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Abstract 

Selection of an appropriate time series model and estimation of its 
parameters may become very challenging tasks for short series of obser­
vations . The well known information criteria often fai l to adequately 
identify the predictive model for the small sample sizes , for which real­
life applications are routinely made. Within this research , we focus on 
small sample sizes and first , analyze performance of selected informa­
t ion criteria. Secondly, we propose an automatic approach for the con­
struction of the prior probability distributions. The proposed method 
incorporates selected data-mining techniques and similarity measures 
into the Bayesian averaging. The performance of the proposed method 
is illustrated with simulation study for stationary processes and exper­
imental study for benchmark datasets. 

1 Introduction 

Although, there is a wealth of forecasting methods for time series and sev­
eral well established information criteria, most of them require significant 
amount of historical data for the effective performance, and therefore, are in­
adequate for short time series. In [1], the authors review and investigate the 
performance of the common information criteria, namely Akaike information 
criteria (AIC, AICc) and Schwarz (Bayesian) Information criterion (BIC), 
concluding that the indiscriminate use of them in selecting the best predic­
tive model may lead to inaccurate results, as their performance is model 
dependent. Especially, results for the small sample sizes, for which real-life 
applications are routinely made, are unsatisfactory, e.g., for the time series 
models ARMA(l , 1), ARMA(l , 2) or , ARMA(2 ,1) similar to the results ob­
tained for the normal models , none of the considered information criteria 
selected the correct model (i.e., the model from which the data were gener­
ated), and in these cases, the true positives (TP) ratios are all below 45% [1] . 
Nonetheless, practitioners are often posed to the dilemma of model selection 
and forecasting despite the shortness of the available data. 

At the same time, one of the main advantages of the Bayesian approach 
to time series analysis and the main challenge for practitioners, is the ability 
to describe the data imprecision in terms of prior probability distributions 
[2]. Many authors show the critical importance of the prior assumptions for 
the Bayesian inference. Hopefully, data mining techniques may support the 
selection of time series models. We use artificially generated template time 
series, and find these series, and in consequence these models , our data are 
similar to. Then, the degrees of similarity are used for the computation of 
prior model weights. The inspiration for the proposed approach comes from 
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the idea of imaginary training samples and the expected posterior priors as 
introduced by [3] . 

The intelligent combination of data mining and Bayesian time series anal­
ysis and forecasting has been proven successful, see e.g., [4 , 5]. or t he recent 
application to process quality control [6]. 

Within this research, we focus on short time series of 50, 100 and 1000 ob­
servations, and first , analyze performance of selected well-known information 
criterion. Secondly, we propose an automatic approach for the construction 
of the prior probability distributions. The proposed method incorporates se­
lected data-mining techniques and similarity measures for the training exam­
ples into the Bayesian averaging. The performance of the proposed method is 
illustrated with simulation study for benchmark datasets. The experimental 
results confirm that t he proposed approach may outperform the well-known 
methods for short samples. 

The structure of this report is as follows. Next Chapter explains the pro­
posed approach. The numerical results of the similarity simulation analysis 
are gathered in Chapter 3. The experimental results for the benchmark data 
are presented in Chapter 4. This report concludes with general remarks and 
further research opportunities in Chapter 5. 

2 Data-mining approach to prior weights 

In this Section, we explain the proposed approach of calculating the similar­
ity measures of training examples, and then the weights for model averaging. 
The approach assumes defining a set of considered predictive time series mod­
els M = {M1 , M2 , . .. , MJ} ). Next, for each of t he J models (processes), its s 

realizations (training examples) are generated and considered for similarity 
calculations. For the clarity reasons, the length of generated series is the 
same as length of the considered time series. 

According to [7] we define a set M = { M1 , M2 , ... , MJ} of multiple com­
petitive predictive models of a considered process. 

Predictive model [2] 
Predictive model A describes a vector of observable random variable Yt over 
a sequence of time t = 1, 2, 3, .... Let Yt- 1 denote a sequence {yi}t:;L 1 . A 
model A specifies a corresponding sequence of probability density functions 
P(YtlYt-1 , BA , A) , where BA E GA is a kA x 1 vector of unobservables. 

