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Abstract 

An approach for reduction of dimension of data series 

Maciej Krawczak and Grażyna Szkatuła 

Systems Researc/z Institute, Polis/z Acade111y of Scie11ces, Newelska 6, Warsaw, Poland 
e-111ail: {krawczak, szkat11/g}@ibspa11. wa w.pl 

Many methods of reducing dimensionality of data series have been introduced over the past decades. Same 
of the methods introduce a symbol ie representation form of the ·original data series, but obtained 
dirnensionality reduction is not significant. In this paper, we introduce a new approach SEAA to reduce 
dimensionality of multidimensional data series. The approach creates a nominał (symbolic) representation 
of the original data series and considerably reduces their dimensionality. The approach consists of severa! 
steps, and cach step gives a new data series representation as well as dimension reduction. The approach 
is based on the concept of data series envelopes and principal components-like - called here 'essential 
attributes' - generated by a multilayer neural network. The essential attributes are represented by outputs 
of hidden layer neurons. N ext the real values essential attributes are nominalized, and in this way nominał 
data series representation is obtained. It musi emphasized thai by a data series we mean a time series 
or pseudo-time series while SEAA generates a set of nominał values of attributes which describe the 
compressed representation of original data series, and a ·fixed permutation of nominał attributes should 
be considered. The nominał · attributes are synthetic, and there is not any physical interpretation of them, but 
they stili retain important features of the original data series. Experimental validation of the proposed 
dimension reduction was carried out for classification and clustering tasks. The calculations have shown that 
even deployment of large reduction of dimensionality causes the new representations to preserve information 
about the data series characteristics and retain information sufficient to their proper classification and 
clustering. 

Keywords: Data series; Nominał attributes; Dimension reduction; Envelopes; Essential attributes 

1. Introduction 

The term "data series" is often used to refer to any data set with one, independent time variable. 
Data series arise in many areas, such as medicine, finance, industry, climate etc., and the generated 
data must be registered, stored, transmitted, and then analysed. The majority of data series research 
focuses on the following problems: 

• indexing (e.g. Keogh, Chakrabarti and Pazzani, 2001), 
• clustering (e.g. Keogh and Pazzani, 2001; Wu and Chang, 2004; Krawczak and Szkatuła, 

2010c, 2011), 
• classification (e.g. Nanopoulos, Alcock, Manolopoulos, 2001; Krawczak and Szkatuła, 2010a, 

b, 2011), Wang (2010), 
• summarization (e.g. Lin, Keogh, Patel and Lonardi, 2002), and 
• anomaly detection (e.g. Shahabi, Tian and Zhao, 2000). 



Due to a huge amount of data, different kinds of data series representations were developed. 
In the literature one can find specialized algorithms dealing with such problems, including decision 
trees (Rodriguez and Alonso, 2004 ), neural networks (Nanopoulos, Alcock and Manolopoulos, 
2001), bayesian classifiers (Wu and Chang, 2004), etc. Some representations are generał enough to 
be used in the mentioned problems, and some are rather specialized, meant for prescribed 
applications. It is worth to mention thai there is an increasing interes! in data series mining, e.g. Xi, 
Keogh, Shelton, Wei, Ratanamahatana, 2006. It is said thai time series or data series mining is 
considered as one of the tenth challenging problems in data mining (Yang and Wu, 2006; Fu, 2011). 

There are some problems in treatment of high dimension data, including the curse 
of dimensionality and the meaningfulness of the similarity measure in high dimension space. 
For any point in a high dimensional space, the expected gap between the Euclidean distance to the 
closest neighbor and to the farthest point decreases while the dimensionality grows. This 
phenomenon may cause many data mining tasks to render ineffective and fragile (Beyer et al., 
1999). Also, the data mining methods require high computational cost applying very large data sets. 
This obstacle is sometimes known as the "curse of dimensionality" (Elder and Pregibon, 1996). 

In most of the above data series· mining problems, there is a necessity of reducing 
dimensionalities and forming new data series representations. It is required thai the new 
representation preserve sufficient information for solving above data series problem with 
satisfactory accuracy. Reducing dimensionality (either the number of data point or the number 
of records), can effectively cut this computational cost. 

Therefore, the reduction of the original series' dimensionality is crucial because dimensionality 
reduction decreases the cost, increases the performance, or reduces redundant dimensions. 
Reduction of dimensions can be divided into major problems: attribute selection, a/tribute 
extraction and record selection. The process of extracting the most important attributes or formation 
of the new attributes based on the original set reduces the dimensionality of the data. Also, some 
records or examples may better support the learning process of data mining than others (Maimon 
and Rokach, 2010). Note chat lossy compression methods can always achieve higher compression 
rates but involve a trade-off between compression rate and error, and the goal is to achieve the best 
ratio between compression rate and error. 

There are many approaches to dimensionality reduction and similarity searches of data series 
in large databases (Tak-chung Fu, 2011). A data series of arbitrary length M can be reduced to 
another representation of data series of length K, K <M. The simplest method is sampling (Astrom, 
1969) in which a rate of Ml K is used. The method, · however, does not retain the shape of 
compressed time series if the sampling rate is too low. 

Piecewise approximation methods divide the data series inio segments and approximate each 
segment using some functions. An enhanced method is to use the average value of each segment 
to represent the data point in the new, compressed representation. One of these methods is based on 
piecewise constant approximation (PCA), also known as piecewise aggregate approximation 
(PAA). In their papers, (Yi and Faloutsos, 2000) and (Keogh et al., 2000) proposed to divide each 
data-series into segments of equal length and to use the average value of each segment to represent 
the latter PAA. Keogh at. al. (2000, 2001) ha ve also proposed an extended version called an 
adaptive piecewise constant approximation (APCA), where the segments length is not fixed. Instead 
of using the average value to represent each segment, ocher methods are proposed, e.g. Lee at al. 
(2003) proposed to use the segmented sum of variation (SSV) to present each segment, while 
Ratanamahatana at al. (2005) and Bagnall at al. (2006) proposed a bit level approximation. 

There are ocher methods to approximate a time series by straight lines; for example, by lineai­
interpolation (Keogh, 1997), (Keogh and Smyth, 1997), (Smyth and Keogh, 1997), or linem· 
regression (Shatkay and Zdonik, 1996). 

Furthermore, preserving the salient points seems to be a promising method, such perceptually 
important points (PIP) were first introduced by Chung et. al. (2001). 

The idea of upper and lower envelopes of data series was introduced by Krawczak and Szkatuła 
(2010a, 2010b) and is worth to be considered and used. 

Representing data series in the transformation domain is another approach. One of the popular 
transformation techniques is the discrete Fourier transforms (DFT) (Faloutsos, Ranganathan and 

2 



1 

i 

Manolopulos, 1994) and the discrete wavelet transform (DWT) (Chan and Fu, 1999). Principal 
component analysis (PCA) is a popular multivariate technique using statistical methods (Yang and 
Shahabi, 2005), (Yoon et al., 2005). Another methods use hidden Markov models (HMMs), 
(Azzouzi and Nabney, 1998). Many of the approaches use different indexing method. 

One important feature of all the above approaches is that they operate on real values. 
Another common family of approaches converts the numerical time series to symbolic form. 
The simplest method is discretizing the time series into segments and converting into a symbol 
(Yang and Zhao, 1998; Yang et. al., 1999). Also a symbolic PAA technique called symbolic 
aggregate approximation (SAX) was introduced by Lin, Keogh and Lonardi (2007). They convert 
the result from PAA to symbol string. Two parameters must be specified for the conversion: 
the length of subsequence and alphabet of symbols used. SAX preserves the generał shape of the 
original time series. 

In this paper, we propose a new approach: SEAA - symbolic essential auributes approximation 
for graduał reduction of dimension of multidimensional data series. Our approach allows a data 
series of arbitrary length M to be reduced to arbitrary length K, where K << M . For symbolic 

representation of data series, we use alphabet of finite size, R >=3. Our approach differs from other 
methods known in the literature. In generał, these methods give compressed representation of data 
series which preserve the time order of the original data series, while in our case we obtain a set 
of nominał values which preserves characteristics of the original data series and only a fixed 
permutation of the attributes can be considered. 

The attributes are synthetic and there is no physical interpretation of them, but they stili hold the 
most important features of the original data series. Although the approach does not preserve the 
generał shape of the original time series, it contains enough information for their proper 
classification and clustering. The proposed methodology consists of severa! steps in which 
considerably dimensionality reduction is performed. Compression ratio at each step is determined 
in an experimental way and depends on the considered data. 

The remaining part of this paper is organized as follows: Section 2 presents the clarification of 
the proposed approach, in Section 3 we present description of the methodology and the data series 
dimension reduction is described in details.- Practical presentation of the proposed approach was 
carried out for the database avai!able at the !rvine University of Califomia in Section 4. Using the 
attributes with nominał values as aggregated data series representation verification of the proposed 
approach was carried out for two data series mining problems, namely classification and clustering. 
We consider classification and clustering problem, because they are among of the most common 
data mining problems. We have made calculations on compressed data in order to determine 
whether they contain enough information to their proper classification and clustering. In Section 5 
there are examples which show the efficiency of the proposed methodology. In Appendix A, the 
basie elements of the used extraction of decision rules are presented. We used the method of 
creating the minimal set of rules successively for each class developed by - Szkatuła (1995, 2002), 
Kacprzyk and Szkatuła (1999, 2002, 2005a, 2005b, 2010). Appendix B gives basie elements of the 
adopted algorithm applied for clustering (Krawczak and Szkatuła, in preparation). 

