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Abstract

Many methods of reducing dimensionality of data series have been introduced over the past decades. Some
of the methods introduce a symbolic representation form of the original data series, but obtained
dimensionality reduction is not significant. In this paper, we introduce a new approach SEAA to reduce
dimensionality of multidimensional data series. The approach creates a nominal (symbolic) representation
of the original data series and considerably reduces their dimensionality. The approach consists of several
steps, and each step gives a new data series representation as well as dimension reduction. The approach
is based on the concept of data series envelopes and principal components-like - called here ‘essential
attributes’ - generated by a multilayer neural network. The essential attributes are represented by outputs
of hidden layer neurons. Next the real values essential attributes are nominalized, and in this way nominal
data series representation is obtained. It must emphasized that by a data series we mean a time series
or pseudo-time series while SEAA generates a set of nominal values of attributes which describe the
compressed representation of original data series, and a fixed permutation of nominal attributes should
be considered. The nominal attributes are synthetic, and there is not any physical interpretation of them, but
they still retain important features of the original data series. Experimental validation of the proposed
dimension reduction was carried out for classification and clustering tasks. The calculations have shown that
even deployment of large reduction of dimensionality causes the new representations to preserve information
about the data series characteristics and retain information sufficient to their proper classification and

clustering.
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1. Introduction

The term “data series™ is often used to refer to any data set with one, independent time variable.
Data series arise in many areas, such as medicine, finance, industry, climate etc., and the generated
data must be registered, stored, transmitted, and then analysed. The majority of data series research

focuses on the following problems:

" indexing (e.g. Keogh, Chakrabarti and Pazzani, 2001),

= clustering (e.g. Keogh and Pazzani, 2001; Wu and Chang, 2004; Krawczak and Szkatuta,
2010c, 2011),

" classification (e.g. Nanopoulos, Alcock, Manolopoulos, 2001; Krawczak and Szkatuta, 2010a,
b, 2011), Wang (2010),

= summarization (e.g. Lin, Keogh, Patel and Lonardi, 2002), and

* anomaly detection (e.g. Shahabi, Tian and Zhao, 2000).




Due to a huge amount of data, different kinds of data series representations were developed.
In the literature one can find specialized algorithms dealing with such problems, including decision
trees (Rodriguez and Alonso, 2004), neural networks (Nanopoulos, Alcock and Manolopoulos,
2001), bayesian classifiers (Wu and Chang, 2004), etc. Some representations are general enough to
be used inthe mentioned problems, and some are rather specialized, meant for prescribed
applications. It is worth to mention that there is an increasing interest in data series mining, e.g. Xi,
Keogh, Shelton, Wei, Ratanamahatana, 2006. It is said that time series or data series mining is
considered as one of the tenth challenging problems in data mining (Yang and Wu, 2006; Fu, 2011).

There are some problems in treatment of high dimension data, including the curse
of dimensionality and the meaningfulness of the similarity measure in high dimension space.
For any point in a high dimensional space, the expected gap between the Euclidean distance to the
closest neighbor and to the farthest point decreases while the dimensionality grows. This
phenomenon may cause many data mining tasks to render ineffective and fragile (Beyer et al,,
1999). Also, the data mining methods require high computational cost applying very large data sets.
This obstacle is sometimes known as the “curse of dimensionality” (Elder and Pregibon, 1996).

In most of the above data series mining problems, there is a necessity of reducing
dimensionalities and forming new data series representations. It is required that the new
representation preserve sufficient information for solving above data series problem with
satisfactory accuracy. Reducing dimensionality (either the number of data point or the number
of records), can effectively cut this computational cost.

Therefore, the reduction of the original series’ dimensionality is crucial because dimensionality
reduction decreases the cost; increases the performance, or reduces redundant dimensions.
Reduction of dimensions can be divided into major problems: attribute selection, attribute
extraction and record selection. The process of extracting the most important attributes or formation
of the new attributes based on the original set reduces the dimensionality of the data. Also, some
records or examples may better support the learning process of data mining than others (Maimon
and Rokach, 2010). Note that lossy compression methods can always achieve higher compression
rates but involve a trade-off between compression rate and error, and the goal is to achieve the best

ratio between compression rate and error.

There are many approaches to dimensionality reduction and similarity searches of data series
in large databases (Tak-chung Fu, 2011). A data series of arbitrary length M can be reduced to
another representation of data series of length K, K<#. The simplest method is sampling (Astrom,
1969) in which a rate of M/K is used. The method, however, does not retain the shape of
compressed time series if the sampling rate is too low,

Piecewise approximation methods divide the data series into segments and approximate each
segment using some functions. An enhanced method is to use the average value of each segment
to represent the data point in the new, compressed representation. One of these methods is based on
piecewise constant approximation (PCA), also known as piecewise aggregate approximation
(PAA). In their papers, (Yi and Faloutsos, 2000) and (Keogh et al., 2000) proposed to divide each
data- series into segments of equal length and to use the average value of each segment to represent
the latter PAA. Keogh at. al. (2000, 2001) have also proposed an extended version called an
adaptive piecewise constant approximation (APCA), where the segments length is not fixed. Instead
of using the average value to represent each segment, other methods are proposed, e.g. Lee at al.
(2003) proposed to use the segmented sum of variation (SSV) to present each segment, while
Ratanamahatana at al. (2005) and Bagnall at al. (2006) proposed a bit level approximation.

There are other methods to approximate a time series by straight lines; for example, by linear
interpolation (Keogh, 1997), (Keogh and Smyth, 1997), (Smyth and Keogh, 1997), or linear
regression (Shatkay and Zdonik, 1996).

Furthermore, preserving the salient points seems to be a promising method, such perceptually
important points (PIP) were first introduced by Chung et. al. (2001).

The idea of upper and lower envelopes of data series was introduced by Krawczak and Szkatuta
(2010a, 2010b) and is worth to be considered and used.

Representing data series in the transformation domain is another approach. One of the popular
transformation techniques is the discrete Fourier transforms (DFT) (Faloutsos, Ranganathan and



Manolopulos, 1994) and the discrete wavelet transform (DWT) (Chan and Fu, 1999). Principal
component analysis (PCA) is a popular muitivariate technique using statistical methods (Yang and
Shahabi, 2005), (Yoon et al., 2005). Another methods use hidden Markov models (HMMs),
(Azzouzi and Nabney, 1998). Many of the approaches use different indexing method.

One important feature of all the above approaches is that they operate on real values.
Another common family of approaches converts the numerical time series to symbolic form,
The simplest method is discretizing the time series into segments and converting into a symbol
(Yang and Zhao, 1998; Yang et. al.,, 1999). Also a symbolic PAA technique called symbolic
aggregate approximation (SAX) was introduced by Lin, Keogh and Lonardi (2007). They convert
the result from PAA to symbol string. Two parameters must be specified for the conversion:
the length of subsequence and alphabet of symbols used. SAX preserves the general shape of the
original time series.

In this paper, we propose a new approach: SEAA - symbolic essential attributes approximation
for gradual reduction of dimension of multidimensional data series. Our approach allows a data
series of arbitrary length M to be reduced to arbitrary length K, where K <<M . For symbolic
representation of data series, we use alphabet of finite size, R >=3. Our approach differs from other
methods known in the literature. In general, these methods give compressed representation of data
series which preserve the time order of the original data series, while in our case we obtain a set
of nominal values which preserves characteristics of the original data series and only a fixed
permutation of the attributes can be considered.

The attributes are synthetic and there is no physical interpretation of them, but they still hold the
most important features of the original data series. Although the approach does not preserve the
general shape of the original time series, it contains enough information for their proper
classification and clustering. The proposed methodology consists of several steps in which
considerably dimensionality reduction is performed. Compression ratio at each step is determined
in an experimental way and depends on the considered data.

The remaining part of this paper is organized as follows: Section 2 presents the clarification of
the proposed approach, in Section 3 we present description of the methodology and the data series
dimension reduction is described in details: Practical presentation of the proposed approach was
carried out for the database available at the Irvine University of California in Section 4. Using the
attributes with nominal values as aggregated data series representation verification of the proposed
approach was carried out for two data series mining problems, namely classification and clustering.
We consider classification and clustering problem, because they are among of the most common
data mining problems. We have made calculations on compressed data in order to determine
whether they contain enough information to their proper classification and clustering. In Section 5
there are examples which show the efficiency of the proposed methodology. In Appendix A, the
basic elements of the used extraction of decision rules are presented. We used the method of
creating the minimal set of rules successively for each class developed by-Szkatuta (1995, 2002),
Kacprzyk and Szkatuta (1999, 2002, 2005a, 2005b, 2010). Appendix B gives basic elements of the
adopted algorithm applied for clustering (Krawczak and Szkatuta, in preparation).

