l,u,)’ SZ,/(Z,eI)’ '"’SK.I(K.UZ) >



e[, 1", j=12,..,K . The novel concept of objects’ perturbation is defined as follows.

s )

where S

G g Ger)

Definition 6 (Perturbation of objects). The perturbation of the object e, by the abjecr ¢, denoted by
((i.l F—)GL.Z), can be represented by an ordered collection of multisets S 11Gen®@S jisiery» J =120, K, drawn

firom the ordinary sets of nominal values V(,j of the attribufes a;, respectively

(G 7 Gy ) = <(Su1.0) P Statren) Saaa) P S22 s - Skika) P ki) >=
=< 80Oy S22 PS2erys s SkurtityOSkonk ey >+ (20)

Thus, the perturbation of the object ¢, by the object ¢ is represented by the collection of multisets
constructed as difference of the multisets S, ,(, ,\©S ,; ., for each attribute a;, j=12,..,.K .
The counterpart case is defined in a similar way, i.e.,
(G, = G )= <(S) ey P Stvia ) Sanzin) B Saazien D o Skeniieeny = Skuir)) > =
=< Sl./(l‘vz)®Sl.l(l.c|)’ S2,1(2,02)®S2,r(2,ul)’ ""SK,!(K.cz)G)SK.I(K.q) =g (2])

In turn, the measure of the perturbation of the one object by another object is a number ranged between
0 and 1 and obtained via some aggregation operator. The aggregation is done on a set of the measure of the

perturbations associated with each attribute a;, j=1.2,...,K, see Definition 7.

Definition 7 (Measure of perturbation of objects). The measure of the perturbation of the object ¢, by the
object e, denoted as Per,(G, > G,,) , is defined in the following manner:

Per(G, > G,)= Agg([)ell{vl.&‘(sl,l(l,q) HSI,I(I.L'Z))? Pe’jl.\‘(sz.:(u,) HSZJ(Z,L';))’ ""Pell'\vI.Y(SK.I(K‘q) HSK,!(K,eZ))) (22)

where Agg is the aggregation operator.

In the opposite case, the measure of the perturbation of object ¢ by object ¢, is defined in a similar way:

P e’b(Gez HGe, )=Agg(P €liss (S1iger) P Sttty b Pels (Sarier) > S s -+ Pl Sk i ey SK,:(K,c,)))' (23)

The aggregation operator used in (22) and (23) is defined as a mapping Agg :[0,1] — [0,1], which
assigns any K-tuple (p,, p,,...,px) of real numbers to a real number and satisfies the following conditions:

idempotence: Agg(p,p,...P)=p, ,

monotonicity: if p, > q,; for i=1,2,..,;K; then Agé(p,,p;,..., pi) 2 Agg(q,,q55 k) s

boundary conditions: Agg(0,0,...,0)=0 and Agg(1,1,..,1)=1,

commutativity: Agg(py, s Px) = AZE(Py s Piy»- Py, ) TOr every permutation iy, iy, ..., fx of 1,2,.., K.

In general, the result of the aggregation is lower than the highest element aggregated (the maximum) and
is higher than the lowest one (the minimum) [Kacprzyk, and Pedrycz, 2015], i.e., the following inequalitics

_/_zr,gi.{?_k,{p,} < Agg(prs Prsers Pr) < _,;?}?fk{pf} are satisfied.

The aggregation operator Agg can be realized by various functions, e.g.:

o minimum: Agg(p;, Py, Px ) =min{p, Py, Prts



o maximum: Agg(py, py,.- ,px)'=max{p.,,bz, wPi}s

e arithmelic average: Agg(p,, py,.., Pic) = Zp/’

/~—l
. 1 &
* weighted average: Agg(p, pa,... i) =0 )
=
1

K «
* generalized arithmetic mean: Agg(p,, pyy..., P ) = (% Z 177]
K 4

Let us assume, that W >0, determines the importance of the element p ;, for j=1,2,..,K . In the further

considerations in this paper we assume, that the aggregation operator Agg is realized by the function of

weighted average of its arguments, i.c., Agg(p,, pys.r P ) = Zw - p; - Due to such assumption, according
j =]
to (22), the measure of the perturbation of the object ¢ by the object ¢, is rewritten in the following manner
for the measure of perturbation type 1:
L,»(
DI SPNCS B SRN ))
() T (ie) ™ ez)
Peiy(G, - G,,) = Z(w Pery (S, ey = S/ e ) = K2 Z(M = 7 - (24)

:Zl:(kvu( q)(‘ )Jrk‘mjcz’(‘ ))

While the opposite case, the perturbation of the object ¢ by the object ¢, is rewritten similarly,

L

: 37 O 5 )

. J o ( Siatren N 110Ge) St ga) N

Peiy(G,, - G,) :;Z(W Petiys (S e P2 Siati)) Z(w g » ). (25)
=

;( ]l(llz)(‘ )+k'5/'(1ﬂ1)(‘ )

For further considerations, let us assume, that w, =1, for j=1,2,..., K.

Additionally, we can prove some properties of the measure of the objects’ perturbations which are proved
in the following corollaries: Corollary 5, Corollary 6 and Corollary 7.

Corollary 5. Measure of perturbation of the object e, by the object e, represented by respective
descriptions G,, and G, , satisfies the following inequality
0= Per, (G, »G,) < 1 . (26)
Proof. See Appendix.
Corollary 6. The sum of the measures of pe'f'lur'b‘alion 'P'éila(G'el =G,,) and Pery(G,, —G,) satisfies the
Jollowing inequality
0 < Pery (G, +G,,))+ Pery(G,, HG,) <1 27)

Proof. See Appendix.