2. Clarification of the approach 

Our work is moti vated by the observation that using combination of severa! methods for data series 
dimensionality reduction is more universal than using a single method. It seems that instead of 
using one method with a large loss of information, it is much more efficient to compress severa! 
methods in which information is reduced gradually with partia! little loss of information. 

Our approach allows a data series of arbitrary length M to be reduced to another representation 
of data series of length K, where K <<M. We propose a new approach which changes the real 

values data series representation into a new nominał representation of data series. During this 
representation changes there is significant reduction of data series dimensionalities. The propose 
methodology consists of severa! steps, during which dimensionality reduction is obtained and 
compression ratio at each step is determined. It must emphasized that the data series is a time series 
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or pseudo-time series while SEAA generates a set of nominał value attributes arranged according to 
one fixed permutation of attributes for all considered objects. 

The developed methodology is shown in Fig. I. 

Data 
series • 

EAA - e11velopes 
aggregate 

approximation 
• 

Essentials 
al/ributes 

generation 

• Nominalization 

Fig. 1. The approach scheme of SEAA - symbol ie esse11tial allributes approxi111atio11 

Before starting the dimension reduction of the data series, pretreatment of data should be 
performed and each series should be normalized to have mean equal zero and standard deviation 
equal one. Let us denote the original data series of arbitrary length M and indexed by n by the 
following vector form [x, (n), x, (11), ... , xM (11)]. 11 =I, ... , N . Concept of each step of SEAA 

methodology is briefly described below. 

2.1 . Envelopes aggregate approximation 

First, we introduce a piecewise approach for representing a data series, introduced by Krawczak and 
Szkatuła (2010a, 2010b). Following the idea borrowed from the signal processing theory 
we developed piecewise constant upper and !ower approximation of data series. We applied the 
piecewise constant functions, also called step functions, with equal length of steps. The length 
of steps is denoted as m-step, meaning that m succeeding samples of data series constitute one step. 
Upper and/or !ower approximation are developed, and then aggregated. The parameter III describes 
the rank of time series dimension reduction. It means for a given data series of the length M we 

obtain the reduced lengthlM j, where m<<M . 
111 

Selection of the proper values of them parameter is of crucial importance because this value has 
strong influence on quality of time series representations. Them parameter should be adjusted in an 
experimental way. It is required that the dimension reduction of data needs to be rational in the 
following sense: from one point of view the value of m should be as large as possible then the 
dimension reduction is significant, but at the same time increasing value of m causes losing 
of information involved in data series. The problem of adjusting the value of the parameter m seems 
to be no trivial at all, and much experimental investigation should be performed. 

The aggregated envelopes give a first new data series representation thereby the first reduction 

of dimensionality as the following vector[y, (11), y, (11), ... , y [~(n)], n=!, ... , N . 

2.2. Essential attributes generation 

In the next step, we extract features of the considered data series in order to obtain the further 
dimension reduction. It is assumed that a feature is an identified variable which efficiently captures 
the information involved in the aggregated envelopes, and by implication involved in the original 
data series. The idea of using features is motivated by common belief that description of each 
multidimensional data series may be redundant. There are several features such as Lyapunov 
exponents, ARMA models, wavelet transform, correlatio11 dimension, statistical moments or 
principal components ana lysis for data series analysis, e.g. (Oja, I 992), (Guyon, Gunn, Nikravesh, 
Zadeh, 2005). Here, in our approach we will exploit Cybenko's theorem (Cybenko, 1989) as well 
as nonlinear principle component analysis and auto-associative neural networks. Cybenko's 
theorem states about a function approximation, while nonlinear principle component analysis 

deterrnines mapping from l!:!_J-dimensional space of aggregated envelopes to E-dimensional space 
m 

of components. A three layer auto-associati ve neural network can perform an identity mapping, 
where the network outputs are enforced to equal the network inputs with same accuracy, and the 
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features are represented by outputs of the second hidden layer neurons. Here we will name the 
features as essential attributes, and the assumed neural network architecture requires that the 
number of second hidden layer neurons is remarkable smaller than the dimension of aggregated 

envelopes, i.e. E << l M j. Under such assumption , an auto-associative neural network works as 
/Il 

a devise for data compression and decompression, but here we put our attention to the first 
functionality of the network - in compression - to obtain the essential attributes, while 
decompression part is necessary to adjust neural network weights to keep good quality 
of compression/decompression. 

We used multilayer feedforward neural networks to reconstruct the input data by the network 
output. To perform this task efficiently, such neural networks learn interrelationships among the 
input variables. When the network is trained successfully, a small number of "hidden neurons" 
is sufficient to reconstruct the input values as the network outputs. This way the data are 
compressed to a form represented by data of (ower dimensions. The outputs of the hidden layer 

neurons constitute the essential attributes and the number of them E is adjusted, where E<<l M j. 
/Il 

Selection of the proper values of the number of generated essential attributes E is of crucial 
importance because their values have strong influence on quality of data series representations. 
The problem of choosing the value of E (i.e. number of essential attributes) must be overcome 
in some experimental way shown in Section 4.2. It should be emphasized that original data as well 
as the aggregated envelopes data representation have a form of series of time, and the order 
of samples is natura! and of crucial importance. Meanwhile the essential attributes generated by the 
designed neural network have a set form where the order of elements is meaningless. However the 
essential attributes for all data must be generated for one chosen permutation of elements of the set 
of the essential attributes. This way we obtained another representation of the original data series, 
and the length E of the new representation indicates additional dimension reduction of data series 
representation. Now the data series representation described by the essential attributes has a set 

forrn {b, (n),b, (11), ... ,bE(11)} 11 = 1, ... , N. 
The essential attributes can be used directly or can be modified, or on the base of the essential 

attributes it is possible to generale a new set of attributes. The main reason to generale the new 
attributes is to express hidden relationships between individual attributes. These new attributes can 
be obtained in various ways, generally it is said that the new attributes are some functions of the 
original ones (Matheus, Rendell, 1989), (Wnek, Michalski, 1994). Often there are used functions 
like maximum value, minimum value, average value, etc. or some arithmetic operators including: 
+, -, * and integer di vision, and so on. 

In our approach, the new attributes are calculated as rearrangements of differences of the original 
essential attributes. This way we slightly enlarge dimensionality of the data series representation, 
but in the same time we provided, in some sense, the distances between the essential attributes, 
which may be particularly important in the task of clustering. The new set of attributes is denoted 

as{c1 (n),c,(n), ... ,cx(11)). 11=!, ... ,N, where the number of new attributes Kis adjusted, K 2: E. 

2.3. Attributes 11omi11alizatio11 

The data mining methods often involve nuineric data (either discrete or continuous). However, there 
exist many methods that are designed for data which attributes can have only a small number of 
possible values (nominał or ordinal). Even for algorithms that can directly deal with numeric data, 
learning is often less efficient and less effective, therefore nominalization is recommended. 

Also, in many applications, the Euclidean distance does not behave properly in measuring the 
similarities between data series, especially when shifts on the time axis appear. After the data series 
has been transforrned inio a symbolic representation, we can treat each time series as a string and 
apply similarity measures in the string domain; these measures usually do not have the limitations 
of Eucl idean distance. 

lt is worth to mention that the essential attributes generated by an auto-associative neural 
network are represented as real values and each such a value requires e.g. 32 bits to be stored 
or compute. Meanwhile, symbol ie representation of data gives additional dimension reduction 
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of data representation. For instance, let the range of values of each attribute is divided into 8 parts 
then only 3 bits (instead of 32) are sufficient for storing information about a symbolic value of an 
attribute. Such data representation measured in bits is very important in data transmission. 

Nominalization as a process of conversion of numeric data into sequential symbolic data plays 
an important role in data mining and knowledge discovery. lt relies on dividing the real value range 
of attributes into a number of intervals, and next to assign nominał codes to each interval. There are 
some well known groups of methods used for nominalization (Maimon, Rokach, 2010), 
for example: division of equal width intervals and equal frequency intervals method, 
the discretization based on statistical tests, entropy based discretization and methods with applying 
the dynamie programming. All these methods can be treated as heuristic for discretization of data, 
and experiments show that n one of them is significantly better than others, and the choice of method 
depends heavily on. data considered and type of considered problem. lt is unrealistic to pursue 
a universally optima! nominalization approach. 

Note that in our approach there is no physical interpretation of the essential attributes and 
transformed essential attributes, they take values from some set of real numbers, and implicit 
relationships between essential attributes are very important. So, the nominalization of a set 
of values for all attributes should be considered at the same time but not individually. The symbolic 
replacement is done in such a way that the common range of the all attributes is divided into some 
sub-ranges; it means that the division is the same for each attribute thus each nominał value has the 
same interpretation for each attribute. We propose to use a particular and simple method called 
equal width interval discretization. Choose another method of discretization requires further study 
and remains an open question. It seems that such nominalization should express implicit 
relationships between individual attributes. 

Thus, real va lues of the attributes are replaced by nominał values constituting the new data series 
representation{a1(11),a,(n), ... ,aK(11)}, n=l, ... ,N, 

In the next section each step of our approach of the data series dimension reduction SEAA 
is described in details . Will be. discussed the concept of envelopes, extracting essential attributes, 
and nominalization of the attributes. 

3. Description of methodology 

3.1. Envelopes aggregate approximation 

To reduce the data series of length M, each data series is divided inio equal sized intervals of length 
m. The maximum and minimum value of the data falling within each interval is calculated and these 
values become the data new representation. The representation can be visualized as an attempt to 
approximate the original data series with a linear approximation of intervals. The exemplary upper 
and ]ower approximation concept of an exemplary data series for 111 = 4 and M = 20 is visualized in 
Fig. 2 a). Next III succeeding equal values are treaied as a single value and such envelopes values 
from Fig. 2 a) are visualized in Fig. 2 b) as aggregated envelopes. 

a) 

p-r~7( if'C' h~, 
\f \. i \/\ .. i - '" I 

······ , .. -f •· ,1 \ . .. I 
\/ •- •- •- -._ •.. i 

~ ~ ... ... ·.. ! 