2. Clarification of the approach

Our work is motivated by the observation that using combination of several methods for data series
dimensionality reduction is more universal than using a single method. It seems that instead of
using one method with a large loss of information, it is much more efficient to compress several
methods in which information is reduced gradually with partial little loss of information.

Our approach allows a data series of arbitrary length M to be reduced to another representation
of data series of length K, where K<<M . We propose a new approach which changes the real
values data series representation into anew nominal representation of data series. During this
representation changes there is significant reduction of data series dimensionalities. The propose
methodology consists of several steps, during which dimensionality reduction is obtained and
compression ratio at each step is determined. It must emphasized that the data series is a time series




or pseudo-time series while SEAA generates a set of nominal value attributes arranged according to
one fixed permutation of attributes for all considered objects.
The developed methodology is shown in Fig.1.

Data EAA - envelopes Essentials
series aggregate = anributes = | Nominalization
approximation generation

Fig. 1. The approach scheme of SEAA - symbolic essential attributes approximation

Before starting the dimension reduction of the data series, pretreatment of data should be
performed and each series should be normalized to have mean equal zero and standard deviation
equal one. Let us denote the original data series of arbitrary length M and indexed by n by the
following vector form[xl(n),xz(n),...,xM (n)], n=1..,N. Concept of each step of SEAA

methodology is briefly described below.

2.1. Envelopes aggregate approximation

First, we introduce a piecewise approach for representing a data series, introduced by Krawczak and
Szkatuta (2010a, 2010b). Following the idea borrowed from the signal processing theory
we developed piecewise constant upper and lower approximation of data series. We applied the
piecewise constant functions, also called step functions, with equal length of steps. The length
of steps is denoted as m-step, meaning that m succeeding samples of data series constitute one step.
Upper and/or lower approximation are developed, and then aggregated. The parameter m describes
the rank of time series dimension reduction. It means for a given data series of the length M we

obtain the reduced length }\—AiJ where m<<M .
m

Selection of the proper values of the m parameter is of crucial importance because this value has
strong influence on quality of time series representations. The m parameter should be adjusted in an
experimental way. It is required that the dimension reduction of data needs to be rational in the
following sense: from one point of view the value of m should be as large as possible then the
dimension reduction is significant, but at the same time increasing value of m causes losing
of information involved in data series. The problem of adjusting the value of the parameter / seems
to be no trivial at all, and much experimental investigation should be performed.

The aggregated envelopes give a first new data series representation thereby the first reduction
of dimensionality as the following vector[y, (1), y, (n),..., y{MJ(H)]' n=L..,N.

m

2.2. Essential attributes generation

In the next step, we extract features of the considered data series in order to obtain the further
dimension reduction. It is assumed that a feature is an identified variable which efficiently captures
the information involved in the aggregated envelopes, and by implication involved in the original
data series. The idea of using features is motivated by common belief that description of each
multidimensional data series may be redundant. There are several features such as Lyapunov
exponents, ARMA models, wavelet transform, correlation dimension, statistical moments or
principal components analysis for data series analysis, e.g. (Oja, 1992), (Guyon, Gunn, Nikravesh,
Zadeh, 2005). Here, in our approach we will exploit Cybenko's theorem (Cybenko, 1989) as well
as nonlinear principle component analysis and auto-associative neural networks. Cybenko's
theorem states about a function approximation, while nonlinear principle component analysis

. . M| . . .
determines mapping from [—J-dxmensmnal space of aggregated envelopes to E-dimensional space
m

of components. A three layer auto-associative neural network can perform an identity mapping,
where the network outputs are enforced to equal the network inputs with some accuracy, and the



features are represented by outputs of the second hidden layer neurons. Here we will name the
features as essential attributes, and the assumed neural network architecture requires that the
number of second hidden layer neurons is remarkable smaller than the dimension of aggregated

) M . -
envelopes, i.e. £ <<|—|. Under such assumption, an auto-associative neural network works as
m

adevise for data compression and decompression, but here we put our attention to the first
functionality of the network - in compression - to obtain the essential attributes, while
decompression part is necessary to adjust neural network weights to keep good quality
of compression/decompression.

We used multilayer feedforward neural networks to reconstruct the input data by the network
output. To perform this task efficiently, such neural networks learn interrefationships among the
input variables. When the network is trained successfully, a small number of “hidden neurons”
is sufficient to reconstruct the input values as the network outputs. This way the data are
compressed to a form represented by data of lower dimensions. The outputs of the hidden layer

. . . P M
neurons constitute the essential attributes and the number of them £ is adjusted, where E<<{—J.
m

Selection of the proper values of the number of generated essential attributes £ is of crucial
importance because their values have strong influence on quality of data series representations.
The problem of choosing the value of £ (i.e. number of essential attributes) must be overcome
in some experimental way shown in Section 4.2. It should be emphasized that original data as well
as the aggregated envelopes data representation have a form of series of time, and the order
of samples is natural and of crucial importance. Meanwhile the essential attributes generated by the
designed neural network have a set form where the order of elements is meaningless. However the
essential attributes for all data must be generated for one chosen permutation of elements of the set
of the essential attributes. This way we obtained another representation of the original data series,
and the length E of the new representation indicates additional dimension reduction of data series
representation. Now the data series representation described by the essential attributes has a set

form {b, (m),b, (n),.... by (W)} n=1,., N .

The essential attributes can be used directly or can be modified, or on the base of the essential
attributes it is possible to generate a new set of attributes. The main reason to generate the new
attributes is to express hidden relationships between individual attributes. These new attributes can
be obtained in various ways, generally it is said that the new attributes are some functions of the
original ones (Matheus, Rendell, 1989), (Wnek, Michalski, 1994). Often there are used functions
like maximum value, minimum value, average value, etc. or some arithmetic operators including:
+, -, * and integer division, and so on.

In our approach, the new attributes are calculated as rearrangements of differences of the original
essential attributes. This way we slightly enlarge dimensionality of the data series representation,
but in the same time we provided, in some sense, the distances between the essential attributes,
which may be particularly important in the task of clustering. The new set of attributes is denoted
as{c, (n),c,(n),...,c, (M}, n=1..,N, where the number of new attributes K is adjusted, K 2 E.

2.3. Auributes nominalization

The data mining methods often involve numgric data (either discrete or continuous). However, there
exist many methods that are designed for data which attributes can have only a small number of
possible values (nominal or ordinal). Even for algorithms that can directly deal with numeric data,
learning is often less efficient and less effective, therefore nominalization is recommended.

Also, in many applications, the Euclidean distance does not behave properly in measuring the
similarities between data series, especially when shifts on the time axis appear. After the data series
has been transformed into a symbolic representation, we can treat each time series as a string and
apply similarity measures in the string domain; these measures usually do not have the limitations
of Euclidean distance.

It is worth to mention that the essential attributes generated by an auto-associative neural
network are represented as real values and each such a value requires e.g. 32 bits to be stored
or compute. Meanwhile, symbolic representation of data gives additional dimension reduction




of data representation. For instance, let the range of values of each attribute is divided into 8 parts
then only 3 bits (instead of 32) are sufficient for storing information about a symbolic value of an
attribute. Such data representation measured in bits is very important in data transmission.

Nominalization as a process of conversion of numeric data into sequential symbolic data plays
an important role in data mining and knowledge discovery. It relies on dividing the real value range
of attributes into a number of intervals, and next to assign nominal codes to each interval. There are
some well known groups of methods used for nominalization (Maimon, Rokach, 2010),
for example: division of equal width imtervals and equal frequency intervals method,
the discretization based on statistical tests, entropy based discretization and methods with applying
the dynamic programming. All these methods can be treated as heuristic for discretization of data,
and experiments show that none of them is significantly better than others, and the choice of method
depends heavily on data considered and type of considered problem. It is unrealistic to pursue
a universally optimal nominalization approach.

Note that in our approach there is no physical interpretation of the essential attributes and
transformed essential attributes, they take values from some set of real numbers, and implicit
relationships between essential attributes are very important. So, the nominalization of a set
of values for all attributes should be considered at the same time but not individually. The symbolic
replacement is done in such a way that the common range of the all attributes is divided into some
sub-ranges; it means that the division is the same for each attribute thus each nominal value has the
same interpretation for each attribute. We propose to use a particular and simple method called
equal width interval discretization. Choose another method of discretization requires further study
and remains an open question. Itseems that such nominalization should express implicit
relationships between individual attributes.

Thus, real values of the attributes are replaced by nominal values constituting the new data series

representation {a, (#), a,(),...,a, ()}, n=L...,N .

In the next section each step of our approach of the data series dimension reduction SEAA
is described in details. Will be discussed the concept of envelopes, extracting essential attributes,
and nominalization of the attributes.