Corollary 7. The sum of the measures of perturbation Pery(G, =G,,) and Per, (G, =G, ) satisfies the

Jfollowing equality

(28)

N

Pery(G, - G,))+ Pery(G,, =G, ) =1~ —112

J

Y .
> g ksf.lu‘q NS 1 e2) ;)
iL

21 (k-"f,ru.vn )+ Ky (V1) )
Proof. See Appendix.

Thus, the sum of the measure of perturbation of the object ¢ by the object e, and the measure of
perturbation of the objects ¢, by the objects ¢, gives an equivalent interpretation of dissimilarity of two
objects. In this way, Eq. (28) can be rewritten, and the equivalent definition of the similarity of the objects
can be obtained:

Sim, (G, , G,,) =1- (Per, (G, ©G,)+Per,(G,, ©G,)),

7R

which is based on our idea of the objects perturbation measures.

In order to make closer the idea, how to represent the objects using the multisets, and how the
perturbations are realized, let us discus the following illustrative example.

4.3. Hlustrative example - students described by several sets of the semester grades
The example concerns on the question, how to describe the object which exists in several versions,
e.g. students described by several sets of the semester-grades, Interesting examples can also be found in the

paper [Petrovsky, 2010].
Let us consider the high school student e, and his two sets of the semester grades in the same four

obligatory subjects (attributes) {a,,a,,a;,a,} and four optional subject (attributes) {as,ag,a;,az}, all with
qualitative scale ¥V ={v,,v3,v,,vs}= {2 ~"unsatisfac tory",3-"satisfacto ry",4 —" good ",5 ~"excellent "} .
Thus, this student (i.e., object) is already described not by a single vector of grades but by two vectors of
grades (i.e., values of attributes). For example, two versions of the semester’s grades of the student e,
denoted by e,“) and el(z), are represented as follows
1

e = {(a, = 4),(a, = 5),(a, = 4),(a, = 5),(a5 = 4),(a = 5),(a; = 4),(a, = 4)}

o = {(a, =5),(a, = 5),(a; = 5),(as = 5),(as = 5),(a; =4),(ay = 4)},
where a superscript (7), for /=1, 2, determines the number of the semester.

We note, that the student e, can be represented by the vector of “average” grades, such as

er = {(a,=4.5),(a, =5),(ay =4.5),(a, = 5),(as = 4.5),(ag = 5),(a, =4),(ag = 4)} .

However, the new vector does not correspond to any particular point within the assumed scale
V ={vy,v3,vy,vs} ={2,3,4,5} and it will be necessary either to expand the rating scale by introducing
intermediate numerical steps, e.g. {2.00, 2.25, 2.5, 2.75, ...,4.5, 4.75, 5.00} or the rating scale must be treated
as continuous. Such modifications will change the original statement of the problem.

However, applying the multisets, each version of the student’s grades can be described in a form of two
multisets (K=2 is related to two sets of considered attributes, namely {a,,a,,a,,a,} and {as,as,a,,a3} ),
where numbers of the elements are equal to the proper number of qualitative scale V' ={v,,v;,v,,vs}, while
each multiplicity is equal to the number of the assessment, as shown below



Ge](l) =<S S, l,el(])) >=< {(O! V) ))(0"'3)’(21‘)4 ):(2)"5)}: {(0)"2):(0)‘]3 ):(3:1'4):(1:‘)5)} >

Li(tePy? 2,0
N (Lq(z)) >=< {(09‘)2 )5(0’"3)’(0”'4)’(49"5)}’ {(0>"2 ))(0’"3)’(2"'4)’(1’]}5)} >.

=<
Gu,‘” Sl,:(l,e,‘”)’ 2.1

Thus, according to Eq. (19) the description of the semester grades G, of the student ¢ is formed from two

versions G ,, and G ,, , and now is represented by two multisets, as shown below
o of
G, =Ge|(l) EBGelw = <8 1y Saitg) >= <L0,5,(0,v3),(2,9,), (6, v5) 1, {0,550, v, (5, v, ), (2, v5) >

In a similar way we can determine the description of the semester grades of other exemplary student e,

as two another multisets, as shown below

Gez =< SI,((I,ez)sSZ.I(LL’z) >= <{(1,9),(6,v3),(1,,),(0,v5)}, {(0,,),(4,v3),(1,%,),(0,%5) } >.

Thus, we consider two exemplary students ¢, e, with the descriptions G, and G,, (i.c., their semester

grades). Each description is represented by two multisets drawn from the ordinary sets of values
V ={v,,v3,v,,v5}. According to (20) and (21), for K=2, the perturbations have the following form:

(G, PG, )= < Sty P Siitten) Saizey P Saiie)) > = <11 O S1i1e) ) S212,0)@S2.12000)) >=
=< {(O}‘,Z ):(0’ VJ ),(I,V4 )7(6’ "5)}) {(O, "2 )1(05‘)3 ))(4) "’4 )’(2> 1’5 )} >,

(G, 2 G ) =< h1ey) P Sttt Sazen) P Sai2.e) > = < S1.en)@S1itten ) (S2,126)@ Sznzen) >=
:<{(lyvz)7(65‘)3)5(0’\74)5(05‘)5)},{(0}"2)’(491’3)1(0"’4)’(Oa"s)}>'
It is shown, that the multi-attribute objects described by a set of repeated nominal-valued attributes can
be represented by collections of multisets. Then, the perturbations are realized by arithmetic subtractions of
respective multisets. ‘ : .

dit

Going further, the concept of the measuring of perturbation of one object by another object can be
extended to the groups of objects. Details of the proposed approach are presented in the forthcoming

subsection.