'...- ,~~~-- ~-c-:i ___ ,,,__.._ · .~~ :.,~i---.ł. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

• Data series • Upper envelope • Lower envelope 

b) 

~ -· 

. . "' .... ,,,. 
······· -- ·········································~-·-

· ~ · 

-I-Aggreg.1ted upper enve!ope -+-A8greg~led !ower e,mlope-

Fig. 2. a) The 4-step upper and !ower approximations, b) The aggregated 4-step envelopes. 
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This way, we obtained the new representation of the data series, the new representation 
is described by either upper or !ower envelopes, or by both kinds of the envelopes. Below we will 
discuss in details construction of envelopes. 

Let us consider the normalized data series described in the following way: 

{x,(11)}::~ =[x,(11),x,(n), ... ,xM(n)],11=1, 2, ... , N. (I) 

The so-called 111-step upper and 111-step !ower envelopes, m<<M , constitute a kind 

of approximations of (1). The 111-step upper approximation (upper envelope) of a data series (I) 

is denoted by {x( (11) tl-;; J"', and has the following form: 

x~ (11)= max(x, (n),x, (n), ... ,x_ (n)) 

x~(n)= max(x, (11),x, (11), ... ,x. (11)) 
x~., (11)= max{x_., (11),x •. , (11), ... ,x,. (n)) 

xv (n)= max{x (11),x (11), ... ,x (n)) 
2.. ... . ....! 2„ 

(2) 

xv (11)= max(x (11),x (11), ... ,x (11)) 
l~J-·•"' l~J-·••• l~J-·••' l~J-

xv (11)= max{x (11),x (11), .. . ,x (11)). 
l~J- l~J-·••' l~J-·••' l~J-

The envelopes (2) can be aggregated in the following way, for 111-step upper envelopes, i.e., 

kc11)}'.j-;} =[xr(11),x~(11), .. ,,xr;,-J"'(11)l 11=1,2, ... ,N' msucceeding equal values are treated 

as a single value. So, we can replace eachm sequential equal values of the envelope with a single 

value. The integer part of M divided by 111, i.e.,lM j, determines the number of data point in the 
111 

aggregated envelopes. The aggregated upper envelopes yield a new data series representations 
formally represented as follows 

{ }'·[-;;J_[ ] -y,(11) ,., - Y, (11),y,(11), ... ,yl;.-(ll) 'Il -I, 2, ... , N (3) 

In the case of generating the aggregate !ower envelopes, the procedure is similar but the 
maximum function is replaced by minimum function. The 111-step !ower approximations (!ower 

envelopes) of a data series (1) is denoted by {r,l(n)}::(-;,-J"' and can be aggregated, i.e., we can 

rep lace each 111 sequential equal va lues of the !ower envelope with a single value, and aggregated 

envelopes [y, (n), y2 (11), ... , y [-;; {11)], 11 =I, ... , N, were calculated, and the new representation 

of the data series with reduced dimensionalities. 
Due to introduction of the aggregated envelopes, the dimension of the original data series (1) can 

be significantly decreased; it means for a given data series (I) of the length M we obtain the reduced 

length lM j of (3), where m<<M . The aggregated envelopes (both upper and !ower) are denoted 
111 
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as follows[y, (n), yi(n), ... , y[~j (n)]. n=!, .. . , N . Dimension of aggregated envelopes is reduced 

"' 
m times and they gi ve another new data series representation thereby the first reduction 
of dimensionality. 

3.2. Generation of the essential attrib11res 

In this section we introduce another representation of data series (3), and at once (!). Each data 

series (3), for n= I, 2, ... , N, describes a point in a lM j-dimension space of real values. 
Ili 

In generał, we can expect that there is some redundancy of representation dimensionality (Jolliffe, 
2002), (Guyon, Gunn, Nikravesh, Zadeh, 2005), and these superfluities can be removed by 
application of multi-layer feed-forward neural networks (Dreyfus, 2005). There are known 
applications of auto-associative neural networks (a class of multi-layer feed-forward) . The new 
representation causes additional data compression especially in communication area. Application 
of auto-associative networks gives lossy compression, it means that lossy compressed data after 
decompression result similar data to the original, but not exactly the same. Lossy compression over 
lossless compression is capable of reducing data dimensionality much more. Therefore lossy 
compression is usually used for audio and image data, but in the current research we will use neural 
network for compression of data series represented by aggregated envelopes. 

Thus, we will use an auto-associative feed-forward neural network with three layers, and two 

hidden layers. The inputs are described by aggregated envelopes (3) of di mens i on l M j, while the 
Ili 

outputs are decompressed inputs (3), and are described as follows 

k-l M J {s,, (n)},:,-;;;- =[y, (n), .Y, (n), ... , .Yl~t')]. for n= I, 2, .. . ,N, (4) 

The aim of such a kind of neural network is to generate features, called here the essential 
attributes, represented by neurons outputs of the second hidden layer of dimension E, under the 

assumption that E << l M j. The proposed architecture of the neural network is shown in Fig. 3. 
. m 

; 

,' Y, 

Y, 

1' . ·"J \ ~ ·,;, 

' ... - - - - - - - - - - - _., 

.P, 

p . ! ,lfj 
l,,, 

Fig. 3. Neural network generating the essential attributes. 

The neural network for generating the essential attributes consists of the following parts: 

the input layer of dimension l M j, for m << M , where the inputs represent the aggregated 
/Il 

,-[~J 
envelopes (upper or !ower) {y, (11)} ,., "' = [y, (n), y2 (11), ... , y [-;; (1)), 11 = !, 2, ... , N , 
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the first hidden Iayer of l: j sigmoidal neurons, 

• the second hidden layer of E sigmoidal neurons, the outputs of this Iayer neurons generate 

signals {b; (n)J ;:~ = {b; (11),b; (n), ... ,b~ (n)) , n=!, 2, ... ,N, - denoted also by vertical 

arrows - which are used as the essential attributes, however in the subsequent text we will 
denote the essential attributes as follows 

{b, (n)J ;:r = !OOO{b; (n)) ;:r, n= I, 2, ... ,N, (5) 

because due to using sigmoidal activation function for neurons the second hidden neurons 
outputs are ranged between -I.O and + I.O. 

The above described three layers: input layer, first hidden layer and second hidden layer all 

together form a mapping of l~J inputs into E essential attributes, it means that this part of the 
/Il 

neural network maps each time series represented by an aggregated envelope into a set of essential 
attributes. 

the output Iayer of l~J sigmoidal neurons denoted by 
111 

{.h(n)}'.j-;.-L[j,, (n),j, 2(11), ... ,j,[-;,-t)], for 11=!, 2, .. . ,N. 

The whole neural network maps l M j input variables into l M j output variables, thus the 
/Il /Il 

network maps each input into itself. The entire network is necessary to determine weights 
of connections between neurons of adjacent Iayers. The weights are obtained during the training 
process supported by the backpropagation (with modifications) algorithm (Krawczak, 2OO3a; 
2003b). 

The following formula expresses the error generated by the network 

I J-;.-j - . , 
E, =-Z: L (y, (n)- y, (ll))-

2 11=! k=I 

(6) 

The error (6) is referred as mean square en-or (MSE) 

I N [-;,-j , 
MSE= Nl:J~~(y,(n)-y,(ll))- (6a) 

and just describes the efficiency of compression and decompression of aggregated envelopes data 
series approximation. 

In Fig. 3 the dashed part of the neural network is respons i ble for compression of data series, and 
in generał only this part is important in our approach of data series dimension reduction . There are 
known severa! measures of compression and decompression quality. The most generał term for 
compression measure is compression ratio defined as follows (Guyon, Gunn, Nikravesh, 
Zadeh,20O5) 

Compression ratio = Cr = Compressed Size 
Uncompressed Size 

(7) 

In our considered problem developing of the aggregated envelopes causes the ratio is equal to 

9 



NMT m 
(8) 

where by Twe denote number of bits necessary to save separate datum (e.g. 32 or 64 bits), while 
in the case of the essential attributes the exemplary compression ratio is following 

Crl!S.f.flltribllft 

NET E 
(9) 

There is also si mi lar measures e.g. Space Savi11gs = S, = I Compressed Size , or other 
Uncompressed Size 

compressing measures related to speed of data transferring, but there are strictly related to image 
or audio compressing schemes. However the quality of dimension reduction of data series wili 
be checked by solving illustrative examples in the subsequent part of the paper. 

It must be emphasized that the data series representation (I) and the aggregated envelopes 
representation (3) have a vector form for n= I, i, ... , N, meanwhile the essential attributes 

representation (5) is obtained a set of attributes. It means that order of the essential attributes does 
not have any meaning, and it is required to consider the same permutation of attributes for each data 

series which will be denoted in the following vector form{b; (11)};:t =[b, (11),b2 (11), ... ,bE(11)], 

n=l, 2, ... ,N. 
The procedure of generating the essential attributes was described in a generał way without 

distinguished whether there are considered upper or !ower aggregated envelopes, and the above 
consideration about neural networks was done without biases - for simplicity. 

In this way we obtained another representation of the original data series (I), and the length E 
of the new representation indicates additional di mens i on reduction of data series representation. 
The idea of the essential attributes obtained from auto-associative neural networks was introduced 
in earlier papers by Krawczak, Szkatuła (2008) related to mining data series problems. 