3. Description of methodology

3.1. Envelopes aggregate approximation

To reduce the data series of length M, each data series is divided into equal sized intervals of length
m. The maximum and minimum value of the data falling within each interval is calculated and these
values become the data new representation. The representation can be visualized as an attempt to
approximate the original data series with a linear approximation of intervals. The exemplary upper
and lower approximation concept of an exemplary data series for m = 4 and M = 20 is visualized in
Fig. 2 a). Next m succeeding equal values are treated as a single value and such envelopes values
from Fig. 2 a) are visualized in Fig. 2 b) as aggregated envelopes.

a) b)

12 3 4 5°6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
o Dataseries u Upper envelope 4 Lower envelope

8- Aggregated upper envelope  —— Aggregated lowier envelope

Fig. 2. a) The 4-step upper and lower approximations, b) The aggregated 4-step envelopes.



This way, we obtained the new representation of the data series, the new representation
is described by either upper or lower envelopes, or by both kinds of the envelopes. Below we will

discuss in details construction of envelopes.
Let us consider the normalized data series described in the following way:

(e Y =[x (0%, ()2 W], =12, N 0

The so-called m-step upper and m-step lower envelopes, m<<M , constitute a kind
of approximations of (1). The m-step upper approximation (upper envelope) of a data series (1)

o] 2L
is denoted by {xf (n)}LIl "‘J , and has the following form:
£ (n)=max{x (1) x, (2)...x_(n)}

XU (n) =max{x, (n),x} (n),...,xm (n)}

< (n)= max{x_ (n),xM (n),...,xz (n))

xi’m (n) = max {XW.. (n), x (n),...,xzm (n)}
2w ( (k) .
x[%]' n —max{xHmeI ”)’xt‘_jj".,m.: n ,...,xHJM n))

H Wmmantx Oy ke, G

The envelopes (2) can be aggregated in the following way, for m-step upper envelopes, i.e.,
=
{x,f/(n)}k=

as a single value. So, we can replace each m sequential equal values of the envelope with a single

n

M
I;mJ =|:xlu (")'Xg(”)’""x[lﬂJm(”) , n=12,..,N, msucceeding equal values are treated

value. The integer part of M divided by m, 1.c.,[-—J, determines the number of data point in the
m

aggregated envelopes. The aggregated upper envelopes yield a new data series representations
formally represented as follows

i 2

{yk(n)}k:l["'L{y‘ (n), yg(n),..‘,ytﬂj(n):l, n=L2 .., N 3)

"

In the case of generating the aggregate lower envelopes, the procedure is similar but the
maximum function is replaced by minimum function. The m-step lower approximations (lower

M
k| =
envelopes) of a data series (1) is denoted by {,\f[_‘()z)}k:,l"’J and can be aggregated, i.e., we can
replace each m sequential equal values of the lower envelope with a single value, and aggregated
envelopes [y, (n),yz(n),...,y[MJ(n)J, n=1...,N, were calculated, and the new representation

of the data series with reduced dimensionalities.
Due to introduction of the aggregated envelopes, the dimension of the original data series (1) can
be significantly decreased; it means for a given data series (1) of the length M we obtain the reduced

length [ﬂ

J of (3), where m<<M . The aggregated envelopes (both upper and lower) are denoted
m




as follows[y, (n), yz(n),“.,ylﬂj(n)], n=1,...,N. Dimension of aggregated envelopes is reduced

mtimes and they give another new data series representation thereby the first reduction
of dimensionality.

3.2. Generation of the essential attributes

In this section we introduce another representation of data series (3), and at once (1). Each data

series (3), for n=1,2,..., N, describes a point in a [KJ -dimension space of real values.
m

In general, we can expect that there is some redundancy of representation dimensionality (Jolliffe,
2002), (Guyon, Gunn, Nikravesh, Zadeh, 2005), and these superfluities can be removed by
application of multi-layer feed-forward neural networks (Dreyfus, 2005). There are known
applications of auto-associative neural networks (a class of multi-layer feed-forward). The new
representation causes additional data compression especially in communication area. Application
of auto-associative networks gives lossy compression, it means that lossy compressed data after
decompression result similar data to the original, but not exactly the same. Lossy compression over
lossless compression is capable of reducing data dimensionality much more. Therefore lossy
compression is usually used for audio and image data, but in the current research we will use neural
network for compression of data series represented by aggregated envelopes.

Thus, we will use an auto-associative feed-forward neural network with three layers, and two

m

hidden layers. The inputs are described by aggregated envelopes (3) of dimension [MJ while the

outputs are decompressed inputs (3), and are described as follows

(| M
{)% (’1)};!‘ "'J=[5’, (n).5'1(11),‘..,§'tﬁj(:1)]. for n=1,2,..., N, )

m

The aim of such a kind of neural netwark is to generate features, called here the essential
attributes, represented by neurons outputs of the second hidden layer of dimension E, under the

assumption that E << [ﬂJ The proposed architecture of the neural network is shown in Fig. 3.
. m
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Fig. 3. Neural network generating the essential attributes.

The neural network for generating the essential attributes consists of the following parts:

. . . M .
s the input layer of dimension {——} for m << M , where the inputs represent the aggregated
m

| M
envelopes (upper or lower) {y, (n)}i,l{"'J =[y, (), y,(n),..., yiﬁJ ml, n=,2,...,N,

d



o the first hidden layer of l—M—J sigmoidal neurons,
m

e the second hidden layer of £ sigmoidal neurons, the outputs of this layer neurons generate
signals {b] (n)}izF ={b{ (n),b; (n),...,0 (W)} , n=1,2,..., N, - denoted also by vertical

arrows - which are used as the essential attributes, however in the subsequent text we will
denote the essential attributes as follows

{b, (W)} F =100048 (A))'F. n=1,2 ..., N, )

because due to using sigmoidal activation function for neurons the second hidden neurons
outputs are ranged between -1.0 and +1.0.

The above described three layers: input layer, first hidden layer and second hidden layer all
together form a mapping of [ﬂj inputs into £ essential attributes, it means that this part of the
m

neural network maps each time series represented by an aggregated envelope into a set of essential
attributes.

e the output layer of [M—J sigmoidal neurons denoted by
m

M

{y‘(n)} [ J_[)ﬂ] (n),jl(n),...,ﬁ{ﬂj(n)], for n=1,2,..., N

M| . . .
The whole neural network maps {—J input variables into [-AiJ output variables, thus the
m m

network maps each input into itself. The entire network is necessary to determine weights
of connections between neurons of adjacent layers. The weights are obtained during the training
process supported by the backpropagation (with modifications) algorithm (Krawczak, 2003a;

2003b).
The following formula expresses the error generated by the network

o 2]
iz yk n -V (”))z 6)

n=1 k=l

N

The error (6) is referred as mean square error (MSE)

> S G )= ) (6

N[ M J e
m

and just describes the efficiency of compression and decompression of aggregated envelopes data
series approximation.

In Fig. 3 the dashed part of the neural network is responsible for compression of data series, and
in general only this part is important in our approach of data series dimension reduction. There are
known several measures of compression and decompression quality. The most general term for
compression measure is compression ratio defined as follows (Guyon, Gunn, Nikravesh,
Zadeh, 2005)

MSE =

, , Compressed Size
Compression ratio =Cr=-—p~+ 7
Uncompressed Size

In our considered problem developing of the aggregated envelopes causes the ratio is equal to




N[—-—MJT .

m

Crgprgmn =g = 8
T NMT m @

where by 7 we denote number of bits necessary to save separate datum (e.g. 32 or 64 bits), while
in the case of the essential attributes the exemplary compression ratio is following

Cr, ess. aftribure =T = —A/I— )
T
m "

There is also similar measures e.g. Space Savings =S, =1-

NET E ©)

Compressed Size
—E—-————, or other

Uncompressed Size
compressing measures related to speed of data transferring, but there are strictly related to image
or audio compressing schemes. However the quality of dimension reduction of data series will
be checked by solving illustrative examples in the subsequent part of the paper.

It must be emphasized that the data series representation (1) and the aggregated envelopes
representation (3) have a vector form for n=1, 2,..., N, meanwhile the essential attributes

representation (5) is obtained a set of attributes. It means that order of the essential attributes does
not have any meaning, and it is required to consider the same permutation of attributes for each data
series which will be denoted in the following vector form{b, (n)}izf =[b, (n),b, (1),.... b, (W],
n=12 ..., N.

The procedure of generating the essential attributes was described in a general way without
distinguished whether there are considered upper or lower aggregated envelopes, and the above
consideration about neural networks was done without biases — for simplicity.