4.4. Measure of perturbation of groups of objects

Now, let us assume, that every non-empty subset of a finite set U ={e,}, n=12,...NV, is called a group.
We assume, that the description of a group g is denoted by G,. Let us consider a non-empty group of the
objects gcU containing the objects {g,: neJ, c{l,..,N}}. According to (15) every object ¢, € g, can be
j=12,..., K, drawn from the ordinary sets of

v

represented by an ordered collection of multisets S; ;. .

values ¥, =, 5..vy,,} of the atiributes a, 1.6 G, =<8\ 0 Saua Stk > TOF S0 €V 1"

Thus, the group of objects g can be represented by an ordered collection of multisets, while each multiset is

drawn from the ordinary sets of values 7, , for j=1,2,..., K, and the description of such a group is defined
¥

as follows, G, = ® G,, . see Definition 8.
neJ
g

Definition 8 (Description of group of objects). A4 group of objects g, can be represented by an ordered
collection of multisets S; ;o> j=12,...,K, drawn f)"o‘fﬁ the ordinary set of nominal values Va, of the

attribute a,, and is described as follows



G = <Sii10) Sasagyr Sk ik g) > (29

where the multiset S; ,; .y € [Vaj 1" for je{l,...K}.

This way, considering two groups of objects g, cU and g,ct , described as follows:

G, = < S.

& Li(Lg)? D20()7
S j,,(j_gz)e[V,]’" , je{l,2,..K} , we can define the .groups’ perturbations as well as their measures.
The considered group g contains the objects {g,: neJ, <{l..,N}}, while the group g, contains the
objects {e,: neJ, c{l,...N}}, where J, nJ, =@.

& =

. m
Skurgy > AN Gy =<8, 11,000 S2.2.0)0 5 SKot(Kgg) > » 101 S, gy €V, 1" and

Definition 9 (Perturbation of one group by another). The perturbation of the one group of the object g, by
the another group of the objects g, denoted (G, =G, ), can be represented by an ordered collection of
O\ Jj=12,.,K, drawn from the ordinary sets of nominal values V(,/ of the

mullisets S; ;.

attributes d,, respectively, and is defined as follows

M(/.82)

(G Gy, )= <(Si01,81) P Sith) s Carzg) PSanign) s+ LSk ik g) P Skitk g2)) >=

=< 8100, OS1101,62)0 52,102, P5 212,820 Sk ik 21Ok u(K 2) > - (30)

Thus, the perturbation of one group of objects by another group of objects is defined in an analogous way
to the perturbation of one object by another object. Namely, the perturbation of the one group of the objects

g, by another group of the objects g is represented by a collection of perturbations S0 s)
generated for separate attributes @;, j=1,2,..., K. In result, it constitute a collection of multisets.

The counterpart case is defined in a similar way, i.e.,

Gy, P G )= <Cuitrgy) P Suten oz PSSk gy = Skak)) >=

=<1 OS101.61) S22.00OS02.8) > Skik 8PSk ouik.g) > Gn

The measure of the perturbation of the group of the objects by another group of the objects is a number
ranged between 0 and 1 and obtained via using of some aggregation operator. The aggregation is done on a set
of the measures of the perturbations associated with each attribute a;, j=1,2,...,, K, see Definition 10.

Definition 10 (Measure of perturbation of one group by another). The measure of the perturbation of the
group of the objects g, by the group of the objects g, , is denoted by Peryy (G, + G,,), and is defined in the

Jfollowing manner:
Pe);m(G“ = ng )=

= Agg(Pe':\-/.\'(Sl,l(Lg,) = Sl,l(l‘gz))' Peryyq (SZJ(Z,;:]) = SZ,!(Z,gz))7 s Pe’}u.v(SK.:(K,g,) g SK,/(K,gZ))) (32)
where Agg is the aggregation operator, defined as a mapping Agg :[0,11° —[0,1].

The considered developments can be applied in data mining tasks with redundancy, like classification
problems of multi-attribute qualitative objects, wherein the values of the attributes can be repeated.
The objects’ classification is based on representing of each object by multisets, and on a set of elementary
rules, and allows to assign the objects into proper groups. Thus, in the forthcoming section, the groups’



perturbations and their measures are applied to generate the description of the groups of objects in the form
of the classification rules.

S. Case study - classification problem

In order to support our investigations, let us analyze following interesting problem. Let us consider the
set of objects e, e/, where in the attributes values describing the objects are allowed to be repeated.
The proposed methodology consists of three main steps: 1) The first step is to preprocess the data, i.e.
transforming the object into a proper data as the multisets representation. 2) The next step is to analyze the
preprocessed data and gather the objects into the distinguished groups, whereas the groups are also
represented by multisets. To do that, here, we use the method proposed by Czekanowski [Czekanowski,
1909]. 3) In the final step, the descriptions.of the distinguished groups of objects in the form of the
classification rules are generated. Each such classification rule has the following form

“IF certain conditions are satisfied THEN a given object is a member of a specific group”.