The essential attributes can be used directly or it is possible to generate a new set of attributes. 

The new set of attributes {ci(n)};:,X ={c, (11),c,(11), ... ,cK(n)), n=l, ... ,N, are calculated 

as rearrangements of differences of the original essential attributes. This way we slightly enlarge 
dimensionality of the data series representation, but in the same time we provided in some sense the 
distances between the essential attributes. In particular we have the set of the original essential 

attributes (5) {b, (n),b2 (n), ... ,bE (11)), n=!, ... , N , and wegenerated K = ( ~) combinations 

without repetitions of differences b;(11)-b/n), i, J=l, 2, ... , E, i> j, these combinations create 

a set of new at tri butes 

{ci(n) i;:,X = 
={b,(11)-b,(n), b3(11)-b,(11); b.(n)-b3 (n), ... ,bK(n)-bK_,(11), 

b3 (n)-b,(n), b,(11)-b,(11), ... ,bK(n)-bK_,(n), 

b,(11)-b,(n), ... ,bK(n)-bK_,(11), (10) 

={c, (n),c,(11) , .. . ,cK(n)) 

for n=!, 2, ... , N. The set of attributes {ci(n)};:,X for 11=!, 2, .. . , N constitutes the new 

representation of the data series. 
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3.3. Nominalization of the attributes 

In our approach, the real values of the transformed essential attributes (or the essential attributes not 
transformed) can be replaced by nominał values. In our approach there is no physical interpretation 
of the essential attributes (or transformed essential attributes), and it is assumed thai there are some 
unknown involved relationships between them, thus the nominalization is done in such a way thai 
the ranges of the all essential attributes values are subdivided into some number of partitions. In the 
paper, we apply a particular and simple method called equal width interval discretization. 
In generał, the method involves determining the domain of observed values of the attributes and 
subdividing this interval into equal subintervals. It involves determining the domain of observed 
values of the all attributes a i E A, j = !, ... , K and dividing this interval in to equal subintervals. The 

set V„1 = ( v i- ', v i-', ... , v j.L,) is the domain of the attribute a i, and Li denotes the number of 

subintervals for the j-th attribute. One can construct subinterval boundaries, i.e. cui points, in the 
following way: 

Po= min{Vr,1, V1,1 , ... V",..} 

p,=p0 +i-o, i=l, ... , P-1 

PP= max/V,,,, V,,, , .. .V,,,) 

( 11) 

where a= max(v;,,' v;, , ... v;,,) - min/V,,, ' v;, ' . .V,,,. ) , PE N is a predefined parameter. Consecutive 
p 

ranges are labeled by letters of the alphabet, respectively, see Fig. 4. 

a b C d 

1-----+-----+-----+------<--------------+------<------i 

Po P, P, PP-I PP 

Fig. 4. The nominalization of the attributes . 

Such labeling is done for each attribute. 
Introducing nominalization of essential attributes can be considered from a point of view of data 

compression, namely using definition (11) the compression ratio now is rewritten as follows 

C N Et h d Td b f b" . . d . . . r,.,,.;,.,n,.,~, =--, w ere tan enole num ers o lis require to store nominahzed attnbutes 
NET 

and real value essential attributes, respectively. 

The set of the new attributes (ci (n) };:t (or (b/n) };:t in the case without transformation) with 

nominał values now can be denoted by (a/n)};:t, 11 = I, 2, .. . ,N, where K <<M. This way a new 

representation of data series (I) was developed, the representation is characterized by a set of 
attributes and va lues of the attributes are nominał. 

4. Illustrative examples 

Practical presentation of the proposed approach for the reduction of dimension of data series 
described by (I) was carried out for the database available at the Irvine University of California 
(Alcock, Manolopoulos, 1999). 

In the next subsections we will discuss the data sets adopted for the calculation and the 
dimension reduction methodology for data series described in the previous section will be applied to 
them. The methodology is based on the concept of envelopes, extracting essential attributes, and 
nominalization of the attributes. 
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4.1. Description of the data set 

The considered database consists of data series synthetically generated by proper equations. Each 
equation represents a different type of pattern. Each pattern was taken as a time series of 60 data 
points. The following equations were used to create the data points z(t), where l:S I S60, for the 
various patterns: · 

pattern E: z(t) = v + rs + kx 
paltem F: z(t) = v + rs - kx 
pattern A: z(t) = v + rs, 

(upward shift) 
(downward shift) 
(norma! pattern) 

where, for each paltem, v is the mean value of the process variable under observation (v = 80), s is 
the standard deviation of the process variable (s = 5), r is a random number between -3 and 3, x is 
the magnitude of the shift (x takes a value between 7.5 and 20), k indicates the shift position in E 
and F (k = O before the shift and k = I at the shift and thereafter). 

We considered the following learning data series where introduced classes correspond to the 
pattems: 25 time series of Class I (pattern E); 25 time series of Class 2 (pattern F); 25 time series of 
Class 3 (pattern A). Each data series has 60 values, and the whole data series can be described as 

follows: {x, (11)}::~ = [x, (11),x, (11), ... ,x60 (11)], n= I, 2, ... , 75 . All 75 time series after normalization 

are shown in Fig. 5. 

0.8 

o.a 
0.4 

0.2 

-0.2 

-0.4 

-0.6 

-o.a 

-1 ~-----------------------
11 16 21 26 31 36 41 46 51 56 

Fig. 5. The normalized learning data series {x, (11)}::~, 11 = 1,2, ... ,75, belong to the pattem E, F and A. 

In Table l there are shown exemplary values of selected learning time series of the considered 
normalized data series. 

Table 1 
The three selected learning time series. 

li x,(11) x,(11) x,(11) x,. (11) x_.,(11) . x60 (11) Pattern 

-0.30 -0.60 -0.55 0.26 0.12 0.33 E 
40 0.26 0.35 0.22 -0.73 -0.64 -0.20 F 
75 -0.30 0.20 0.22 0.51 0.53 0.26 A 

We also considered the testing data series which were different from the learning data: 25 time 
series of Class l (paltem E); 25 time series of Class 2 (pattem F); 25 time series of Class 3 (pattern 
A), which were used only for testing purposes. Each data series has 60 values, and the whole data 

series can be described as follows: {x,(11)}::~ = [x,(11),x,(11), ... ,x60 (11)], 11 = 76, 77, ... , 150 . 

Now, the dimension reduction methodology for data series will be applied step by step. 
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4.2. Reducing of the data series dimensionality 

Our goal is to reduce the dimensionality of the data series under consideration. Dimensionality 
reduction was started with the creation of m-step upper and )ower approximation of a data series. 
Basic steps of the proposed approach both for upper and I ower envelopes are shown below. 

4.2. I. Envelopes aggregate approximation. 

The value of a step m was determined experimentally as 4. In order to compare the quality of the 
approximation of the normalized series of data by the upper and !ower approximations, the average 
deviation of the upper and !ower approximation of the all normalized data series was calculated, for 
different values of m. 

Data series representation based on the 4-step upper approximation of a normalized data series 

(1) is denoted by {x1 (11)}::~ and is calculated according to formula (2). Exemplary, the 4-step 

upper approximations of a data series number I is shown in Fig. 6. 

0,80 

0,60 

0,40 

0,20 

0,00 - ·-··--·-·· -

-0,10 

·0,40 . 
-0,60 l. .• . ~--- ·- -· . ·• · ; -~ · ·--

-Q,8Q L • 

. J,00 

... 
···---·-··--------------

13 . 16 .19 . 11 . 15 .. 18 31 . 34 37 .. 40 . 43 .. 46 49 .. 51 . 55 ..... .SL 

.. •. 

Fig. 6. The 4-step upper approximations ofa data series number I for k =I, 2, ... ,60. 

Similarly, data series representation based on the 4-step !ower approximation of a normalized 

data series (1) is denoted by {x;(n)}'.}~;}. Exemplary the 4-step !ower approximations of a data 

series number I is shown in Fig. 7 

0,80 

Fig. 7. The 4-step lower approximations of a data series number I for k =I, 2, ... ,60. 

The average deviation of the 4-step upper and !ower approximation of the normalized data series 
I ~ I ~ 

was calculated, i.e., values - I (x1 (n)-x1 (11)) and - I (x1 (n).:_ x,;(11)), for 11-th data series, 
· 60 ,., 60 , _, 

Il= I, 2, .. . , 75, are shown respectively in Fig. 8 a) and 8 b). 
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Fig. 8. a) Average deviation of the 4-step upper approximation of the normalized data series belong to the 
paltem E (11 = 1, 2, .. . ,25), pattem F (11 = 26, 27, ... ,50) and patiem A (11 = 51, 52, .. . ,75), b) similarly average 

deviation of the !ower approximation. 

As can be seen in Fig. 8 a) and b), similar values of average deviation were obtained for paltem 
E and pattem F. For data series of pattern A error approximations were slightly greater. 

The average deviation of the all data series and lower or upper approximation was calculated as 
l n l '° l n l '° 

fellows - I - I (xf (n)-x, (n)) and - L - L (x, (n)- x;(n)). The similar value of average 
75 ,,., 60 ,., 75 ,, ., 60 ,., 

deviation of the all data series was obtained for the upper (takes value 19.13) and !ower (takes value 
19.33) approximation. So, none of these gives much better approximation and each of them can be 
used for further calculations. So in the paper two following computational experiments 
are considered. 

• Problem of reducing the dimensionality of data series based on the upper envelopes. 
• Problem of reducing the dimensionality of data series based on the ]ower envelopes. 