In this way we obtained another representation of the original data series (1), and the length £
of the new representation indicates additional dimension reduction of data series representation.
The idea of the essential attributes obtained from auto-associative neural networks was introduced
in earlier papers by Krawczak, Szkatuta (2008) related to mining data series problems.

The essential attributes can be used directly or it is possible to generate a new set of attributes.
The new set of attributes {c, ()} ={(c, (n)c,(n)icx(m)}, n=1..,N, are calculated

as rearrangements of differences of the original essential attributes. This way we slightly enlarge
dimensionality of the data series representation, but in the same time we provided in some sense the
distances between the essential attributes. In particular we have the set of the original essential

. E
attributes (5) {b, (n), b, (n),....bg(n)}, n=L..,N, and we generated K = (2] combinations

without repetitions of differences bi(ll)'—bl-(n) 1, j=1, 2,...E i> ] , these combinations create

a set of new attributes

{e;m}izf =
={b2(n)—bl (n), by(m)=by(n); b, (M)—by(n), ..o (M) =by_ (),
by(n)=b,(m), by(my—b,(n), ... (n)=Db,_,(n),
by (n)=b,(n), ....by(n)—b,_,(n), (10)

be(my=b,(m}

= {C| (”)vcz (n), v Gy (n)}

for n=1,2,..., N. The set of attributes (cj(n)}j::l'( for n=1,2,..., N constitutes the new

representation of the data series.




3.3. Nominalization of the attributes

In our approach, the real values of the transformed essential attributes (or the essential attributes not
transformed) can be replaced by nominal values. In our approach there is no physical interpretation
of the essential attributes (or transformed essential attributes), and it is assumed that there are some
unknown involved relationships between them, thus the nominalization is done in such a way that
the ranges of the all essential attributes vafues are subdivided into some number of partitions. In the
paper, we apply a particular and simple method called equal width interval discretization.
In general, the method involves determining the domain of observed values of the attributes and
subdividing this interval into equal subintervals. It involves determining the domain of observed
values of the all attributes @, € A, j=1..,K and dividing this interval into equal subintervals. The
set 'V, ={v,;.v;3,v;, } is the domain of the attribute a;, and L; denotes the number of
subintervals for the j-th attribute. One can construct subinterval boundaries, i.e. cut points, in the
following way:

pO = min{vﬂ, ’ Vn, ’ "'vux }

pi=p,+i-0, i=lL.,P-1 1y

pp=max{V, .V, ...V, }
max{V, V-V | = minfV, .V, .Y, |

P

ranges are labeled by letters of the alphabet, respectively, see Fig. 4.

, Pe N is a predefined parameter. Consecutive

where 0=

P Ps Py Pe Pe

Fig. 4. The nominalization of the attributes.

Such labeling is done for each attribute.
Introducing nominalization of essential attributes can be considered from a point of view of data

compression, namely using definition (11) the compression ratio now is rewritten as follows

NEt . . - .
Cr, ———, where ¢ and T denote numbers of bits required to store nominalized attributes

nominalizadon — N

and real value essential attributes, respectively.

The set of the new attributes (c,(1)}/Z* (or {b,(1)})Z in the case without transformation) with

nominal values now can be denoted by {a,(m)}Z", n=1,2,..., N, where K <<M . This way a new
representation of data series (1) was developed, the representation is characterized by a set of

attributes and values of the attributes are nominal.

4. Illustrative examples

Practical presentation of the proposed approach for the reduction of dimension of data series
described by (1) was carried out for the database available at the Irvine University of California
(Alcock, Manolopoulos, 1999).

In the next subsections: we will discuss the data sets adopted for the calculation and the
dimension reduction methodology for data series described in the previous section will be applied to
them. The methodology is based on the concept of envelopes, extracting essential attributes, and
nominalization of the attributes.
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4.1. Description of the data set

The considered database consists of data series synthetically generated by proper equations. Each
equation represents a different type of pattern. Each pattern was taken as a time series of 60 data
points. The following equations were used to create the data points z(r), where 1< ¢ <60, for the
various patterns:

pattern E:  z(f) =v + rs + kx (upward shift)
pattern F:  z(f) =v + rs —kx (downward shift)
pattern A: z2(f) = v + rs, (normal pattern)

where, for each pattern, v is the mean value of the process variable under observation (v = 80), s is
the standard deviation of the process variable (s = 5), r is a random number between -3 and 3, x is
the magnitude of the shift (x takes a value between 7.5 and 20), & indicates the shift position in E
and F (k = O before the shift and £ = | at the shift and thereafter).

We considered the following learning data series where introduced classes correspond to the
patterns: 25 time series of Class | (pattern E); 25 time series of Class 2 (pattern F); 25 time series of
Class 3 (pattern A). Each data series has 60 values, and the whole data series can be described as
follows: {x, ()} = [x,(n), x, (1), xg ()], n=1,2,...,75. All 75 time series after normalization

are shown in Fig. 5.

1
0.8 1%y
06
04
02 , :

o A1t
02 W
0.4 H
08
08 1

1

Fig. 5. The normalized learning data series {x‘ (n)}f:,m, n=12,.,75, belong to the pattern E, F and A.

In Table | there are shown exemplary values of selected learning time series of the considered
normalized data series.

Table 1
The three selected learning time series.
noox(m) x(n) xy(n) o xg(n) xg(n)  xgq(n) Pattern
1 -0.30 -0.60 -0.55 0.26 0.12 0.33 E
40 0.26 0.35 022 e -0.73 -0.64 -0.20 F
75  -0.30 0.20 0.22 0.51 0.53 0.26 A

We also considered the testing data series which were different from the learning data: 25 time
series of Class | (pattern E); 25 time series of Class 2 (pattern F); 25 time series of Class 3 (pattern
A), which were used only for testing purposes. Each data series has 60 values, and the whole data

series can be described as follows: {x, (}2® =[x (), x, 00y, 5o (W], n=76,77, ..., 150.
Now, the dimension reduction methodology for data series will be applied step by step.
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4.2. Reducing of the data series dimensionality

Our goal is to reduce the dimensionality of the data series under consideration. Dimensionality
reduction was started with the creation of m-step upper and lower approximation of a data series.
Basic steps of the proposed approach both for upper and lower envelopes are shown below.

4.2.1. Envelopes aggregate approximation.

The value of a step 1 was determined experimentally as 4. In order to compare the quality of the
approximation of the normalized series of data by the upper and lower approximations, the average
deviation of the upper and lower approximation of the all normalized data series was calculated, for

different values of m.
Data series representation based on the 4-step upper approximation of a normalized data series

(1) is denoted by {xfj (u)}fjfo and is calculated according to formula (2). Exemplary, the 4-step

upper approximations of a data series number 1 is shown in Fig. 6.

0,80
0,60
0,40
0,20

0,00 —memmmnss e

4.7 .10 13..16 19022. 25 28 31 34 37 40..43.46.49 .52 55.58.

0,20 1--
0,40 o
0,60 Lo e
080 -t e
A,00 e

Fig. 6. The 4-step upper approximations of a data series number 1 for £ =1, 2,...,60.

Similarly, data series representation based on the 4-step lower approximation of a normalized

P A,
data series (1) is denoted by {xk"(n)}ki "’J . Exemplary the 4-step lower approximations of a data
series number | is shown in Fig. 7

080 -
080
0,40 -
0,20 -
0,00 - . e . ey ey
0,20 1. -4 710 13 16 19 }22-.25.28..31 -34..37-.40..43-.46 - 49...52...55...58-.
-0,40? *e ‘e - IR e o e

Bt L SR

-0,80 i

-1,00 - -
Fig. 7. The 4-step lower approximations of a data series number 1 for £ =1, 2,...,60.

The average deviation of the 4-step upper and lower approximation of the normalized data series
. l 60 60
was calculated, i.e., values %Z(xf (n)=x, (n)) and 6%2(&, (n) = x(n)), for n-th data series,
k=l k=i
n=12,...,75, are shown respectively in Fig. 8 a) and 8 b).
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Fig. 8. a) Average deviation of the 4-step upper approximation of the normalized data series belong to the
pattern E (n = 1, 2,...,25), pattern F (n = 26, 27,...,50) and pattern A (n =51, 52,...,75), b) similarly average
deviation of the lower approximation.

As can be seen in Fig. 8 a) and b), similar values of average deviation were obtained for pattern
E and pattern F. For data series of pattern A error approximations were slightly greater.
The average deviation of the all data series and lower or upper approximation was calculated as

75 60 75 60
follows %ZLZ(#’ (n)~x,(n)) and %Zé—lozm (n)—xf(n)). The similar value of average
n=i k=t n=4 k=1

deviation of the all data series was obtained for the upper (takes value 19.13) and lower (takes value
19.33) approximation. So, none of these gives much better approximation and each of them can be
used for further calculations. So in the paper two following computational experiments

are considered.