In this case, the conditional part of rules will contain the disjunction of conditions related to the subset
of the value of attributes. In this paper, the generation of such rules is made on the basis of the perturbations
of the multisets, which allow to distinguish considered group from the rest of objects belonging to other
groups. The classification rules are generated separately for each group [Kacprzyk and Szkatula, 2010].
Finally, the generated classification rules can be applied to classify the new objects. The classification is
carried out through verification of fulfilment of conditions in the conditional parts of the rules [Szkatula, 1995].
Thus, the basic steps of the methodology can be shown in Fig. 10.

Objects
U
Objects Grouping Rules generator ' .
Data = ,.ep,.ej sented  — method Groups based on Classification
processing as multisets proposed by of objects perturbation rules
Czekanowski idea

Fig. 10. Scheme of our approach to create the classification rules.

Details of the third step are presentégi_ in t]{é .forth’c,binil1jg_Slesection. The whole developed approach is
illustrated by the example of grouping text documents in Section 5.2.

5.1. Generation of the classification rules based on perturbation idea

Considering for example text documents like articles, books, reports, etc., and ignoring the context and
the semantics, let us assume, that the objects ¢, e U, indexed by n, n=12,...,N, are described by the set of

repeated keywords, phrases, descriptors, etc., denoted by the set of values V = {v,v,,..,v, }, where v; #v;,
for Vi#j, i,j€{l,2,..,L}. There is available additional information about the multiplicity of each value v,

i=1,2,..,L, in each object e,. In this way, each object ¢, (i.c., a text document) can be represented by the

multiset Se" drawn from the set of values V. According to (18), the description of an object e, is denoted

by G, =<S, >, where the multiset S, e[(']" is defined as follows
Se,, = {(kszn ("1):"1), (ks‘,n (v2),v2), ~v-x(ks£" ("1,):"1,)}

for v, eV, i=1,2,..,L. This notation states that the keyword v; appears ks, () times in the multiset S,



Let us consider in general two groups of objects. In the first group g cU, there are objects
{e,: ned, c{l.,N}}, card(J,)=N,, while another objects {e,: neJ, cil,...M}}, card(J,,)=N,, do not
belonging to the first but belong to the second group g, c/, where J, N, =D. Additionally, it is assumed
that the cardinality of each group is similar, i.e., N, ~ N, . The classification rule for distinguish the objects
belonging to the group g, can be generated in the following algorithmic way. v
Step 1.

The groups of objects g and g, can be represented as multisets drawn from the same set V,
V ={v,v5,...,v, }. According to (29), the description of the group g, and g, , denoted by Gy =<y > and Gy,

=<§,, >, respectively, can be written as follows
denoted
S!s'l ={(k5m (V|),V1), (ksg| (VZ)’VZ )5 "'9(kSgl (VL ),V,')} = {Sgh\'l 5Sg|,v1 > --'aSg,,v,_ }s

denoted

ng = {(kaz ™)), (ksm (v2)v3), -~-‘(ksg2 )} = {ng,v] ‘Sb'z."z > "'1Sg2,\1L} ]

which can be rewritten as Ggl = ® G and G,= ® G,

ey
nedg nelg,

Step 2.
Separately, for each keyword v, €V, for i=1,2,..,L , there is constructed the i-th measure of

perturbation of one multiset by another multiset. Such measures of perturbations are defined according to
Eq. (6), and are called here as the elementary measures in the following form
k Sy (‘ x NS ( 1)

“m ) "“ksgz ("/

Per(S — ng', )=

In this way, there is considered the set of L pairs of the elementary measures of perturbation and the
keywords v; , for i=1,2,...,L. Such pairs are denoted as PERS;, Sy and written as follows

PER“'A'] Sy, {(Pel (S'I had E’z " Jvi) ) (Per(S, g Xz-"z )’v2 )y - (Per(S a7 Sl-"L )’VL )}=
ks, ) = kg, ns,, (1) kg, (v2) = kg, ns,, (v2) kg, (i) = kg, s, (v1) ) 33)
. V1) V) s v, )b
ks, () kg, (1) : kg, (1) +kg, (v2) ’ ks, (i) kg (vp) t

Step 3. s
The set of L pairs PER;_, s, of the.i-th elementary measure of perturbation and the keywords v;, for
1

i=1,2,...,L, should be rearranged by sorting with respect to their highest values of the elementary measure
of perturbation. The rearrangement creates a new permutation, f;,7,,...,i; of 1,2,..., L , of the pairs; in result,
one receives the following set of pairs

PERg, 15, ~{(Per(Sym, > Sgyu)vi) i= i-,V,iz,...,iL}, (34)
where the conditions l’er(SgN, S, " )2 Per(S,, " Se,. vy )2 .2 Per(S,, ", 8, " ) are fulfilled.
Step 4.