Calculation results for both the upper and the !ower envelopes are given below. For M = 60 and 
a fixed value m = 4 the number of data point in the aggregated envelopes is 15, according to (3). 

For each considered data series the 4-step upper and lower approximations of the learning data 
series [x, (n), x, (n), .. . , x 60 (n)] were calculated and aggregated, and we obtained the new reduced 

data series representation [y, (n) , y2 (n), ... , y 15 (n)], for 11 = 1, 2, ... , 75, see Fig. 9. 

a) 
1.00 

~M~1 
-0.80 

·1 .00 
1 2 3 4 5 6 7 8 9 IO 11 12 13 1-1 15 

b) 
1.00 

Fig, 9. a) The aggregated 4-step upper envelopes { y , (11) }!:i', 11 = 1,2, .. . ,75 , of data series E, F and A, 

b) similarly aggregated 4-step !ower envelopes. 

For the data from Table I the exemplary aggregated 4-step upper envelopes look like 
in Table 2 a) and the aggregated 4-step lower envelopes look like in Table 2 b). 

14 

1 



,~ 

! 

r 

I" . 

Table 2 
a) The aggregated 4-step upper envelopes. b) The aggregated 4-step lower envelopes. 

Il Y, (Il) Y2 (Il) y,(ll) Yi,(ll) Y, (Il) y,(ll) Y, (Il) Yi, (Il) Pattern 

-0,30 -0,33 -0,33 -0.43 -0.60 -0.60 -0.55 -0.74 E 

40 0.35 0.35 0.50 0.36 0.21 0.21 0.21 0.14 F 

75 0.22 0.74 0,75 0.55 -0.30 0.05 0.05 -0.64 A 

In this way, we obtained the new representation of the data series (]); the new representation 
is described by either upper or !ower envelopes, or by both kinds of the envelopes. According to (8) 
the compression ratio due to aggregation of envelopes is as fellows Cr.,.,.,,.,;,., = 0.25 . 

4.2.2. Generation of the essential attributes 

In order to find the essential attributes of the aggregated envelopes a four layer feedforward neural 
network (including the input layer) was applied, see Fig. 3, with different numbers of neurons 
within the second hidden layer. In this partie u lar case the network consists of: 

• the input layer of dimension l M j = 15 representing the aggregated envelopes (upper or !ower) 
li! 

{Y,(11)}!::' =[y1 (n),y2(n), ... ,y15 (11)], 11=1, 2, ... , 75, 

the first hidden layer with l M j = 15 sigmoidal neurons, 
m . 

• the second hidden layer of E sigmoidal neurons, and the outputs of these neurons 

{b; (n )J ;:~ = (b; (n), b; (n), ... , b~ (n)) , n = l, 2, ... , 75, indicate the essential attributes, 

• the output layer of l M j = 15 sigmoidal neurons generating {J'i (n)};:;', for Il=!, 2, ... , 75. 
li! 

For designing the required neural network JNNS - a freely available neural network simulator 
was applied. During the experiment the number of hidden neurons was changed, from l up 15, and 
for each case the network was trained and the learning error described as fol!ows 

l 1:s 1:; ,, 

Error=-II(Y,(n)-y,("))-
!5 ,,., ,., 

was calculated. For adjusting weights we used the backpropagation with momentum algorithm and 
within each calculation lasting 10000 cycles both required parameters, namely learning parameter 
and momentum parameter, were selected in such a way to get a stable as well as the lowest value of 
the learning en"Or. The results of the experiment are shown in Fig. 10 a) where the learning error is 
drawn vs. the number of applied hidden neurons. 

0.4S 

0.35 
o 
~ 0.3 

.f 0.2s 

~ 0.2 

0.15 

0.1 

o.os 

O 1 2 3 4 S 6 7 8 9 10 11 12 13 1'1 15 

Hidden neuron~ number n• 

Fig. 10. a) Val ues of learning error vs. the number of hidden neurons, b) learning error for E=5. 
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According to the experiment, the number of neurons of the hidden layer was chosen as E = 5, see 
Fig. 10 b), meaning that just five essential attributes are enough to conserve the information about 
the data series character and the error Error= 0.05 corresponds to the absolute value of an average 
difference between the output and input is equal to 2.5 %. Thus, the used for the further calculation 
neural network has the architecture shown in Fig. 11. 

j), 

j), 

Fig. 1 I. Neural network generating tive essential attributes. 

In the next step of our procedure, the outputs of the hidden layer (b;(n),b;(n), ... ,b;(n)) for 

n= 1,2, ... ,75 were multiplied by 1000. Thus, the original data series can be represented by a set of 

five essential attributes {b, (n),b, (n), .. . ,b, (n)} according to (5). 

Due to formula (9) the compression rate of generating essential attributes takes the following 

value Cr,,_, .• ,,,;.,,,, = 1/3, and together we obtained the compression rate 

CrtlJ:Rfł'J:nlinll+ł'H'.(11/riłmtr = 1/4 X 1/3 = 1/12 = 0.08(3). 

For further consideration, .the essential attributes are arranged in a vector form, i.e. one chosen 
permutation of them must be taken for all investigated data series. Thus, the original learning data 
series represented by upper envelopers can be represented by a vector of five essentials 

attributes[b, (11),b, (n), ... ,b, (11)] , see Fig. 12 a), and for upper and !ower envelopes see Fig. 12. 

a) b) 
1000 ,ooo 
900 900 

900 800 

100 100 

900 800 

500 500 

400 400 

300 300 

200 200 

100 100 

Fig.12. a) The value or the attributes {b; (11) J):i'. 11 = 1,2, ... ,75, for upper envelopers, b) similarly for !ower envelopes. 

The exemplary values of the five essential attributes for examples number I, 40 and 75 with the 
aggregated 4-step upper envelopes are shown in Table 3a) and for 4-step !ower envelopes are shown 
in Table 3b). 

Table 3 
a) The attributes for the upper envelopes. b) The attribute for the !ower envelopes 

li b, (n) b, (11) b, (11) b, (n) b, (11) b, (11) b, (11) b, (11) b, (n) b, (11) Pattern 

I 74 400 71 470 834 372 454 559 214 946 E 
40 24 761 613 414 63 249 713 787 934 228 F 
75 23 283 I 19 682 558 732 387 762 645 865 A 
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In the paper two following problems are considered: the essential attributes can be used directly, 
so that the number of attributes is 5; and on the base of the essential attributes new transformed 
attributes can be generated. The new attributes · were calculated as rearrangements of the essential 
attributes according to ( IO). Fig. 13 shows new of transformed attributes (ci (11) l;:,10 , 11 = 1, 2, .. . , 75, 

for a fixed permutation of the attributes for the aggregated 4-step upper envelopes. 

Fig. 13. Plots of the new attributes (c/11) );::•, 11 = 1,2, .. . ,75, for the upper envelopes. 

Fig. 14 shows new transformed attributes (c/11))/:110 • 11 =l, 2, ... , 75, for a fixed permutation 

of the attributes for the aggregated 4-step I ower envelopes. 

1000~--------------------
800 +-----~-- ~-------------,-
600 +-----1\---½)., 

400 
200 

o 
-200 
-400 +----~-
·600 +-----
-800 +---------------------

-1000 ~--------------------

Fig. 14. Plots of the new attributes (cJ (11) );:,", 11 = 1,2, ... ,75. for the !ower envelopes. 

The new attributes {ci(11)};::•, n =l,2, ... ,75 cake values from a range [-!OOO; !OOO] and before 

their nominalization should be fixed in a new range [O; !OOO], in order to unify the nominalization 

process. The following simple formula changes the attributes values ranges: ci (n):= ..!.c 1 (n)+ 500, 
2 

j = I, 2, ... ,IO and 11 = 1, 2, ... , 7 5 . 

4.2.3. Nomina/ization of the attributes 

Next, the real values of the essential attributes from a range [O, 1000] can be replaced by nominał 
values. The number of nominał values P corresponding to (11) was determined experimentally as 
JO. The replacement is done in such a way that the ranges of the all essential attributes are divided 
into ten partitions. One can construct interval boundaries, i.e. cut points, in the following way (11): 

Po = min {V.,, V.,, ... V.,,}:= O 

P; = Po +i·lOO, i=l, ... ,9 

p, 0 = max {V., , v.,, .. .v.,, } := !OOO. 
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Hence, the range of all attributes between O an~ 1000 is divided into ten equal sub-ranges. 
Consecutive sub-ranges are labeled by first ten letters of the alphabet, respectively, as it is shown in 

Fig. 15. Such labeling is done for each attribute (a i (11) l;:f}, 11 = 1,2, ... ,75. 

a b C d j 

1------f------+------+------+--·······-·····•I-------+------< 
100 200 300 900 1000 

Fig. 15. The nominalizalion of the attributes 

The values of the nominał essential attributes for the aggregated 4-step upper envelopes are 
shown in Fig. 16 a); for the aggregated 4-step !ower envelopes are shown in Fig. 16 b). 

a) 

Fig. 16. a) The attributes {a 1(11) }j:;1 • 11; 1,2, ... ,75, for the aggregated 4-step upper envelopes, b) similarly for 

the aggregated 4-step lower envelopes. 

Exemplary values of the essential attributes after the nominalization for the aggregated 4- step 
upper and !ower envelopes are shown in Table 4 a) and Table 4 b). 