Then, t he posterior density of a vector of interest w is defined as follows: 

J 

p(wly, M) = LP(M1 IY, M)p(w ly , M1) (1) 
j = l 
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where p(MJIY, M) are the prior model probability distributions constructed 
from weights.-

Within this research, various AR(p) models are used as competitive pre­
dictive models. 

p 

Yi = L <PiYt-i + at 
i=l 

(2) 

where at ~ N(O, cr2 ) are normally distributed independent random vari­
ables with the expected value equal to zero, and the finite standard deviation 
CJ 2 E (0, 1) and <Pi E (-1, 1). 
Thus, our assumed model describes a classical autoregressive stochastic pro­
cess of the pth order AR(p). For a comprehensive description of the AR(p) 
process see e.g., the seminal book by Box and Jenkins [8] or a popular text­
book by Brockwell and Davis [9]. 

Having defined the training models M, the weights are determined by 
the distances learned between the considered time series and the training 
examples where the training examples are generated from li1. To sum up , 
the definition phase requires providing k - number of alternative models to be 
considered, p - max order of the AR process considered to training examples 
and a - min difference between autoregressive coefficients of AR models. The 
input for the approach is the considered (short) time series y and s - number 
of sample time series from each of the template AR processes. Its output is 
the value of prior model probability distributions (weights). The overview of 
the proposed procedure is presented in Fig. 1. 

•• 
Calculate 
weights 

-Ill -
Figure 1: Overview of the proposed Bayesian forecasting with Data-Mining 
priors (B-DM) approach. 

As presented, the data-mining methods are incorporated for the selec­
tion of alternative models in Bayesian averaging and their prior weights are 

3 



calculated using DTW distance. DTW (Dynamic Time Warping ) [10] is 
the elastic distance measure and enables to calculate the smallest distance 
between two series. 

The approach may be divided into the following two steps: 

1. checking the similarity between two time series; 

2. aggregating similarities for training examples from the same model. 

2.1 Similarity between time series 

The similiarity of two time series is evaluated by calculating the distance 
between them. Within the proposed approach, the DTW ( Dynamic Time 
Warping ) measure as introduced by Berndt and Clifford [10] is adapted. 
DTW is the classical elastic measure and enables to calculate the smallest 
distance between two series of observations taking into account dilatation in 
time. 

Let X = {x1 , x2 , .. . , XN} and Z = { z1 , z2 , ... , ZM} denote time series to be 
compared. The distance d between two points Xi and Zj, the so called local 
cost function , is defined as follows 

d(i,j) = f (xi,zj) 2: 0 (3) 

The magnitude of the difference d(i , j) = lxi - zjl (Manhattan) or square of 
the difference d(i ,j) = (xi - Zj)2 (Euclidean) are some of the most common 
local cost functions considered in applications. 

The DTW distance is based on the following recursive relation, which 
defines a cumulative distance g(i ,j) for i E {1, ... , N} and j E {1 , ... , M} 

g(i , j) = d(i ,j) + min[g(i - l,j) , g(i - 1,j - l) , g(i,j - 1)] (4) 

The cumulative distance is the sum of the distance between current elements 
and t he minimum of the cumulative distances of the neighboring points. 
Two points (xi, zj) and (xi•, Zj.) on the N-by-M grid are called neighboring 
if (Ii - i * I = 1 and U - j * I = 0) or (Ii - i * I = 0 and lj - j * I = 1). 

When two compared series are of the same length the value of g(N, M) 
defines t he distance between them. However, when N -=f. M the situation is 
more complicated, and the elements of both series have to be aligned in some 
way. The alignment of the elements from X and Z such that the distance 
between them is minimized is called a warping path. The DTW problem 
is defined as a minimization of cumulative distances over potential warping 
paths based on the cumulative distance for each path. This problem is solved 
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using dynamic programming, and its complexity is O(N M), and its solution 
is considered as the distance between two compared time series. 

In Figure 2., the performance of the Euclidean and DTW distances is 
compared for exemplary series of observations from AR(-0,9), AR(-0,5) and 
AR(0 ,0) processes. 

4 
DTW Euclidean 

3 
dist( AR {-0.9), AR {0.0)) 3,7 3,7 
dist( AR (-0.5), AR (0.0)) 3,5 4,1 

2 

1 

····· 0 

1 
-1 

-.J 

-2 

-3 
·-AR(-0.9) - - AR(-0.5) ···· AR(O) 

Figure 2: Euclidean and DTW distances for exemplary series of observations 

As observed, the DTW distance between series from AR(0,0) and AR(-
0,9) amounts to 3,7, whereas the distance between series from AR(0,0) and 
AR(-0,5) is smaller, and amounts to 3,5. On the other hand, the Euclidean 
distance between series from AR(0,0) and AR(-0,9) is also 3,7, but the dis­
tance between series from AR(0,0) and AR(-0,5) results 4,1, which is contra­
dictory to intuition. 