We can consider any real number as a parameter ¢ [0,1] treated as the « -threshold. The parameter is
applied to the set of sorted pairs PERg_ s, » defined by (34), to construct a new reduced set of pairs, denoted

by PERS . . T he reduction is done via consideration of those pairs which values of the elementary



measures are greater than or equal to the value of the threshold parameter . The new set of the pairs is
written in the following way

PERY |y {(Pe; Sy P S W) i =isisueniy, J» 35)
for which Per (S“‘ Syaw )2 a, Vieliiyi, }.
Step S.
Then, the set of pairs PER  described by (35) can be used to create the set of the one-condition
g ;

elementary rules describing the group g, . Each such one-condition elementary rule for the group g, ,

denoted by Rg| y o fOr i =iy, iy, ., iy, > is defined in the following manner

R;",i . IF [considered value = V,-];CJ(R;I,‘,I.) THEN a given object is a member of agroup g, (36)

where q(R; ,’), for ie {ij iy, i, }s is called the strength coefficient of the rule R;.w , and is described

by the elementary measure of perturbation (35), i.e., q(Rg ) = Per(S, , = S,,,,) - It is evident that

0<q(RE e )<I1, Yie{i,iy,.., iL,,} .
We consider the classification rule for the group g, , denoted by R; , as disjunctions (V) of the one-

condition elementary rules for this group, denoted by Rg1 v Vieliyiy,,i, } Thus, the classification

rule for the group g, is described in the following way:

v RS VR THEN a given object is a member of a group g, 37)

a a
Rg :IF R s o,

815V
According to (36) the classification rule for the group g, (37) has the following form

R ; - IF [considered value = v,.l];q(R;’N,,_l) V ...V [considered value = Vi, ];q(R;J,,Ln )
THEN a given object is a member of a group g (38)

where (R )= Per(S,, , o, ) » 18 the strength coefficient of the one-condition elementary rule RY g1¥

i€ {ip,iyyenip, }

The above procedure shows, how to create the classification rule for one group, taking into account the
two existing groups. When we consider more than two groups, the procedure is run in a very similar way.
Namely, generating the classification rule for the group g, all other groups are considered as one group
containing the objects do not belong to the group g. Then, e.g. considering the classification rule for the
group g, , the objects from the rest groups (ie, g, and g,, g4, and so on) are considered as one group.
The classification rules are sequentldlly formed for each group.

The already generated the classification rules (37) (i.e., R; , R;'z , and so on) can be applied to

classification of a new object e. The classification is carried out through verification of fulfilment of conditions
in the conditional parts of the rules. The classification is unequivocal where the only one classification rule is
fulfilled. In the case of equivocal situations, when more than one of the classification rule is fulfilled,
a matching degree to the group is calculated [G. Szkatula, 1995]. The greatest degree of matching is the basis



for grading. For example, for a new object e and the group g, , described by the classification rule (37),

denoted by R; , the matching degree MDA(e,lR_;’!) can be calculated in the following way:

MD (e, Ry, ) = MD (e, R;I_‘,il VR v .--vR% )=

81V L1V,
=Agg(MD(e, Ry, , ), MD(e, Ry, ), -, MD(e, R, , ). (39

81.v 81aVig,

where MD(, Ran)= otherwise

{q(R‘,’N,’_) if rule R;-w is fulfilled by object e
Agg is the aggregation operator, e.g. the maximum function, the value a(Rg,)el01], for i =i, iy, ifg »

is the strength coefficient of the one-condition elementary rule R o, » according to (36).

The developed approach to generate the group description in the form of the classification rules will be
illustrated by the following example.

5.2, Illustrative example - grouping text documents

Practical presentation of the proposed approach was carried out for the task of grouping of the text
documents, assuming that the context and the semantics are neglected. Here, a text document S is modeled
as a multiset, drawn from the ordinary set of unique keywords and phrases appearing in the text, and can be
represented by a set of L-ordered pairs, according to (1), i.e;;

S={(the number of occurrence of the keyword or phrase in the text document, the keyword or phrase)},

where L is the number of distinguished unique keywords and phrases. Usually, the keywords and phrases
can be weighted in various ways, but here for simplicity, we assume the same importance for all keywords.

Data processing
Let us assume, that there are objects as text documents e, eU, n=1,2,...,6, which are described by the set

of repeated keywords from the set I/ described as follows:

V ={v,vy,..., Vs } = {" financial"," guarantee"," training "," paper"," submission "," article"},

and the multiplicity of each keyword is equal to a number of values of the keyword v, i =1,2,...,6,, appearing
in the text documents e,, n=1,2,...,6 . Thus, each the text document ¢, can be represented by the multiset

S, drawn from the set of values V. Thus, the descriptions of text documents e;,e,,e3,€,,es and e, can be

written in the form of multisets G, =<8, > G, =<Se2 >0, G,_,6 =<8, >, as follows:

S'-‘| ={(3," financial "),(1," guarantee "), (2," training "), (0," paper"), (0," submission "), (0, " article")} ,

S, = {(0," financial"),(0," guarantee™),(0," training"), (1," paper"), (1, submission "), (3," article")},

S,y = {(0," financial "), (1," guarantee ")?(O? "training "‘), (0," paper",(0," submission "), (4," article")} ,
SL,4 ={(2," financial "), (0," guarantee"),(3," training "), (1," paper", (0, submission "), (1," article")},

Sas ={(0," financial"),(0," guarantee"),(0," training "), (1," paper"),(1," submission "), (2," article")},
S, = {(1," financial "'),(1," guarantee "),(2," training "), (0," paper "), (0," submission "), (0," article")} .

Having such objects (i.c., the text documents), the task is to divide the objects into similar groups and
determine the number of these groups.



Grouping of the objects

The aim of this task is to divide the set of the considered the text documents U into non-empty, disjoint
groups, together containing all the considered documents.