Table 4 
a) The attributes for upper envelopes b) The attributes for I ower envelopes 

li a, (11) a,(11) a, (11) a,(11) a _,(11) a, (11) a,(11) a, (11) a, (11) a, (11) Pattern 

I a d a e d e f C j E 

40 a ,, g a e e e j b F 
75 a C b 8 f " d " g A 

We can notice that in the space of these five attributes there are several examples overlapping, 
see Fig. 16. It means that same different examples are described by exactly the same values 
of attributes, i.e. same examples are not distinguishable, as exemplary shown in Table 5. 

Table 5 
The exemplary values of the attributes for upper envelopes. 

Il a, (11) a,(11) a,(11) a, (11) a_1 (11) Pattern 

a d a E 
3 a d a e E 

20 a d a E 
23 a d a e E 

27 a " 8 f a F 
42 a " 8 f a F 
44 a " 8 f a F 

52 a f b 8 d A 

58 a f b g d A 
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The nominalization of a new set of the real values of all transformed essential attributes 

{c/n));:!0 , 11 = 1,2, ... ,75 was arranged in a similar way (11) . In result we obtained the nominał 

representation of the data series {a/11));:;0), 11 = 1,2, ... ,75, and values of the attributes take one 

ofthe nominał values: a, b, c, d, e, f. g, Iz, i, j. Thus after nominalization each data series 
is represented by nominał values of ten attributes. 

The values of the nominał transformed essential attributes for the aggregated 4-step upper 
envelopes are shown in Fig. 17 a), and values of the nominał transformed essential attributes for the 
aggregated 4-step lower envelopes are shown in Fig. 17 b). 

10 

h 

g 

f 

b) 

10 

Fig. 17. a) The nominał attributes {a j (n) J;:,"), n= 1,2, ... ,75. for the 4-step upper envelopes, b) similarly for 
the 4-step !ower envelopes. 

Exemplary data series of nominał representations of the transformed attributes for the aggregated 
4-step upper envelopes are shown in Table 6 a); for 4-step lower envelopes are shown in Table 6 b). 

Table 6 
a) The transformed attributes for upper envelopes. b) The transformed attributes for lower envelopes 

Il a,(11) a,(11) a9(11) a,0(11) a,(11) a, (11) a,(11) aw(n) Pattern 

g d I, J J h h E 
40 e b J e d d F 
75 g g " d g h J A 

In the paper the nominał essential attributes (a j(n) J;:/ l and the nominał transformed attributes 

(a /11)) ;:!' are applied for classification problem (Section 5.1 ); and the transformed attributes 

(a j(11) l;::0 are applied for clustering problem (Section 5.2), for 11 = I, 2, ... , 75. 

Assuming 32-bit technology the compression ratio related to bit representation is equal 
Cr,0 m,,.,;,,,,;,m = 4/32, and the overall compression rate of generating essential attributes takes the 

following value Cr5EAA = 1/4xl/ 3xl/8 = 1/ 96. 

5. Experimental validation of our dimension reduction 

Validation of practical use of the proposed approach was carried out for classification and clustering 
problems. Calculations were performed to verify whether the proposed methodology of reducing the 
dimensionality stili retains important features of the original data series, which allows to classify or 
to cluster data series properly. 

In order to verify the new data series representation, the database Synthetic Control available 
at the Irvine University of California was explored. Our approach reduces the dimensionality of an 
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original time series from 60 data points to 5 nominał values (the attributes (a /11) }!:i}) or to 10 

nominał values (the transformed attributes (a /11) };:1°) for n= 1, 2, ... , 75,- So data was compressed 

into 1/ 12th and I/6th of its original size, and were treated as learning data. Two the following 
problems are considered: 

• Classification of the aggregate data series (Section 5.1). The aggregation data can be treated 
as learning data for generation of elementary rules. Classification accuracy is verified 
by applying the rules for the testing data which did not participate in the generation of the rules. 

• Clustering of the aggregate data series (Section 5.2). The aggregate learning data series have 
been grouped into clusters, but the affiliation of the data series was not used during the 
computational process, only for testing. 

Details of the calculations are presented in the next sections. 

5. I . C/assification problem 

At the beginning of practical verification of SEAA the proposed procedure steps were carried out by 
performing classification problem. The original data series representation described by real values 

{x, (n)}::~= [x, (n),x2 (n), ... ,x60 (11)], n= 1, 2, ... , 75 , were replaced by another representation 

described by altributes representation with nominał values {a;(n));:,K, for both K = 5 and K = IO. 

The aim is to generale a set of elementary rules for classification of considered data series inio one 
of three classes: Class l (i.e., the data series belong to paltem E), Class 2 (i.e., the data series belong 
to paltem F) and Class 3 (i.e., the data series belong to paltem A). 

The attributes were established under both data series representation based on the upper and 
!ower envelopes. These rules could be used for classification of other data series, not classified 

before, so the rules are verified by using new 75 testing data series {x, (n)t~, 11 = 76, 77, .. :, 150, 

which did not participate in the rules generating process . The selected results are shown below, 
white details of the measure utilized can be found in paper (Krawczak and Szkatuła, 2011). So, each 
data series is represented by values of five or ten nominał attributes and now can be treated 
as learning data for generation of elementary rules of the following form 

IF same conditions are satisfied THEN the data series belongs to a proper class. 

In this case, the conditional part of the rules will contain the conjunction of conditions related 
to the subset of the altributes. The process of generating the decision rules is based on a set of 
examples under the assumption that for each class the examples have some common properties 
which distinguish them from another class. The classification accuracy of the rules is understood as 
percentage of examples correctly classified. In Appendix A the basie elements of the used 
extraction of decision rules are presented, and details of the inductive learning method used to 
derive the minimal set of elementary rules can be found in papers by Szkatuła (1995, 2002), 
Kacprzyk and Szkatuła (1999, 2002, 2005a, 2005b, 2010). 

Below, there are results of calculations for the data series representation based on upper and 
lower envelopes. The calculations take into account both the nominał essential attributes (size of 
compressed data is 5) as well as the nominał transformed attributes (size of compressed data is 10). 

For each case there are shown the generated rules and the consequences of classification 
accuracy for the learning data and testing. 

Case 1: Data series described by nominał essential attributes {a ;(n) J;:;, for n= l, 2, ... , 75. 

Each data series, used for learning and for testing) of length 60 was reduced to length 5. All 
calculations were made for two representations related to the upper and the !ower envelopes. 

The minimal set of rules for data series representation based on the 4-step upper envelopes 
described by five nominał essential attributes was obtained and is shown below. 

IF (a5 = g v I, v i) THEN (Class= I) 
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IF (a5 = a v b) THEN (Class= 2) 
IF(a3=bvc) v (a,=dve) THEN (Class=3) 

These rules correctly classified all of the learning data series represented by nominał attributes of 
Class 1, Class 2 and Class 3. It is obvious thai the generated rules should be verified using another 
75 testing data series (25 for each of class) which did not participate in the generation of these 
elementary rules. In this case the rules correctly classified 73 testing examples, i.e. the classification 
correctness is about 97.3%. 

Described procedure was repeated for the case of data series representation based on the 4-step 
lower envelopes described by five nominał essential attributes. The minimal set of generated rules is 
shown below. 

IF (a5 = J) THEN (Class = 1) 
IF (a4 = j) THEN (Class = 2) 
IF (a5 = g v /z) v (a4 = g) THEN (Class= 3) 

In this case the above rules correctly classified all of the learning data series. For another 75 
testing examples (25 of each of class) the rules correctly classified 74 data series, what comprises 
classification correctness of 98.7 %. 

Case 2: Data series described by nominał transformed attributes (a j(n) }~::•, for 11 = I, 2, ... , 75. 

Again, each data series of length 60 was reduced to length IO. All calculations were made for 
both data series representation related to the upper and the I ower envelopes. 

The minimal set of rules for data series representation based on the 4-step upper envelopes 
described by ten nominał transformed attributes was obtained and is shown below. 

IF(a4 =g) v (a7 =i) v (a 10 =J) THEN (Class=]) 
IF (a1 = b v c v d) THEN (Class =2) 
IF (a1 = e v Jv g v /z) THEN (Class =3) 

These rules correctly classified all of the learning data series represented by nominał attributes of 
to Class I, Class 2 and Class 3. Then the generated rules were verified using another 75 testing data 
series (25 for each of class). In this case the rules correctly classified 74 testing examples, i.e. the 
classification correctness is about 98. 7%. 

The minimal set of rules for data series representation based on the 4-step lower envelopes 
described by ten nominał transformed attributes was obtained and is shown below. 

IF (a4 = h v i v j) THEN (Class =1) 
IF (a4 = cv bv c) THEN (Class =2) 
IF(a4 =dvevfvg) THEN (Class=3) 

Then, the rules were verified using another 75 testing data series (25 for each of class), and in this 
case the rules correctly classified 75 testing examples, i.e. the classification correctness is 100%. 

A summary of results obtained for considered classification problems for learning data are 
shown in Table 7, where the error rate is the ratio of the number of misclassified data series to the 
total number of data. 

Table 7 
The results of classification. 

Method Size of the Classification accuracy The error rate 
compressed data for learning data for testing data 

SEAA based on 4-step upper envelopes 5 IOO% 0.027 

IO 100% 0.013 

SEAA based on 4-step !ower envelopes 5 IOO% 0.013 

IO IOO% o.ooo 
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The error rates for testing data divided inio classes is shown in Table 8, where the error rates are 
defined as previously. 

Table 8 
The error rate for testing data divided into classes. 

Method 

SEAA based on 4-step upper envelopes 

SEAA based on 4-step !ower envelopes 

5.2. Clustering problem 

Size of the 
compressed data 

5 

IO 
5 

10 

Class I 

o 
o 
o 
o 

Error rate for 
Class 2 

o 
o 
o 
o 

Class 3 

0.08 

0.04 
0.04 
0.00 

Practical verification of the proposed approach was carried out also by performing clustering 

problem of series described by ten nominał transformed attributes {a i (n) I ;:t, for n= I, 2, ... , 75. 