¢ Problem of reducing the dimensionality of data series based on the upper envelopes.
s Problem of reducing the dimensionality of data series based on the lower envelopes.

Calculation results for both the upper and the lower envelopes are given below. For M = 60 and
a fixed value /m = 4 the number of data point in the aggregated envelopes is 15, according to (3).

For each considered data series the 4-step upper and lower approximations of the learning data
series [xl(n), Xy (N, Xy (n)] were calculated and aggregated, and we obtained the new reduced

data series representation [y, (1), y,(n),...,y,s(n)], for n=1,2,...,75, see Fig. 9.

a) b)
1.00 100

-1.00 -1.00
1T 2 ¥ 4 0§58 8 T B 9 10 1 12 13 14 5 t 2 3 4 5 6 7 8 9 10 N 12 12 14 15

Fig. 9. a) The aggregated 4-step upper envelopes {yk (n)}f_:"5 , 1=12,..,75, of data series E, F and A,
b) similarly aggregated 4-step lower envelopes.

For the data from Table 1 the exemplary aggregated 4-step upper envelopes look like
in Table 2 a) and the aggregated 4-step lower envelopes look like in Table 2 b).
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Table 2

a) The aggregated 4-step upper envelopes, b) The aggregated 4-step lower envelopes.
nooy (o () oy ) e yi(n) ) oy oy yis(n)  Pattern
1 -0.30 -0.33 -0.33 ... =0.43 -0.60 -0.60 - -0.55 -0.74 E
40 0.35 0.35 0.50 ... 036 0.21 0.21 0.21 0.14 F
75 0.22 0.74 0.75 ... 055 -0.30 0.05 0.05 -0.64 A

In this way, we obtained the new representation of the data series (1); the new representation
is described by either upper or lower envelopes, or by both kinds of the envelopes. According to (8)

the compression ratio due to aggregation of envelopes is as follows Cr,... i, =0.25.

4.2.2. Generation of the essential attributes

In order to find the essential attributes of the aggregated envelopes a four layer feedforward neural
network (including the input layer) was applied, see Fig. 3, with different numbers of neurons
within the second hidden layer. In this particular case the network consists of:

e the input layer of dimension [MJ =15 representing the aggregated envelopes (upper or lower)
m

(7S =1y, (), y, (1) s (], n=1,2,..., 75,

e the first hidden layer with [y—J =15 sigmoidal neurons,

m
e the second hidden layer of E sigmoidal neurons, and the outputs of these neurons
(b ( WiE={b (), by (m),...bz (M} . n=12, ..., 75, indicate the essential attributes,

i i=l

o the output layer of [M-J =15 sigmoidal neurons generating {x,(/z)}f::’, for n=12,...,75.
n

For designing the required neural network JNNS — a freely available neural network simulator
was applied. During the experiment the number of hidden neurons was changed, from I up 15, and
for each case the network was trained and the learning error described as follows

75 13

1
Errar:BZZ 9% n) y‘ u)

n=l k=l

was calculated. For adjusting weights we used the backpropagation with momentum algorithm and
within each calculation lasting 10000 cycles both required parameters, namely learning parameter
and momentum parameter, were selected in such a way to get a stable as well as the lowest value of
the learning error. The results of the experiment are shown in Fig. 10 a) where the learning error is
drawn vs. the number of applied hidden neurons.

Litawan Ly
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035 \

0.25 - .
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015 ~
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Learning error

-~
005 .. .
DR N

0O r 2 3 4 5 & 7 8 9 10 11 12 13 14 1§

Hidden neurons number no i s LR

Fig. 10. a) Values of learning error vs. the number of hidden neurons, b) learning error for £=5.



According to the experiment, the number of neurons of the hidden layer was chosen as E =5, see
Fig. 10 b), meaning that just five essential attributes are enough to conserve the information about
the data series character and the error Error =0.05 corresponds to the absolute value of an average
difference between the output and input is equal to 2.5 %. Thus, the used for the further calcuiation
neural network has the architecture shown in Fig. 11.

N SPr
Y \ /0 ‘\{v’%’{,} 9
) Q"“ < XK
SR
/‘\ ? A
Yis 0, 2 D Ns

Fig. 11. Neural network generating five essential atiributes.

In the next step of our procedure, the outputs of the hidden layer {b, (n),b,(n),...,b;(n)} for
n=12,.,75 were multiplied by 1000. Thus, the original data series can be represented by a set of

five essential attributes {b, (n),b,(n),...,b; (n)} according to (5).
Due to formula (9) the compression rate of generating essential attributes takes the following

value Cr, .ame =1/3. and  together ~ we  obtained the  compression  rate
Crn,y/:re;.-alimn.\.\./mriluur = 1/4 X 1/3 = 1/12 = 008(3)

For further consideration, the essential attributes are arranged in a vector form, i.e. one chosen
permutation of them must be taken for all investigated data series. Thus, the original leamning data
series represented by upper envelopers can be represented by avector of five essentials

attributes[b;, (n),b, (n),...,bs ()], see Fig. 12 a), and for upper and lower envelopes see Fig. 12.

a)
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Fig. 12. a) The value of the attributes {b; (n)}jfli , n=12,.,75, for upper envelopers, b) similarly for lower envelopes.

The exernplary values of the five essential attributes for examples number 1, 40 and 75 with the
aggregated 4-step upper envelopes are shown in Table 3a) and for 4-step lower envelopes are shown
in Table 3b).

Table 3

a) The attributes for the upper envelopes. b) The attribute for the lower envelopes

o by b,y by(m) b (my b (1) b)) b,u) by b(n) by(n) Pattern
i 74 400 71 470 834 372 454 559 214 946 E

40 24 761 613 414 63 249 713 787 934 228 F

75 23 283 119 682 558 732 387 762 645 865 A




In the paper two following problems are considered: the essential attributes can be used directly,
so that the number of attributes is 5; and on the base of the essential attributes new transformed
attributes can be generated. The new attributes were calculated as rearrangements of the essential
attributes according to (10). Fig. 13 shows new of transformed attributes {c;(1)}i3°, n=1,2,...,75,

for a fixed permutation of the attributes for the aggregated 4-step upper envelopes.

10001

8600

-800

-1000

Fig. 13. Plots of the new attributes {c,(m)}77)°, n=12....,75, for the upper envelopes.

Fig. 14 shows new transformed attributes {c,(m)}J°* n=12,...,75, for a fixed permutation
of the attributes for the aggregated 4-step lower envelopes.
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Fig. 14. Plots of the new attributes {c, (n)}/2°, n=12,..,75. for the lower envelopes.

=l

The new atiributes {c,(n)}/°, n=1,2,..,75 take values from a range [-1000; 1000] and before

their nominalization should be fixed in a new range [0; 1000], in order to unify the nominalization
1
process. The following simple formula changes the attributes values ranges: ¢;(n) :=EC’ (n)+500,

j=542,..,J0 and n=12,...,75.

4.2.3. Nominalization of the attributes

Next, the real values of the essential attributes from a range {0, 1000] can be replaced by nominal
values. The number of nominal values P corresponding to (11) was determined experimentally as
10. The replacement is done in such a way that the ranges of the all essential attributes are divided
into ten partitions. One can construct interval boundaries, i.e. cut points, in the following way (11):
po=min{V, .V ...V }i=0

L

p;=po+i-100, i=1,..,9
Po=max{V, .V, ..V, }:=1000.



Hence, the range of all attributes between 0 and 1000 is divided into ten equal sub-ranges.
Consecutive sub-ranges are labeled by first ten letters of the alphabet, respectively, as it is shown in

Fig. 15. Such labeling is done for each attribute {aj(rz)}j::,s} ., n=12,.,75.

[ T i I [ i f |
0 100 200 300 900 1000

Fig. 15. The nominalization of the attributes

The values of the nominal essential attributes for the aggregated 4-step upper envelopes are
shown in Fig. 16 a}; for the aggregated 4-step lower envelopes are shown in Fig. 16 b).

a)
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Fig. 16. a) The attributes {a, (n)]j:f . n=12,..75, for the aggregated 4-step upper envelopes, b} similarly for
the aggregated 4-step lower envelopes.

Exemplary values of the essential attributes after the nominalization for the aggregated 4- step
upper and lower envelopes are shown in Table 4 a) and Table 4 b).

Table 4

a) The attributes for upper envelopes b) The attributes for lower envelopes

nooa, () a,(n)  a;(n)  agn)  a.(n) a () ay,(n) ay(ny  a,(n) a;(n) Paiern
1 a d a e i d e f c i E
40 a h £ 4 a e e e J b F
75 a c b 8 f h d h g i A

We can notice that in the space of these five attributes there are several examples overlapping,
see Fig. 16. It means that some different examples are described by exactly the same values
of attributes, i.e. some examples are not distinguishable, as exemplary shown in Table 5.