First, in order to define the number of groups ‘we applied the taxonomic method proposed by Czekanowski
in 1909 [Czekanowski,1909]. The so called Czekanowski’s diagram is a graphic methodology for
multidimensional grouping of objects, which used to be widely applied in physical anthropology, plant
sociology, agricultural economics, etc. The Czekanowski method is regarded as an early, perhaps the first
method of cluster analysis in the world. Obviously, Czekanowski’s methodology cannot be applied in all
cases, however the methodology gives very important outlooks on the structure of the considered data as well
as the number of groups of the data [Liiv, 2010]. Thus, considering a set of data characterized by the same
keywords, let us form a square matrix with cells describing the values of the measure of the distances between
all possible pairs of objects; with all diagonal values equal zero.

In the relative literature, there are known several distance measures. One of them is Chebyshev's distance,

given as
 chepysher (S”p !qu ) :ie(llnzaxs) ks,, ) _k.\',, )

where the multisets S, and S,, represent the documents with the counting functions ks, () and ks, ()5

respectively. In this way, the Chebyshev distances between any pair of objects are shown in Table 1.

TABLE 1. The Chebyshev distances

8o, 150 150 [8e [5es [ See
Sel 0713|4132
15a13. o1 ]3]1]3
S 4 l1]{0]3]2]4
Sl 1|3]3]0]3]1
S| 3] F|2]3]0]2
Sel2 (3 |4l1]2]0

For better visualization of the structure of the values of Chebyshev’s distances between the text
documents, there are used special graphic characters, i.e. the black circles of different sizes . Czekanowski’s

diagram with random arranged objects is provided in Fig. 11.
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Fig 11. Czekanowsjki’-s diagram with random objects’ order.
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Meanwhile, applying simple swapping rows and columns, the matrix can be rearranged in order to gather
the closest objects in distinguished groups. The proper reordering of rows and columns of the matrix can be



treated as an unsupervised learning discovering similarity as well as relationships between the objects.
Formerly, in the original works by Czekanowski, the reordering of rows and columns was done manually
and was very burdensome. Fortunately, nowadays, there are several computer programs for generating
Czekanowski’s diagrams, e.g. the software called MaCzek [Soltysiak, and Jaskulski, 1999].

In the considered example, the reordered Czekanowski’s diagram is provided in Fig. 12.

NS ss S; 5] Legend:
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Fig 12. The ordered Czekanowski’s diagram.

The rearranged objects in Fig. 12 clearly demonstrate that there are distinguished two groups of
considered objects, indicated by two separated blocks of meaningful symbols. In this way, it can be assumed,
that the considered text documents can be divided into two separated groups, namely g, = {e,,e,,es} and
g, = {e,,e5,¢5} . Then, we can create the descriptions of these two groups in the form of the classification

rules. Details of the applied procedure can be described in the following way.

Generation of the classification rules coe .
Now, let us consider the group g, = {e,,e,, ¢} and the group g, = {e,,e;,e;} of the objects. Our aim is
to construct the classification rule for the group ‘g, , as disjunctions of the one-condition elementary rules.

The proper algorithm is described in the following steps.

Step 1.
Let us form the description of the group g, and the group g, . Such descriptions are obtained by applying

a simple text documents’ aggregation. Because, each object is represented by the proper multiset, then each
group is also represented by the aggregated.corresponding multiset. This way, the descriptions of the groups
g, and g, (denoted by G, and G, respectively) are also represented as multisets drawn from the same

set ¥, in the following way:
G, = @ G,

B et
={(6," financial "),(2," guarantee"),(7," training " ),(1," paper"),(0," submission "),(1," article")} ,

=< Sg‘ >=

G, = @ G,

82,935 On
={(0," financial"),(1," guarantee"),(0,"training"),(2," paper"),(2," submission "), (9," article")} .

p— g —
-<.ng Sees

Step 2.
Next, using the /-th elementary measures of perturbation described as

ks, W) ks, ns, (%)
Per(S g3, 1 Sgp)=
5, () +ks, ()

&2

fori=12,.6,

e i
PRI



let us consider the set of six following pairs, denoted by PER S5, ? due to Eq. (33),
Sy 8y,
PERS,“HA‘“ ={(Per(ng = Sy, ) financial"), ...,(Per(S, 1> S, ),"artic/e")}=

W g "y _ [ "
k“'m( article") ksm,‘s“( article")

kg (" financial") = kg o (" financial")
= Sg) ' Sp NSgy - ,"ﬁllclllL’f{l]"), ’( i : ,"article") -
ksg, (" financial") +ksgz (" financial") kSg: ("article") + lcxgZ ("article")
6-0 . _ _ - ) B
= {(—“6 70 ," financial "), (%," guarantee"), (%,"Irainin_g "), (13—1, " paper"), (O 5 L " submission "), (%,"ar/icle " )} =

={(L," financial "),(0.3," guarantee "),(1," training "), (0," paper"),(0," submission "), (0, " article")} .

Step 3.
The above six pairs were rearranged with respect to the descending values of the elementary measures of

perturbations, according to (34). In result there is considered the following set of rearranged pairs:
PER S8y, -
={(L," financial "),(1," training "), (0.3," guarantee"), (0," paper"), (0," submission "), (0," article")} .

Step 4.
Next, the value of the threshold was assumed to be ¢=0.7. Then, the reduced set of pairs, according to

(35), for which the values of elementary measures of perturbation are greater than or equal to 0.7, has the

following form:
PER 7 ={(1," financial "), (1," training ")} .