The aim is to portion out the set of the considered data series inio three, non-empty, disjoint clusters 
{ g I' g 2 , g 3 }, containing all the considered data series, and compare the results with known objects 

affiliation to classes. It must be emphasized thai the affiliation of the grouped data series was not 
used at all during the clustering process. 

The process of clustering of the considered data series was performed according to the clustering 
algorithm for the nominał attributes which is shortly described in Appendix B. The algorithm 
belongs to a family of hierarchical clustering algorithms. The clusters descriptions are denoted 

by G,, , G,, . G,,. Each group g can be represented by an ordered collection of values of ten 

nominał attributes [a1,a2 , ... ,a 10 ), i.e., G, =< A1.,o.,i• A,.,,,.,i• "·•AK.,(K.,> >, where Ai,ru.,i s;; {a, b, c, 

d, e, f, g, h, i, j}, for j = I, 2, ... , IO. The details can be found in paper by Krawczak and Szkatuła 

(in preparation). The applied procedure for the data series described by the upper and !ower 
envelopes is described below. 

Case 3: The data series described by nominał transformed attributes {a /11) );::0, n= I, 2, ... , 75. 

Again all data series of length 60 was reduced to length IO. Calculations were made for two 
data series representation related to the upper and the !ower envelopes. 

Data series representation based on the 4-step upper envelopes specified by IO nominał 

attributes were grouped into three clusters{gpg 2,g3 ), and the clusters descriptions G,, ,G,, .G,, 

are presented in Table 9. 

Table 9 
The clusters descriptions for data series representation based on the 4-step upper envelopes. 

Descriptio n a, a, a, a, a, a, a, a, a, a,o 

G,, g,,, c, d, e g, "· i f. g, ,, e.f e,f. g i,j g, "· i f. g,,, i,j 

G,, "· i,j c,d, e.f d, e,f. g b, c,d g, "· i d,e.f b, C, d g, h, i b, C f 

G,, g, "· i b, c, d, e g, "· i d, e f. g d, e, f. g, h e,f. g, h h, i c, d, e,f. g f. g," 

The cluster g, is represented by G,, =< (g v h}, {c v d v ej, ... ,{i v j) >, white the cluster g 2 

is represented by G,, =< {h v i v }}, {c v d v e v f), ... , Ul>, and the cluster g 3 by 

G,, =< {g v h v i}, {b v c v d v ej, ... , (f v g v hl> . The results of clustering shows that all 75 

objects were properly grouped according to the objects affiliation during the clustering process, so 
the clustering efficiency of the nominał attributes data series representation is I00%. 
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Similarly, data series representation based on the 4-step lower envelopes specification by 10 
nomina! attributes were grouped in to three clusters ( gł' g,, g,), and the clusters descriptions 

G,,, G,,, G,, are shown in Table 10. 

Table 10 
The clusters descriptions for data series representation based on the 4-step )ower envelopes. 

Description a, a, a, a, a, a, a, a, a, alO 

G,, d, e.f J. g, e b, c, d,J. e I,, i,j e.f J. d, e i, g, I, e, d.f i, I, h, i 

G,, e, J. g, h d, e.f h.f b, a, c C, e, g, h h, g d, C g, h,; d, c, e c, d, e 

G,, d, e.f d, g, h,e e, g, h d, e,J.g J. d, e g f. e, g e,J. g, I, h,J. g J. g 

In this case, the cluster g, is represented by G,, =< {d,e,f), (f,g,e), (b,c,d,J,e), ... ,(h,i) >, 

white the cluster g, is represented by G,, =< (e,j, g ,h), (d,e, f), ... ,{c,d,e) >, and the cluster g3 

by G,, =<{d,e,f), {d,g,h,e), ... ,(f,g) >. 

It is interesting that these three descriptions G,, , G,, , G,, shown in Table 10 can be uniquely 

distinguished only by only one attribute a, or a,0 • In Fig. 18 in the space of two attributes a, and 

a, the data series are marked by shading rhombs. 

j 
; 
h 
g 
f 
e 

d 
C 

b 
a 

a8 G,, 
G,, 

L .. J 
i 

! 

a4 
a b C d e f g h j 

Fig. 18. Three obtained clusters in the space of two attributes a, and a, 

lt is worth to notice that again the clustering results are perfect and all objects were grouped 
according to their affiliation, it means the clustering efficiency of the nominał attributes data series 
representation is 100%. A summary of results for considered clustering problems are shown 
in Table 10. 

Table 10 
The results of clustering. 

Methods Size of the Size of the alphabet The error rate 
compressed data 

SEAA based on 4-step upper envelopes IO IO o 
SEAA based on 4-step !ower envelopes IO IO o 
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5.3. Comparative analysis with other method 

As it was reported at the beginning of the paper there are many representation techniques that allow 
us to reduce dimensionality of data series. Simultaneously, little attention has been paid to symbolic 
representation of data series. It is assumed that different data series representations are introduced in 
order to reduce their dimension. It seems that combining different technics will give promising 
results. 

One of the most competitive methods in the literature for reducing time series dimensionality 
with introduced symbolic representation is the symbolic aggregate approximation (SAX). In generał 
this method consists of two main parts, in the first part a time series is approximated by piecewise 
aggregate approximation (PAA) based on based on piecewise constant approximation (PCA), while 
in the second part such time series representation is converted into a sequence of symbols, the 
sequence corresponds to the original time series. SAX method gives reduction of dimensionality not 
only in the first part but also encoding symbols in bits. 

Our introduced method called symbolic essential attributes approximation (SEAA) differs 
considerably from other methods known from the literature, however it is possible to find partia! 
similarities to SAX method. We can say that that SAX consists of two parts, while SEAA of three 
parts, and it can be said that the first and third part of SEAA are similar to the first and second part 
of SAX, respectively, see Fig. I and Fig. 19. 

Dala 
series 

• PAA - piecewise 
aggregare approxi111atio11 

• Nominalization 

Fig. 19. The approach scheme of SAX - symbolic aggregare approximario11 

Within the first part we generale aggregated envelopes (upper or !ower) which are based on 
piecewise constant approximation obtained for the topmost points, for the upper envelopes, or the 
lowest points, for the !ower envelopes. In some sense envelopes bound the original data series, i.e. 
the upper envelope from up while the !ower envelope from bottom. Such approximations accent 
changes of the considered original data series. Thus this part of SEAA has some similarities to SAX 
first part, and in SEAA we can also use different piecewise constant approximation, and it is 
difficult to say which approximation is better - much depends of particular problem. Therefore, 
within the first part, both methods are comparable. 

In the second part of our approach we generate a set of nominał or symbolic essential attributes, 
and a chosen permutation of these attributes is kept on. The essential attributes are synthetic and 
there is no physical interpretation of them but they retain important features of the original data 
series. In this part further reduction of dimensionality is obtained, and there is not any it has not any 
counterpart in SAX methodology. 

In the third part of SEAA methodology discretization of real value essential attributes are 
transmuted into symbolic form - in same sense similar as· in the second part of SAX approach. In 
result we can observe certain similarities between these two methods, namely both data series 
representation have a form of a word over a fixed alphabet. 

In SAX, the order of symbols is important and forms a word; a kind of time series. Meanwhile 
in SEAA, the order of essential attributes in unimportant, but for a fixed permutation a data series 
representation also constitute a word form. Additionally, in SAX the sequence of symbols is much 
longer than the value of cardinal number of a set of essential attributes. Similarly, our symbolic 
value essential attributes can be also encoded in bits giving additional compression rate. 

This way we obtain a better compression of ESAA data. series representation than SAX can. 
Therefore the proposed SEAA method is original, little similar to others and only validation 
procedure can show its efficiency. 

A comparison between SEAA and SAX approach for used Synthetic Control Data can 
be performed for e.g. classification and clustering problems. Results of the calculation for the SAX 
method are taken from the paper by Lin J., Keogh E., Wei L., Lonardi S. (2007). The error rate 
was the ratio of the number of misclassified data and the total number of data. SAX obtained 
an error rate for classification problem of 0.02 for size of the compressed data equal 16 and size 
of the alphabet equal IO. In the case of application of SEAA approach, for size of the compressed 
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data equal 5 or JO and size of the alphabet equal IO, we obtained very similar results 
for classification as well as for clustering data series, but SEAA due to three level of compression 
generates gives much greater data compression ratio. 

6. Conclusions 

In this paper we introduced an approach to reduce dimensions of data series. Our approach differs 
from algorithms known in the literature. The concept is based on the upper and lower envelopes and 
their aggregation, and then on essential attributes of the aggregated envelopes. Both representations, 
related to upper or !ower envelopes, allow to obtain high reducing of dimensionality of the original 
data series. Next, the real values of the transformed essential attributes of data series were converted 
into nomina! values. 

A computer experiment was performed for classifjcation and clustering problems. A numerical 
example shows that even after a very large reduction of dimensionality (as well as reduction of 
information), the new representation marvelous preserves information about the data series 
characteristics. Additionally, introducing essential attributes as a set gives possibilities to better 
compression of data series than in known approaches . 

It seems thai SEAA method can be elaborated in the future, namely instead of aggregated 
envelopes any different data series approximations known in literature can be used as inputs of the 
auto-regressive neural network to generate essential attributes. In generał the idea of generating 
essential attributes as a set of features representing data mining should be explored more deeply. 