Table 5
The exemplary values of the attributes for upper envelopes.

voay () a,(m)  ay(n) a,(m) ag(n) Pattern

=

1 a d a e i E

3 a d a e i E
20 a d a e i E
23 a d a e i E
27 a h I3 f a F
42 a h g S a F
44 a h g / a F
52 a f b g d A
38 a J b g d A
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The nominalization of a new set of the real values of all transformed essential attributes

{c,(n)]j-:,'o, n=12,.,75 was arranged in a similar way (l1). In result we obtained the nominal

representation of the data series (a,(n)]j:,'“}, n=12,..75, and values of the attributes take one

of the nominal values: a, b, ¢, d, e f g h 1 j Thus after nominalization each data series

is represented by nominal values of ten attributes.
The values of the nominal transformed essential attributes for the aggregated 4-step upper
envelopes are shown in Fig. 17 a), and values of the nominal transformed essential attributes for the

aggregated 4-step jower envelopes are shown in Fig. 17 b).

a)

BT 0 R e e T e e

BT 0 R0 e T oo

Fig. 17. a) The nominal attributes {a, (n)}jZ,"’}. n=12,..,75, for the 4-step upper envelopes, b) similarly for
the 4-step lower envelopes.

Exemplary data series of nominal representations of the transformed attributes for the aggregated
4-step upper envelopes are shown in Table 6 a); for 4-step lower envelopes are shown in Table 6 b).

Table ¢
a) The transformed attributes for upper envelopes. b) The transformed attributes for lower envelopes
nooa () a,(n) o ag(n)  ay(n) a,(n) a,(n) .- a,(n) ay(n) Pattern
1 g d h i S/ f h h E
40 i e b f e e d d F
5 g e 2 h d 2 h / A

In the paper the nominal essential attributes {;()}/Z’] and the nominal transformed attributes

{a;(m)!2° are applied for classification problem (Section 5.1); and the transformed attributes

{a,(m)}’2° are applied for clustering problem (Section 5.2), for n=1,2, ..., 75.
J PP g
Assuming 32-bit technology the compression ratio related to bit representation is equal

Cr, =4/32, and the overall compression rate of generating essential attributes takes the

nominalization

following value Cryg,, = 1/4x1/3x1/8 =1/96.

5. Experimental validation of our dimension reduction

Validation of practical use of the proposed approach was carried out for classification and clustering
problems. Calculations were performed to verify whether the proposed methodology of reducing the
dimensionality still retains important features of the original data series, which allows to classify or
to cluster data series properly.

In order to verify the new data series representation, the database Synthetic Control available
at the Irvine University of California was explored. Our approach reduces the dimensionality of an
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original time series from 60 data points to 5 nominal values (the attributes {a,(n)}/2}}) or to 10

nominal values (the transformed attributes {a, (n))’ Y for n=1,2,. 75‘. So data was compressed
into 1/12th and 1/6th of its original size, and were treated as leammg data. Two the following
problems are considered:

s Classification of the aggregate data series (Section 5.1). The aggregation data can be treated

as learning data for generation of elementary rules. Classification accuracy is verified
by applying the rules for the testing data which did not participate in the generation of the rules.

e Clustering of the aggregate data series (Section 5.2). The aggregate learning data series have
been grouped into clusters, but the affiliation of the data series was not used during the

computational process, only for testing.

Details of the calculations are presented in the next sections.

5.1. Classification problem

At the beginning of practical verification of SEAA the proposed procedure steps were carried out by
performing classification problem. The original data series representation described by real values

{x.om) k=60 =[x,(n),xz(n),...,xm(n)]. n=12,...,75, were replaced by another representation
described by attributes representation with nominal values {aj(n)}j::,x , for both K = 5 and K = 10,

The aim is to generate a set of elementary rules for classification of considered data series into one
of three classes: Class 1 (i.e., the data series belong to pattern E), Class 2 (i.e., the data series belong
to pattern F) and Class 3 (i.e., the data series belong to pattern A).

The attributes were established under both data series representation based on the upper and
lower envelopes. These rules could be used for classification of other data series, not cIassnfcd
before, so the rules are verified by using new 75 testing data series {x, (n)};- et 1=76,77, ..., 150,
which did not participate in the rules generating process. The selected results are shown below,
while details of the measure utilized can be found in paper (Krawczak and Szkatuta, 2011). So, each
data series is represented by values of five or ten nominal attributes and now can be treated
as learning data for generation of elementary rules of the following form

IF some conditions are satisfied THEN the data series belongs to a proper class.

In this case, the conditional part of the rules will contain the conjunction of conditions related
to the subset of the attributes. The process of generating the decision rules is based on a set of
examples under the assumption that for each class the examples have some common properties
which distinguish them from another class. The classification accuracy of the rules is understood as
percentage of examples correctly classified. In Appendix A the basic elements of the used
extraction of decision rules are presented, and details of the inductive learning method used to
derive the minimal set of elementary rules can be found in papers by Szkatuta (1995, 2002),
Kacprzyk and Szkatuta (1999, 2002, 2005a, 2005b, 2010).

Below, there are results of calculations for the data series representation based on upper and
lower envelopes. The calculations take into account both the nominal essential attributes (size of
compressed data is 5) as well as the nominal transformed attributes (size of compressed data is 10).

For each case there are shown the generated rules and the consequences of classification

accuracy for the learning data and testing.

Case 1: Data series described by nominal essential attributes {a/(n)}jff, for n=1,2,...,75.

Each data series, used for learning and for testing) of length 60 was reduced to length 5. All
calculations were made for two representations related to the upper and the lower envelopes.

The minimal set of rules for data series representation based on the 4-step upper envelopes
described by five nominal essential attributes was obtained and is shown below.

IF (as=g v iv iy THEN (Class = 1)
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IF (as=av b) THEN (Class =2)
IF(as=bv ) v (as=dv e) THEN (Class =3)

These rules correctly classified all of the learning data series represented by nominal attributes of
Class 1, Class 2 and Class 3. It is obvious that the generated rules should be verified using another
75 testing data series (25 for each of class) which did not participate in the generation of these
elementary rules. In this case the rules correctly classified 73 testing examples, i.e. the classification
correctness is about 97.3%.

Described procedure was repeated for the case of data series representation based on the 4-step
lower envelopes described by five nominal essential attributes. The minimal set of generated rules is

shown below.

IF (as=j) THEN (Class = 1)
IF (a;=j) THEN (Class = 2)
IF(as=gv ) v (a,=g) THEN (Class = 3)

In this case the above rules correctly classified all of the learning data series. For another 75
testing examples (25 of each of class) the rules correctly classified 74 data series, what comprises

classification correctness of 98.7 %.

Case 2: Data series described by nominal transformed attributes {a,(n)}/2°, for n=1,2,...,75.

Again, each data series of length 60 was reduced to length 10. All calculations were made for
both data series representation related to the upper and the lower envelopes.

The minimal set of rules for data series representation based on the 4-step upper envelopes
described by ten nominal transformed attributes was obtained and is shown below.

IF(as=g) v (a3=i) v (a;p=j) THEN (Class =1)
IF (a;=bv ¢ v d) THEN (Class =2)
IF (a;=ev fv gv i) THEN (Class =3)

These rules correctly classified all of the learning data series represented by nominal attributes of
to Class I, Class 2 and Class 3. Then the generated rules were verified using another 75 testing data
series (25 for each of class). In this case the rules correctly classified 74 testing examples, i.e. the
classification correctness is about 98.7%.

The minimal set of rules for data series representation based on the 4-step lower envelopes
described by ten nominal transformed attributes was obtained and is shown below.

IF (ay=hv iv j) THEN (Class =1)
IF (ay=cv bv ¢) THEN (Class =2)
IF (as=dV ev fv g) THEN (Class =3)

Then, the rules were verified using another 75 testing data series (25 for each of class), and in this
case the rules correctly classified 75 testing examples, i.e. the classification correctness is 100%.

A summary of results obtained for considered classification problems for learning data are
shown in Table 7, where the error rate is the ratio of the number of misclassified data series to the

total number of data.

Table 7
The results of classification.
Size of the Classification accuracy The error rate
Method . .
compressed data for learning data for testing data
SEAA based on 4-step upper envelopes 5 100% 0.027
10 100% 0.013
SEAA based on 4-step lower envelopes 5 100% 0.013
10 100% 0.000
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The error rates for testing data divided into classes is shown in Table 8, where the error rates are
defined as previously.