SgPSgy

G

Step 5.
At the final step, according to (36), the classification rule for the group g is described as the following

disjunctions of two one-condition elementary rules:
R§i7: IF [considered value =" financial"];1.0 v [considered value ="training"J;1.0

THEN a given object is a member bof agroup g.

In this way the classification rule for the group g, was constructed. Next, let us construct the
classification rule for the group g, . The corresponding algorithm is described step by step below.

Step 1.
Again, let us form the descriptions of the group g, and the group g,, denoted by G, and G, ,

respectively, in the following way:
ng = {(0," financial "),(1," guarantee "), (0," training "), (2," paper"), (2," submission "),(9, " article")} ,
G&'l = {(6," financial "),(2," guarantee "),(7,"training "), (1," paper "), (0," submission "), (1,"article ")} .

Step 2. s
Next, using the i-th elementary measures of perturbation described as

ksgz )= ksg2 NS ™)

fori=1,2,..6,
ks“ ;) +ksgl )

Per(S =S v )=

822

let us consider the set of six following pairs



PERg s, = {(Per(Sy, ,, > Sg )" financial™), ..., (Per(Sy, o v Sy, ), " article")|=

kS“ ("article") k"‘xz S, ("article")

_ { kS“ (" financial ") - k“'ng‘ssu (" financial ") w fmanctal "), . r'c/e")}—
- B e "arti =

k"';.-z (" financial ") + kS‘“ (" financial ") Ich2 ("article") + k“'m ("article")

0-0 1-1 0-0 2-1 2-0 9-1
={(——=," financial"),(——," guarantee"),(—— " training"),(=——," paper"),(——," submission"),(——, " article") }=
{(0+6 % Yos'E 2557 e PG Mo )}

={(0," financial "),(0," guarantee"),(0,"training "), (0.3," paper"),(1," submission "),(0.8," article")} .

Step 3.
The above six pairs were rearranged with respect to the descending values of the elementary measures of

perturbations, in result there is considered the following set of rearranged pairs:
PERSgz Sy ={(1," submission "),(0.8,"article"),(0.3," paper),(0," financial "),(0," guarantee "), (0," training ")} .

Step 4.
Next, the value of the threshold was assumed to be also & =0.7, and then the reduced set of pairs, for

which the values of elementary measures of perturbation are greater than or equal to 0.7, has the following
form:

PER®7 = {(1," submission "),(0.8," article")} .

SayP8gy

Step S.
At the end, the classification rule for the group g, is described as the following disjunctions of two one-

condition elementary rules:
R 3‘27 . IF [considered value ="submission"];1.0 v [considered value ="article"];0.8
THEN a given object is a member of a group g, .
In this procedure, the classification rule for the group g, was constructed.

Brief analysis of the classification rules
Now, let us consider the six considered:text documents ¢,e,,e;,e,,¢5 and eg represented by multisets,

and the generated classification rules R’ vand’ RS for the group g, and g, , respectively. Both generated

classification rules are shown in Table 2.

TABLE 2. The classification rules for the group g, and g,

Keyword Jinancial training submission article
Classification rule .
0.7 07 - 07 = - -
R&’l q(Rg,ﬁnnm-inl) =1.0 q(Rg‘/m/nmg) =10
0.7 & = 07 — 07 =
Rgz q (Rg..s‘ulnni.r.vlnu ) =1.0 q (Rg,arliclu ) =0.8

The number associated with each keyword is considered as the strength coefficient of the proper
elementary rule, according to (38). The testing classification of these documents to the appropriate group is
carried out through verification of fulfilment of conditions in the conditional parts of the rules [Szkatula, 1995].
Details of the calculations are presented below.



The classification is unequivocal where the only one classification rule is fulfilled. The text documents e,
and e, were unequivocal classified to the appropriate group g,, and the text documents ¢, , e, and e;
were unequivocal classified to the appropriate group g, .

In the case of equivocal situation, when more than one of the classification rule is fulfilled, the matching
degrees of this documents to the groups have been counted. According to Eq. (39), for the text document e, ,
and applying the function maximum as the aggregation operator, we receive the following values of the
matching degrees to the groups g, and g,

MD(G4 R 07) = MD(€4 ) 3;7jinanuial v Rgi?grlal'alrluu ) = Agg(A/[D(Ed ’ R2|7/‘1mncml ) /VID(€4 > R:17gll(l!(llllne )) = Agg(l’ 0) =1,
0.7 0. —
A//D(€4 > R ) MD("”J ) gz mhmnwm v Rgzv,nrlic/e )_ Agg(A/erAl ’ Rf;,.\ubml.\zwm)’A/HXet!! g;,um‘clc))_ Agg (Ox 0'8) =038.

Due to the fulfillment of the inequality MD(e,,R}’)> MIDX(e,, Ry, the text document e, was correctly

classified to the group g, .

It is worth to notice, that all the considered text documents (100%) were correctly classified to the
appropriate group, according to Czekanowski’s division.

The aim of the above described example was to illustrate the way of generating the classification rules
based on Czekanowski’s division as well as the developed multisets’ perturbation methodology.

6. Conclusions

In this paper we propose the new measure describing remoteness between the multi-attribute objects with
repeating qualitative values of attributes and the groups of such objects. The concept is based on multisets
operations. In our opinion the approach can be considered as a new as well as alternative measure of
remoteness between qualitative data, particularly where repetitions of values of attributes are permitted and
the direction of comparison has significant meaning.