Our experiments confirm the good properties of the DTW measure, espe­
cially for time series with identified dilatation in time, because DTW seems to 
preserve trends. For further reading, we refer to, e.g., the recent survey and 
experimental comparison of representation methods and distance measures 
for time series data provided by Wang et al. [11]. Wang et al. conclude that 
especially on small data sets, elastic measures like DTW can be significantly 
more accurate than Euclidean distance and other lock-step measures. 

Calculating distances between the monitored process y and the training 
time series from the template database using the DTW distance. For m E J 
and their realizations i E s , the distance between the training time series and 
the considered monitored series of observations is calculated 

distm,i = DTW(Ym,i, y) (5) 
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2.2 Aggregation of the similarities for training examples 
from the same model 

Aggregating similarities to establish weights corresponding to models { M1 , ... , Mk 
The mean aggregation operator is considered to construct weights for each 
model based on distances retrieved for each of the s sample time series. For 
model Mm where m E J having s realizations, the average distance between 
t he training time series and the considered monitored series of observations 
is calculated as follows 

d . /· I:I=l d·istm,i 
1,S ,m = -----

S 
(6) 

Having evaluated the average distance for each of the template models { M1 , ... , .M, 
the k models with smallest distance are selected. Then, the prior weights 
{ w1 , . .. , w k} are calculated 

dist; 
W;= ~-- (7) 

I:~=l disth 

One of t he simplest scenarios assumes that prior model distributions are 
represented with a uniform distribution driven by w;. 

3 Numerical Results 

In this Chapter, the simulation study checks the effect iveness of the well­
known and commonly used information criterion - BIC for small samples 
from various autoregressive processes in line with [8]. The performance of 
t he criterion is evaluated through Monte Carlo simulations for samples of 
size 100 and 1000. Table 1. and Table 2. summarize the obtained results for 
exemplary AR(l) and AR(2) processes of moderate and strong negative au­
tocorrelation. For respective positive autocorrelation , the results are similar 
and lead to the same conclusions. 
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Table 1: Performance for the BIC for simulated autoregressive processes of 

order 1 and 2 with moderate negative autocorrelation (-0.4) for samples of 

size 100 and 1000. 
Size Act. par. St at . AR (l) est. par AR(l) BIC AR(2) est . par. AR(2) BIC True Ord AR(l) sel. 

1000 -0.4 0.01 TRUE [- 0.9fl991 .,;141 [-1 .oonnnno:1 -o.oom1oon31 nan 2 TRUE 

1000 -0.4 0.81 TRUE [-0.999941731 [-1.99999973 -0.99999973[ nan TRUE 

1000 -0.4 0.71 Tll.118 [-1.I TR1l8 

1000 -0.4 0.61 TRUE [-0.997449281 3 271 TRUE 

1000 -0.4 0.,01 TRIIE [-o.,ao 11 1., 1 [ 3 104 1-0.<10143124 o.409184021 2 Rfi2 FA LSE 

1000 -0.4 0. 41 TRUE [-0.663247551 3 017 [-0.'1237208 0.361109141 2 885 FALSE 

1000 -0.4 0.31 T JUJP, [-0.52760544I 2 906 1-0.31152352 o.295439 rnJ 2 822 FALSP. 