Table 8
The error rate for testing data divided into classes.
Method Size of the Error rate for
compressed data Class 1 Class 2 Class 3
SEAA based on 4-step upper envelopes 5 4 0 0.08
10 0 0 0.04
SEAA based on 4-step lower envelopes 5 0 0 0.04
10 0 0 0.00

5.2. Clustering problem

Practical verification of the proposed approach was carried out also by performing clustering
problem of series described by ten nominal transformed attributes {a;(n)}7;°, for n=1,2,...,75.
The aim is to portion out the set of the considered data series into three, non-empty, disjoint clusters
{88285 ), containing all the considered data series, and compare the results with known objects
affiliation to classes. It must be emphasized that the affiliation of the grouped data series was not

used at all during the clustering process.
The process of clustering of the considered data series was performed according to the clustering

algorithm for the nominal attributes which is shortly described in Appendix B. The algorithm
belongs to a family of hierarchical clustering algorithms. The clusters descriptions are denoted
by G, ,G,,.G, . Each group g can berepresented by an ordered collection of values of ten

nominal attributes [a;,a;,... a1, i-€., Gy =< A (s Agyagyr o Ak k) > Where A c{a b, ¢,
doe f gh ij}, for j=1,2,...,10. The details can be found in paper by Krawczak and Szkatuta
(in preparation). The applied procedure for the data series described by the upper and lower
envelopes is described below.

Case 3: The data series described by nominal transformed attributes {a; (n)}ﬁ{" ,n=1,2,...,75.

Again all data series of length 60 was reduced to length 10. Calculations were made for two

data series representation related to the upper and the lower envelopes.
Data series representation based on the 4-step upper envelopes specified by 10 nominal

attributes were grouped into three clusters{g,,£,.8,}, and the clusters descriptions G, ,G, .G,

are presented in Table 9.

Table 9

The clusters descriptions for data series representation based on the 4-step upper envelopes.

Description a b y a, as a, a, dg ay g
G, g h cde ghi fgh eof efg iJ ghi fgh ij
Gy, hij cdef defg bed g hi def bod ghi be f
G, ghi bode ghi de fg defgh effgh hi cdefg fagh

The cluster g, is represented by G, =<{g v h},{cvd ve}, ..,{iv j}>, while the cluster g,
is represented by G, =<{hviv jl{cvdvev f}, ..{f}>, and the cluster g, by
G, =<{gvhvil,{bvevdve}, ..,{fvgvh}>. The results of clustering shows that all 75

&
objects were properly grouped according to-the objects affiliation during the clustering process, so

the clustering efficiency of the nominal attributes data series representation is 100%.
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Similarly, data series representation based on the 4-step lower envelopes specification by 10
nominal attributes were grouped into three clusters{g,,g,.8,}. and the clusters descriptions

G, .G, .G, areshown in Table 10.
) &1 &3

¥:£lcel:s(:ers descriptions for data series representation based on the 4-step lower envelopes.

Description a, a, a, a, ag a, a, a, a, 1y
G,.-. def fge bedfe hij ef fde igh edf i h hi
ng efegh def h f bac cegh hg d c ghi dce cde
G, 4 ef dghe egh defg fde g feg efgh hfg fg

In this case, the cluster g, is represented by G, =<{d,e,f}.{f.8.e},{b,c.d. f,e},...{hi} >,
while the cluster g, is represented by G, =<{e.f.g.h}, {d,e f},...{c,d,e} >, and the cluster g,
by G, =<{d.e,f},{d.g.he},..{f 8} >

It is interesting that these three descriptions G, , G, , G, shown in Table 10 can be uniquely
distinguished only by only one attribute a, or a,,. In Fig. 18 in the space of two attributes a, and

a, the data series are marked by shading rhombs.

a8 G,,

J Gx;
. .

i ¢ —

h + —— +

g . 2 L 2 *—— —4 —G

f —— -

e — * .

d ————

c

b

a

: — . " ——r — —— a4

a b c d e f g h i i

Fig. 18. Three obtained clusters in the space of two attributes a, and a;

It is worth to nofice that again the clustering results are perfect and all objects were grouped
according to their affiliation, it means the clustering efficiency of the nominal attributes data series
representation is 100%. A summary of results for considered clustering problems are shown
in Table 10.

Table 10
The results of clustering.
Methods Size of the Size of the alphabet | The error rate
compressed data
SEAA based on 4-step upper envelopes 10 10 0
SEAA based on 4-step lower envelopes 10 10
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5.3. Comparative analysis with other method

As it was reported at the beginning of the paper there are many representation techniques that allow
us to reduce dimensionality of data series. Simultaneously, little attention has been paid to symbolic
representation of data series. It is assumed that different data series representations are introduced in
order to reduce their dimension. It seems that combining different technics will give promising
results. .

One of the most competitive methods in the literature for reducing time series dimensionality
with introduced symbolic representation is the symbolic aggregate approximation (SAX). In general
this method consists of two main parts, in the first part a time series is approximated by piecewise
aggregate approximation (PAA) based on based on piecewise constant approximation (PCA), while
in the second part such time series representation is converted into a sequence of symbols, the
sequence corresponds to the original time series. SAX method gives reduction of dimensionality not
only in the first part but also encoding symbols in bits.

Our introduced method called symbolic essential attributes approximation (SEAA) differs
considerably from other methods known from the literature, however it is possible to find partial
similarities to SAX method. We can say that that SAX consists of two parts, while SEAA of three
parts, and it can be said that the first and third part of SEAA are similar to the first and second part

of SAX, respectively, see Fig. | and Fig. 19.

Data = PAA - piecewise = | Nominalization
series aggregate approximarion

Fig. 19. The approach scheme of SAX - symbolic aggregare approximation

Within the first part we generate aggregated envelopes (upper or lower) which are based on
piecewise constant approximation obtained for the topmost points, for the upper envelopes, or the
lowest points, for the lower envelopes. In some sense envelopes bound the original data series, i.e.
the upper envelope from up while the fower envelope from bottom. Such approximations accent
changes of the considered original data series. Thus this part of SEAA has some similarities to SAX
first part, and in SEAA we can also use different piecewise constant approximation, and it is
difficult to say which approximation is better — much depends of particular problem. Therefore,
within the first part, both methods are comparable.

In the second part of our approach we generate a set of nominal or symbolic essential attributes,
and a chosen permutation of these attributes is kept on. The essential attributes are synthetic and
there is no physical interpretation of them but they retain important features of the original data
series. In this part further reduction of dimensionality is obtained, and there is not any it has not any
counterpart in SAX methodology.

In the third part of SEAA methodology discretization of real value essential attributes are
transmuted into symbolic form — in same sense similar as in the second part of SAX approach. In
result we can observe certain similarities between these two methods, namely both data series
representation have a form of a word over a fixed alphabet.

In SAX, the order of symbols is important and forms a word; a kind of time series. Meanwhile
in SEAA, the order of essential attributes in unimportant, but for a fixed permutation a data series
representation also constitute a word form. Additionally, in SAX the sequence of symbols is much
longer than the value of cardinal number of a set of essential attributes. Similarly, our symbolic
value essential attributes can be also encoded in bits giving additional compression rate.

This way we obtain a better compression of ESAA data series representation than SAX can.
Therefore the proposed SEAA method is original, little similar to others and only validation
procedure can show its efficiency.

A comparison between SEAA and SAX approach for used Synthetic Control Data can
be performed for e.g. classification and clustering problems. Results of the calculation for the SAX
method are taken from the paper by Lin J., Keogh E., Wei L., Lonardi S. (2007). The error rate
was the ratio of the number of misclassified data and the total number of data. SAX obtained
an error rate for classification problem of 0.02 for size of the compressed data equal 16 and size
of the alphabet equal 10. In the case of application of SEAA approach, for size of the compressed
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data equal 5 or [0 and size of the alphabet equal 10, we obtained very similar results
for classification as well as for clustering data series, but SEAA due to three level of compression
generates gives much greater data compression ratio.

6. Conclusions

In this paper we introduced an approach to reduce dimensions of data series. Our approach differs
from algorithms known in the literature. The concept is based on the upper and lower envelopes and
their aggregation, and then on essential attributes of the aggregated envelopes. Both representations,
related to upper or lower envelopes, allow to obtain high reducing of dimensionality of the original
data series. Next, the real values of the transformed essential attributes of data series were converted
into nominal values.

A computer experiment was performed for classification and clustering problems. A numerical
example shows that even after a very large reduction of dimensionality (as well as reduction of
information), the new representation marvelous preserves information about the data series
characteristics. Additionally, introducing essential attributes as a set gives possibilities to better
compression of data series than in known approaches.