It seems to be important to emphasize, that this paper is the next one within the series of the papers, written
by the present authors, which are dedicated to the perturbation of one set by another, wherein there were
considered different kinds of “sets”, like the ordinary sets, the multisets, the fuzzy sets, the intuitionistic
fuzzy sets and so on. The aim of the papers series is comparing the objects described by nominal-valued
attributes represented by different kinds of sets. Up till now, we have already developed the perturbations of
the ordinary sets [Krawczak, and Szkatuta, 2014a, 2015a], the multisets [Krawczak, and Szkatula, 2015b,
2015¢, 2016] including this paper, and the fuzzy sets [under review].

Applications ofthe developed approach for dealing with objects within large, real databases (e.g. grouping
of similar objects, retrieval of textual documents, documents classification, etc.), seems to be an interesting

topic for the future research.

Appendix. Proofs of corollaries
Proof of Corollary 3. The left side of equation can be rewritten as follows
s, () = s, () Z (s, ()= sy, ) s, ) = (03)

L
dp o (8),8,) _ card (S,AS;) - L=

d(S, DS
eard (%) 9 5) ks, () ks, o) 3 (ks, (1) + g, ()
i=1

L. L .
_ Z: ks, (v;) = ks, ns, (%)) ) ;(ksz (1) = kgyns (1)) _ card(5,0S,) .\ card(S,08,) _

L card(S; @ S,) card(S, ® §,)
Z ks, (v)) + kg, (v,)) 3 ks, () + ks, () Ui 25
P i




= Perp (S, S,) + Perlo(S, 5 8,).

Proof of Corollary 4. The left side of equation can be rewritten as follows

= J=|

L
card (5,45, 2l 0)=ks, ) Z(kg,m ks, 1)+ sy () =k (0))
- i=1

od T L
card (08 5 max (kg (v,), ks, (7))} 5 max{ks, (v,), ks, ("))}
i=1

i=]

ds(85),8,)=

L L
- ,z;l:(k“ (\’/)_kSmSz (W/ )) ;(kSz (v,~) _kSan| (V,')) ciid (S‘®Sz) N caid (S2®S|) B

L L T eard (S, US card (S, U S,)
Smaxthg () ks, ()} Y maxths, (ks vy ¢ S1 V5D eard ($2 080
i=] i=1

= Perdg (8> 8y) + Perg (S, 8)) .

Proof of Corollary 5. 1) First, we prove the first inequality Pery(G, = G,,) 2 0. It should be noticed, that

o), Vie{l,2,.,L;}, j=12,.,K , is satisfied, and then

the inequality kg (v)=2 kSJ,(M)m )

1) = 0. Due to Definition 7 and Eq. (24) the following inequality can be written

a(ie)

kSi’Uq)( )= k‘fr(m)'“m/cz)(‘

L .
| & ;{ksj.:u,e.) v)- ksj.r(j,q Y Siaier) ) )
Pery(G, HGUZ):EZ'- vy >0-

J=l -
E(k‘q/-l(m) ) +/‘SJ.I(I.EI) ™) )
2) Then, we prove the second inequality, Per,(G, G, )<1. It should be noticed that the inequality
) Sy oy O Ky )y ) 5 Vie{l,2,..,L;}, j=12,..,K is satisfied. Thus,

‘1 l(/fz)( )~ ‘//(Jq)"‘JI(J e2)
the following inequality can be obtained

L L
1 & Z(ksj.l(l.q) LT ("")) 1& Z(k"/.ru.n) O+ K5y ("’))
Pery(G, -G, )=— = <> =
| 2 K4 Ly ( ) K_/ x Ly ( )
; 5 1tg0) 1) K83, (1) E s 0+ K870 ()

Proof of Corollary 6. 1) First, we prove the left hand side inequality 0<Pey,(G, —=G,))+Pej(G, =G,).
According to (26), (i.e., the inequality 0< Peiy (G, G,,) qnd_os Pery (G, = G,) are satisfied), we obtain
the following inequality Per,(G, —G, )-;-Pélb(G HGUl) >0.

2) The second inequality Per, (G, =G, )+Pelo(G G, ) <1 can proved in the following way. One can notice

that each inequality ksl Gen™S), /(,;2)(")20’ v:e{l,2,...,Lj}, j=12,..,K, is satisfied, thus, according to Eq.

(24) and (25), we obtain the right hand side inequality
Lj
, 1 & 2< ks sy Y+ s 111 ("")_2'ijJ(J.e])“S;.:(/.zz)(v"))
Perg(G, > G,))+ Pery (G, G, ) =?Z i=l . <
=l .
Z (kSJ e el) ‘51 10,62 o, ))




Lj

Z( sy a1 sy )(Vi))

@)

T

=1."

~
[\

l K
X%
(v;)+kg

( ‘/r(m) Sjutie

i=]
Proof of Corollary 7. Due to Definition 7 and Eq. (24) and (25), the following equality can be obtained
Pery(G, =G,,)+ Pery(G,, G, ) =
L J
K i( SjaCen (v)- k-";.ru.c.)"S/.l(/.uz) (V’)) 1 & Z (ksftu Az)( )- kﬂ'/./u.cz)"sj.:(/,n) (v').)
Z i=1 +_Z izl =
K Ly

K 1= & j=l
(ksf,:(/,en O+ Ks, ey )) ; (k Spacren P Ksjy ey O ))

=1

Ly

L
J
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