1000 -0.4 0.21 TIW I, [-0.474807861 2 919 [-0 .37817226 0.202490971 2 885 FALSE 

llllJO -0.4 0.11 TlUIE [-0.431454051 2 840 [-0.40223421 0.067632891 2 843 TRIIE 

1000 I -0.4 I TRUE 1-0.35939091 I 2 888 I-0.36264945 -0.009060471 2 894 TRUil 

1000 -0.4 -0.1 1 THUE [-0.404916051 2 898 [-0.45627706 -0.12656484 1 2 889 FALSE 

1000 -0.4 -0.21 TIWE [-0.307654321 'l 925 [-0.37266501 -0.210628891 2 887 2 FALSE 

!000 -0.4 -0.31 TRUE [-0.289932721 2 941 [-0.37257875 -0.284502271 2 86,1 2 FALSE 

1000 -0.4 -0.41 TRUE [- 0.303914971 3 027 l-0.42029523 -0.382940851 2 875 FALSE 

1000 -0.4 -0.51 TRUE [-0.248623511 3 199 1-0 37213851 -0.49696284 1 2 922 FA LSE 

1000 -0.4 -0.61 TRUE [- 0.232042191 3 303 [-0.37391891 -0.6183415 I 2 830 FALSE 

1000 -0.4 -0.71 TRUE [-0.219198181 3 495 [-0.36879389 -0.680959061 2 878 FALSE 

1000 -0.4 -0.81 TRUE [-0.220796621 J 774 [-0.39617456 -0.781517391 2 850 FALSE 

!000 -0.4 -0.91 TRUE [-0.208238121 4 780 [-0.401198 -0.918321121 2 952 FALSE 

WO -0.4 11.91 TllUE l-li.999148321 10 GG8 2 TRUE 

JOO -0.4 0,81 TRUE [-0.999414671 7 269 2 TRUE 

11111 -11.4 11,71 'l'llUE l-li.999G9738( 3 G,18 TRUE 

100 -0.4 0.61 FALSE [-0.99360,1361 339 [-0.469274 0.528030431 313 FALSE 

11111 -11.4 11.51 'l' llUE 1-11. 77G32G71 ( 332 l-11.41117353 11. 4G8GG42ll 312 l·'ALSE 

100 -0.4 0,4 1 TRUE [-0.817024531 299 1-0.45-108944 o.c1411683 I 282 FALSE 

100 -0.4 0.31 'l'llUE I-U.G4732309( 321 I-0.4Gl4985 0.28315l113I 318 l·'A LSE 

100 -0.4 0.21 TRUE [-0.441572871 294 I-0.42128782 0.0,16245761 298 TRUE 

100 -0.4 0. lj TRUE [-0.56551 287 [-0.60549867 -0.070298831 29 1 TRUE 

100 I -0.4 I TRUE I-0.469477711 266 [-0.48555754 -0.038211651 270 TRUE 

100 -0.4 -0. 1J TRUE [-0.4,o031 ono1 271 [-0.466484,\ 1 -0 .0~6S323 l I 276 TRUE 

100 -0.4 -0.21 TRUE [-0.365029121 294 [-0.'1087339 -0.121379791 297 TRUE 

100 -0.4 -0.:ll TR l lE [-o.:11:11:l784I 292 [-0.44678491 -0.41 :l6S3S I 278 FA LSE 

100 -0.4 -0.41 TRUE [-0.413973671 290 [-0.58269877 -0.'100214611 276 FALSE 

100 -0.4 -0 .. ol TRlJr, [-0.247818141 321 [-0.3S92~ 1 O!l -0.4498264.\I 303 FALSP, 

100 -0.4 -0.61 TRUE [-0.382895031 320 [-0.568-16743 -0.-192578651 298 2 FALSE 

100 -0.4 -0.71 TRi l P, [-0.139582581 345 [-0.2435961 -0.681048961 288 FALSP. 

100 -0.4 -0.81 TlUJE [-0.237660291 -1:ll 1-0.4,1.161018 -0.82658981 I 315 FALSE 

100 -0.4 -0.91 TRlrn [-0.220140921 46,1 [-0.42187128 -0.9059012 I 291 FALSP, 
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Table 2: Performance for the BIC for simulated autoregressive processes of 
order 1 and 2 with strong negative autocorrelation (-0.9) for samples of size 
100 and 1000. 
Size Act. par. Stat. AR(l) est. par AR(l) BIC 
1000 -0.9 0.91 FALSE 
1000 -0.9 0.81 FALSE 
1000 -0.9 0.71 FALSP, 
1000 -0.9 0.61 TRUE 
IODD -0.9 0.,51 TR!Jr, 
l00D -0.9 0.4 1 TRUE 
1000 -0.9 0.31 Tlll/r, 
lOOO -0.9 0.21 TRUE 
lOOO -0.9 O. I I Tlll/r, 
JOOO I -0.9 I TRUE 
1000 -0.9 -ll. lJ THUE 
1000 -0.9 -0.21 TJUJE 
l000 -0.9 -D.31 TRUE 
1000 -0.9 -0.41 TRUE 
1000 -0.9 -0 51 TRUE 
1000 -0.9 -D.61 TRUE 
1000 -0.9 -0.71 TRUE 
1000 -0.9 -0.81 TRU E 
1000 -0.9 -0.91 TRUE 