It seems that SEAA method can be elaborated in the future, namely instead of aggregated
envelopes any different data series approximations known in literature can be used as inputs of the
auto-regressive neural network to generate essential attributes. In general the idea of generating
essential attributes as a set of features representing data mining should be explored more deeply.

Appendix A

Extraction of decision rules for classification problem.

In this appendix we present some elements of the inductive learning method used in Section 5.1 to
derive the minimal set of elementary rules. Details of the applied approach can be found in papers
by Szkatuta (1995, 2002), Kacprzyk and Szkatuta (1999, 2002, 2005a, 2005b, 2010), Szkatuta and
Kacprzyk (2005). Therefore, we will recall only such elements of the approach which are necessary
to facilitate further considerations.

Let us consider a finite set of examples ¢, €U, ne {1,2,..,N}. In the case considered in the
paper an example is described by K nominal attributes A ={a,,..,a,} which are referred to as
conditional attributes. The examples are described in the form of K elementary conditions in the
following manner:

L¢
e = nla;=f(e,.a)

the set V, ={v,,, Viaren Vi, } is the domain of attribute

and v, eV, ;

s
a;

where f(e,,
. J=L,..,K, L; denotes the number of the values of the j-th attribute, f:UxA—V is a function

a;)eV, . The function f(e,.a;)=v,,,,, states that the

)=V

a.
J
such that Ve, elU, VagA, f(e
attribute @; takes value v; . for the example e,. The index 1(j,n) for je({L2,..,K} and
ne {l,2,...,N} specifies which value of the j-th attribute occurs in the n-th example.

The conjunction of ! elementary conditions, /<K, is written down as: (\I:j=C' where
Je

ne

s;={a;=v;,;m)» Sl K}, card(I)=1. We say that the conjunction C' covers an example e,

if Vje ! the condition f(C',al.)zf(e,,,al.) is satisfied. The ‘set of ali the examples described

by the conjunction €' is denoted [C'].
. Suppose that we have additional attribute «,, called the decision attribute, where {a,}NA=Q

and V, ={v,,, V3V, } is the domain of the attribute @, . We can perform the partition of the
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entire set of examples into the disjoint classes with respect to the values taken by this attribute. We
assume that the number and character of attributes are sufficient for the correct split of examples
belonging to different classes. The decision attribute splits the set of examples into the non-empty,
disjoint and exhaustive subsets that we call decision classes. An example ec U for which the
condition f(e,a,)=v,, issatisfied, is called positive, while others negative, for the class U, ,

Vv, €V,,. The sets of the learning examples determined in this manner along with their division

into classes, are the starting point in the process of machine learning, which is supposed to lead to
the descriptions of the classes considered. In this paper classes are described in the form of rules.
In our case, the conditional part of the rules will contain the conjunction of conditions related to the
subset of nominal attributes. We say that a rule is consistent, if it distinguishes the positive
examples from the negative ones. We say that a rule is minimal if the removal of any condition from
the conditional part of the rule would result in a failure to fulfill the consistency condition.

Animplication R,: IF C"* THEN (a, =v,,), is called the k-the elementary rule for class v,,.

L _ . _ . . . .
where C* —,-e/)k(aj =V, ) is description of example in terms of condition attributes a;, je I,,

I, cfl..., K} and this example belongs to class U, . The index 1(j,4) specifies which value of the

Jj-th attribute is used in the k-th rule. The rules, mentioned above, can be formed by applying various
algorithms of machine leamning. An algorithm used in Section 5.1 can be formulated as follows.

Step 1. Initialize: &7 := all the positive examples for class v, U™ := all the negative examples
forclass U, . the initial set of elementary rules R; (U, ) is assumed empty, iteration
i=0.

Step 2. Iteration { = i + 1. We form a modification of the i-th set covering problem on the basis
of set examples U” and U” . The solution to the i-th set covering problem, provided by
the algorithm, determines, in a unique way, the conjunction of conditions forming the
elementary rule R, .

Step 3. Include R, into the set of rules R, (U,), ie. R, (U, ):=R, (U, )V R, . Eliminate from

the set of examples U” all the examples covered by the rule R, .
Step 4. If the set of remaining examples U’ is empty, STOP; otherwise, return to Step 2.

In our case, the conditional part of the created rules contains the conjunction of conditions
related to the subset of the essential attributes or transformed essential attributes. The rules formed
in this manner can be applied to classification of new examples, the ones that have not appeared

in the learning process.

Appendix B
Algorithm description for clustering problem.

We consider the problem of clustering the data set described by symbolic attributes. Here we
consider the problem of clustering of a set of examples U into non-empty, C disjoints sets

C
{g,8;8c), where Ug, =U and g,Ng, =@, for pge{l,...C}, p=#gq.Itis required that
i=l

the examples in each cluster are in some sense ‘similar’, and the examples from different clusters
should be ‘dissimilar’. The proposed algorithm belongs to a family of hierarchical clustering
algorithms. In this method, clusters are built by combining existing clusters, based on their distance
(or any other used measure of proximity). The clustering stops when exactly a fixed number of
clusters are found. It is assumed that each example must belong to only one cluster. We start with
Nexamples as individual clusters and a pair of clusters described by the lowest value of the
clusters’ increasing measure is coupled forming a new cluster, and in this way the number of
clusters is decreased by one. The details of the measure utilized can be found in paper by Krawczak
and Szkatuta (in preparation). Therefore, we will limit the analysis only to these elements of the
approach which are necessary to facilitate further considerations.
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Let us suppose now that we have a finite set of examples U = { e, }, indexed by n, n=12,....N
The examples are described by K nominal attributes A4 ={a,.,a,} indexed by j. The set
v, —(v“,v“,...,v“ } is the domain of the attributea,e A, L denotes the number of nominal
values of the attribute a;, L;22, j=L..,K.Eachexample ¢, & U is represented by a K-tuple of
sets (i.e. K ordered sets of nominal values) in the following manner
< b Wargen b oo (Ve ke, 1> where vl..,(,..[”)evn; and j=1,..,K. This notation states that
the attribute «@; takes the value v, ., for the example ¢,. The index (i) for je{L2,.., K]}
and n€ {L,2,...,N} specifies which value of the attribute a, is used in the n-th example.

Every non empty group g , g CU, can be represented by an ordered collection of X - sets
of values of the attributes describing examples, G, =< A 0 Qs Ay > Where

AM”)CV ., card(A;,; )21 for jell..,K}. For instance, for three symbolic attributes
{a.a,,a;} and having domains V, ={a, b, c}, V, ={d e}, V, ={f h n}, wecan describe an

exemplary group g as <{a,c}, {d}, {f n)> or <{a},{d}, {n}>
Let us consider two clusters g, CU and g, CU . Measure ofincreasing GA,(‘ by G, (denoted

by MI( G‘,r =G, )) is defined in the following manner:

1 &eard(A;, ;0 NA G, )) card(V, M A D A i)
MKG, G, )= — :
. ’ K

= card(V, )~ card(v, )

The measure of increasing is assumed to return a value from [0, 1], where 1 is interpreted as
most level for increase, while G is the lowest level for increase. The measure is asymmetrical, so this
measure should not be considered as the distance between the groups, but the diversity, assuming

that one group is a group of the base.
The proposed algorithm is formulated as follows:

Step 1. Each of N example creates one-element cluster in the initial set of clusters G(U),
card(GU) =N, ie. GU)={G,.G,, ....G,, ). iteration k = 0.

Step 2. Iteration k = k + L. Create a matrix MM/ of measures of increasing of the cluster,
MMI: card(GU)) % card(G(U)), where MMI[p,q) := MI(G, + G, ),
p=L2,...card(CV)), g=12,.,card(ClV)), p#q.

Step 3. Find two clusters G, and G, that minimize following criterion:
MI( G"w ) GK"' ) :== min MI(G;:,, - G.k,” ).

Ype(l.2...camd(CLU )}
Yge(1.2.....card(CLt/ )}
pEq
Step 4. Create a new cluster in the set of clusters C(U), G, . =G, ®G, .Theclusters G,
and Gk,"_ are removed from the set G(U). Thus, card(G(U)):=card(G(U))-1.
Step 5. If the required number card(G(U))=C is reached, STOP; otherwise, return to Step 2 and

modify the matrix MM/,
The modification of MMI[p,q] relies on removing of the p*-th and g*-th rows as well as the
p*-th and g*-th columns and at the end adding a new row and column. The new row and

new column are related to the new cluster G, . . The measures MI( G” > Gk,v) for
farg Pt i

J=L.,card(C(U))—1and MI( Gx, = GA',--.,- ) for i=1,...,card(G(U))—1 are counted.

In this way, the disjoint set of clusters G(U)={G~.’Gg1"-"Gur)' where card(G(U)) - states

required number of clusters, is formed.
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