Appendix A 

Extraction of decision rules for classification problem. 
In this appendix we present some elements of the inductive learning method used in Section 5.1 to 

derive the minimal set of elementary rules. Details of the applied approach can be found in papers 
by Szkatuła (1995, 2002), Kacprzyk and Szkatuła (1999, 2002, 2005a, 2005b, 2010), Szkatuła and 
Kacprzyk (2005). Therefore, we will recall only such elements of the approach which are necessary 
to facilitate further considerations. 

Let us consider a finite set of examples e„ EU , nE {1,2, ... ,N}. In the case considered in the 

paper an example is described by K nomina! attributes A= {ap ... ,aK} which are referred to as 

co11ditio11al attributes. The examples are described in the form of K elementary co11ditio11s in the 
following manner: 

K 

e. = [:, (a j = f(e,, ,aj )) 

where f (e,, ,aj )= vi. ,u ... ,. and "i•'''·"' E V„1 , the set V„1 = { v j .l, v j,2 , .. . , vj,L, ) is the domain of attribute 

a j, j = I, .. . , K, Lj denotes the number of the values of the j-th attribute, f : Ux A• V is a function 

such that Ve„EV, Va jEA, f(e,,,a j )EV,,1 • The function f(e,,,ai)=vi., u ,i states that the 

attribute aj takes value v j. ,( j, ,, 1 for the example e,. The index t(j,11) for JE (1,2, ... ,K} and 

nE {1, 2, ... ,N} specifies which value ofthej-th attribute occurs in the 11-th example. 

The conjunction of I elementary conditions, / :s K, is written down as: A s j = c' where 
je/ 

si = (a j = vi.,u, .. ,) , I<;;;{!, ... , K}, card(I) = l . We say that the conjunction C' covers an example e„ 

if 'r/je I the condition f(C 1 ,aj)=f(e,,,aJ) is satisfied. The ·set of all the examples described 

by the conjunction c' is denoted [C']. 

Suppose that we have additional attribute a, , called the decision a/tribute, where {a,} n A= 0 

and V,, = {v , ., , v , ., , ... , v ,.L,, ) is the domain of the attribute a,. We can perform the partition of the 
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entire set of examples inio the disjoint classes with respect to the values taken by this attribute. We 
assume thai the number and character of attributes are sufficient for the correct split of examples 
belonging to different classes. The decision attribute splits the set of examples into the non-empty, 
disjoint and exhaustive subsets that we call decisiolł classes. An example eE U for which the 
condition f(e,a,)= v,., is satisfied, is called positive, while others negative, for the class U,.,, , 

Vv" ·' EV,,. The sets of the learning examples determined in this manner along with their division 

into classes, are the starting point in the process of machine learning, which is supposed to lead to 
the descriptions of the classes considered. In this paper classes are described in the form of rules. 
In our case, the conditional part of the rules will contain the conjunction of conditions related to the 
subset of nominał attributes. We say that a rule is colłsistelłl, if it distinguishes the positive 
examples from the negative ones. We say that a rule is minimal if the removal of any condition from 
the conditional part of the rule would result in a failure to fulfill the consistency condition. 

An implication R,: lF C'• THEN (a, =v"., ), is called the k-the elementary rule for class U,,, , 

where c'• = .i'', (a j =vj.,u.,>) is description of example in terms of condition attributes ai, JE I,, 
JE • 

/ 1 i;;;{!, ... , K) and this example belongs to class U,.,, . The index t(j,k) specifies which value of the 

j-th attribute is used in the k-th rule. The rules, mentioned above, can be formed by applying various 
algorithms of machine learning. An algorithm used in Section 5.1 can be formulated as follows. 

Step I. Initialize: U':= all the positive examples for class U,,, , UN := all the negative examples 

for class U,.,, , the initial set of elementary rules R1 (U ,.,.,) is assumed empty, iteration 

i= o. 
Step 2. Iteration i = i + I. We form a modification of the i-th set covering problem on the basis 

of set examp,es U' and U N • The solution to the i-th set covering problem, provided by 
the algorithm, determines, in a unique way, the conjunction of conditions forming the 
elementary rule R, . 

Step 3. Include R1 in to the set of rules R1 (U,), i.e. R1 (U ,, , ):= R1 (U,,,, ) u R1 • Eliminate from 

the set of examples U' all the examples covered by the rule R, . 

Step 4. If the set of remaining examples U' is empty, STOP; otherwise, return to Step 2. 

In our case, the conditional part of the created rules contains the conjunction of conditions 
related to the subset of the essential attributes or transformed essential attributes. The rules formed 
in this manner can be applied to classification of new examples, the ones that have not appeared 
in the learning process. 

AppendixB 

Algorithm description for clustering problem. 

We consider the problem of clustering the data set described by symbolic attributes. Here we 
consider the problem of clustering of a set of examples U into non-empty, C disjoints sets 

C 

{ g„g,, .. . ,gc }, where Ug, =U and gP ng, = 0 , for p,ąE {l, ... ,C), p ~ q. It is required that ,., 
the examples in each cluster are in some sense 'similar', and the examples from different clusters 
should be 'dissimilar'. The proposed algorithm belongs to a family of hierarchical clustering 
algorithms. In this method, clusters are built by combining existing clusters, based on their distance 
(or any other used measure of proximity). The clustering stops when exactly a fixed number of 
clusters are found. It is assumed that each example must belong to only one cluster. We start with 
N examples as individual clusters and a pair of clusters described by the lowest value of the 
clusters' increasing measure is coupled forming a new cluster, and in this way the number of 
clusters is decreased by one. The details of the measure utilized can be found in paper by Krawczak 
and Szkatuła (in preparation). Therefore, we will limit the analysis only to these elements of the 
approach which are necessary to facilitate further considerations. 

26 



Let us suppose now that we have a fin i te set of examples U = { e,, ) , indexed by n, n= 1,2, ... , N . 

The examples are described by K nominał attributes A= {a" ... ,aK) indexed by j. The set 

V,1 = { v i-" v i-', .. . , v i-Li ) is the domain of the attribute a i E A, L1 . denotes the number of nominał 

values of the attribute a i, Li 2: 2, j =I, ... , K. Each example e„ EU is represented by a K-tuple of 

sets (i.e. K ordered sets of nominał values) in the following manner 

<{v,.,(l.,.iJ.{v2_,(,.,.i J, ... ,{vK.,(K.,.il> where vi.,u.,. iEV,1 and j=l, ... ,K. This notation states thai 

the attribute ai takes the value vi.,u.,·. i for the example e,,. The index t(j,n) for je {1,2, .. . ,KJ 

and nE {1,2, ... ,N} specifies which value of the attribute a1 is used in the 11-th example. 

Every non empty group g , g r;;;, U , can be represented by an ordered collection of K - sets 

of values of the attributes describing examples, G_, =< A,.,(l.,l' A2_,(i.,i• ... , AK.,(K.,i >, where 

A1.,u.,i r;;;, V,1 , card(Aj.,(J.,i) 2: I for jE {!, ... , K). For instance, for three symbolic attributes 

{a„a2,a3 ) and having domains V,, ={a, b, c), V,, ={d, e), V,, =U: h, n), we can describe an 

exemplary group g as < {a,c), {d), {f,11) > or< {a}, {d), {n)> . 

Let us consider two clusters g" r;;;,U and g• r;;;,U. Measure ofincreasing G,, by G,, (denoted 

by Ml( G,, H G,, )) is defined in the following manner: 

Ml( G H G, ) = ..!._ I, card(A1„u.,,.i \ A1.,u.,.) . card(V.1 \ (A1_,u,,,l n AJ,u.,.). 

, , '• K 1., card(V,)-1 card(V,) 

The measure of increasing is assumed to return a value from [O, !], where 1 is interpreted as 
most level for increase, while O is the lowest level for increase. The measure is asymmetrical, so this 
measure should not be considered as the distance between the groups, but the diversity, assuming 
that one group is a group of the base. 

The proposed algorithm is formulated as follows: 

Step 1. Each of N example creates one-element cluster in the initial set of clusters G(U), 

card(G(U)) =N, i.e. G(U) = { G_,,, G,, , ... ,G,"}, iteration k = O. 

Step 2. Iteration k = k + I. Create a matrix MM! of measures of increasing of the cluster, 
MM!: card(G(U)) x card(G(U)), where MMl[p,q] := Ml( G,, H G_,, ), 

p = 1,2, ... ,card(C(U)), q = 1,2, ... ,card(C(U)), pet q. 

Step 3. Find two clusters G,, .. and G,,. that minimize following criterion: 

Ml(G,,., G,,,. ) := minMl(G,,, HG_,)· 
\fpe(l.2 ..... rnrd(C(U li 
\tqell.2 ..... nmfCCCU)) 
µ•q 

Step 4. Create a new cluster in the set of clusters C(U), G,, .. ,. := G,, .. EB G,, . . The clusters G,,. 

and G,,. are removed from the set G(U). Thus, card(G(U)):=card(G(U))-1. 

Step 5. If the required number card(G(U)) = C is reached, STOP; otherwise, return to Step 2 and 

modify the matrix MM!. 
The modification of MM!fp,q] relies on removing of the p*-th and ą*-th rows as well as the 
p*-th and q*-th columns and at the end adding a new row and column. The new row and 
new column are related to the new cluster G,,,., .. The measures Ml( G,, ... ,. H G,1 ) for 

j = l, ... ,card(C(U))-1 and Ml( G,, H G,,,.,. ) for i= l, ... ,card(G(U))-1 are counted. 

In this way, the disjoint set of clusters G(U)={G,,,G,,, ... ,G,0 ), where card(G(U)) - states 

required number of clusters, is formed. 
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