11111 -11.9 \l.9J TRUE 
100 -0.9 0.81 TRUE 
\\Ill -11.9 11.7J 'l'HUE 
100 -0.9 0.61 Till/ E 
\\Ill -11.9 \l.5J TRUE 
100 -0.9 0.41 TRUE 
!Ull -U.9 U.3J TRU E 
100 -0.9 0.21 TRUE 
100 -0.9 0.1 I Till/ E 
100 1-0.9 I TRUE 
100 -0.9 -0.ll TRUE 
100 -0.9 -0.21 TRUE 
100 -0.9 -O.:ll TRllll 
100 -0.9 -0.41 TRUE 
I 00 -0.9 -0.,51 TRl\P, 
100 -0.9 -0.61 TRUE 
JOO -0.9 -0.71 T\l\l P, 
100 -0.9 -0.81 TRUE 
100 -0.9 -0.91 T\l\lP, 

I-0.99flR,5.54.5I 

1-1.J 
I-0.99fl92074I 
I-0.999957721 
I-0.998828071 
1-D 9046719 1J 
I-0.79518711 1 
I-0.72£932971 
1-0 713529271 
l-0.635850171 
1-D 608849751 
1-0 57<1218Ji7I 
I-0.527579771 
I-0.498358051 
l-0.479552521 
J-11.00110111GJ 
I-0.997734831 
1-11.997991891 
1-0.998263751 

I-LI 
1-0 998863861 
1-o.000201nGJ 
1-0. 9995 7583 I 
I-0.936160131 
l-0.950113611 
1-0. 7fi I 7.5.5.5~1 
1-0. 752467761 
I-O.fi4a7177~1 
I-0.677234271 
l-0.fi I fi.571 ~,1 

1-0 5696931 
I-0.556507531 
l-0.486221151 
I-0.4724781J 

2 890 
2 967 
2 809 
2 ts~4 
2 931 
3 070 
3 151 
3 410 
3 507 
3 884 
4 487 

27 726 
25 785 
22 9112 
20 209 
17 155 
13 s:io 
9 714 
5 298 
300 
289 
272 
292 
JJ:l 
348 
Jl2 
378 
387 
395 
375 

AR(2) est. par. 

[-1.ml!199A0,1 -O. A099990fi] 

l-1.99999994 -0.9999999-ll 
l-0.87785919 0.12l089941 
I-0.9'.I029911 -0.017256521 
l-0.89552481 -0.126282121 
I-0.86500172 -0.!Y637283I 
l-0.93058083 -0.304535771 
l-0 .90940107 -0.430971161 
I-0.90103684 -0479761781 
1-0.93639121 -O.li3227373I 
I-0.89509946 -0.697653051 
l-0.89446149 -0.796507121 
1-0.01083249 -0.8D97689 I 
l-1.99999998 -\l.999999D91 
I-J.99999997 -0.999999981 

l-1.99999997 -0.999999981 
l-0.86626565 0.073769721 
l-0.8464681 0.1 099<l096I 

I-0.7038,5:l.54 -0.04 I fi4fl.5,5I 
l-0.83273737 -0.105921431 
I-0.89-541 ~88 -o.:mo1 HaD8I 
l- !.00299091 -0.464110151 
1-o.n:1r;:i4.ofi:l -0.,o 111 :l2:l9I 
I-0.96289554 -0.69074 I 951 
l-0.99089992 -0. 767812531 
l-0.89560854 -0.822677091 
1-o.82484756 -o. 792403 t 1J 

AR(2) BIC True Ord AR(l) sel. 

nan 

nan 
2 883 
2 974 
2 800 
2 852 
2 841 
2 871 
2 897 
2 911 
2 849 
2 886 
2 842 

11;.l.ll 

nan 

nan 
304 
293 
276 
296 
301 
330 
286 
317 
301 
286 
288 

2 FALSE 
FALSE 
FALSP. 
FALSE 
TR! IP, 
TRUE 
TRIJP, 
TIW I, 
FALS\l 
TRUJ, 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
FALSE 
'l'llUE 
TRUE 
'l'fWE 
TRUE 
TRUE 
TRUE 
'L'RU8 
TRl/8 
TRUE 
TRUE 
TRUE 
TRU8 
FALSP. 
FALSE 
FALSP. 
FALSE 
FALSP. 
FALSE 
FALSP. 

Finally, Table 3 shows the summary of the success rate for the BIC cri­
terion when identifying of AR(l) and AR(2) stationary processes. 

As demonstrated in Table 3, for samples of size 20 from the AR(2) pro­
cesses, the BIC mostly identifies the AR(l) process, and the success rate 
amounts to only 45%. Also for sample sizes equal to 100, the proper discrim­
ination between AR(l) and AR(2) success rate seems unsatisfactory and 
equals 38%. 
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Table 3: Success rate of model order selection discriminating between AR(l) 
and AR(2). 

True model 
AR(2) 
AR(2) 
AR(2) 

Criterion 
BIC 
BIC 
BIC 

N 
20 

100 
1000 

AR(l} 
0.55 
0.38 
0.08 

AR(2} 
0.45 
0.63 
0.92 

4 Experimental results for benchmark data 

To show t he performance of the proposed forecasting approach with data­
mining priors, we run experiments on small samples from t he popular bench­
mark repository. The experiments are performed for the subset of time se­
ries with 47 observations from t he M3-Competition Repository by [12]. The 
6-month-long forecast of B-DM are compared to best benchmark methods 
(ForecastPRO, Theta, Robust-Trend, ANN, ForecastX, Naive2) as referenced 
in [12]. 

First, let us analyze t he training examples. Train dataset: sample time 
series generated from template AR(2) processes: 

p 

Yt = L <PiYt--i + at 
i=l 

(8) 

where at ~ N(0,c,2 ), ift = Yt - µ, <Pi E (-1, 1), c,2 = 0.1. We run the simu­
lations on the database of the training examples to realize what is the impact 
of the sample size on the similarity measure performance. The comparative 
analysis for samples with 20 and 100 observations and the performance of the 
similarity measures for the training database is illustrated on the following 
charts. 

1.2 

Mean of relative DTW distance tor AR[-0.9Jtootller AR 
TS le!ngth: 20 vs 100 

.. :-~ ~-~ 
::: .. :~ 
0,2 ---------------

• 
~~~~~~~❖❖~❖~~~~~~~~ 

~..f~..f~'t-~~~i-..fi~~'t-~~'t-~~'t-..f'~~·'t-'t-~-'t-<#:-~~'t-~i~-'t-~i~i~"-tt~i~-
- Seriesl - Serle$9l 

As illustrated, the DTW measure performs better for larger samples 
(n= lO0). However, in all considered examples for small samples (n=20), 
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1,2 

·o,s 

0,6 

0,4 

0,2 

Mean of r~atlve DTW distance for AR[--0.SJ to other AR 
TS length: 20 vs 100 

0 . 

~~~~~~~~❖~❖~~~~~~~~ 
~...f>~'+:-...f>~...P~'+:-~~'+,...f>~'+:-~~~~...f>~...Pi~i~·~-$!~~-.,,.<+:-~i~·.,,.rt-~i~-~~·.,,.rt-~· 

1,2 

- SertesS - Serie-s95 

Mean of relative DTW distance for AR[0.0J to other AR 
TS length: 20 vs 100 

· ... :F-~ 0,4 

0,2 

: 0 

~~~~~~~~❖~ ❖~~~~~~~~ 
.,,_<+:-...f>~'t-...f>~~~'t-~i...f>i...Pi--?i-flix0 ·~~-""~~-"'~~·.,.~~-~~~~~i~i~·~~·,.~~· 

-~10 - ~100 

the actual model was identified properly according to the adapted similarity 
measure. 

Finally, the forecasting accuracy of the proposed Bayesian Forecasting 
with Data-Mining (B-DM) approach is analyzed. To evaluate the perfor­
mance of the proposed method, the symmetric mean absolute percentage 
error (sMAPE) forecasting accuracy measure is used. The following box­
plot shows results scored by the proposed Bayesian with data-mining prioris 
(B-DM) approach and by some of the leading benchmark methods [12]. 
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As observed, the forecasting performance of the proposed B-DM approach 
is highly competitive with the best state-of-the-art forecasting methods. 

5 Conclusion 

As repeated in the literature and shown in this report with simulations, 
the state-of-the-art information criteria may inadequately identify the ac­
t ual probabilistic model when only small sample of a time series is avail­
able. Hopefully, the intelligent combination of data-mining methods and 
the Bayesian time series analysis seems very promising for the forecasting of 
small samples. In this report, we have proposed the B-DM method that in­
corporates selected data-mining techniques and similarity measures into the 
Bayesian averaging. 

The experimental results show that the proposed approach delivers very 
accurate forecasts, especially for the time series with small number of ob­
servations (n= 20, 50, 100). Furthermore, it is observed that the Dynamic 
Time Warping measure helps to identify predictive models better than the 
Euclidean distance. Future research assumes next experimental evaluations, 
the inclusion of other similarity measures to optimize their performance and 
extending the approach for the other classes of predictive models. 
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