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Abstract

Selection of an appropriate time series model and estimation of its
parameters may become very challenging tasks for short series of obser-
vations. The well known information criteria often fail to adequately
identify the predictive model for the small sample sizes, for which real-
life applications are routinely made. Within this research, we focus on
small sample sizes and first, analyze performance of selected informa-
tion criteria. Secondly, we propose an automatic approach for the con-
struction of the prior probability distributions. The proposed method
incorporates selected data-mining techniques and similarity measures
into the Bayesian averaging. The performance of the proposed method
is illustrated with simulation study for stationary processes and exper-
imental study for benchmark datasets.

1 Introduction

Although, there is a wealth of forecasting methods for time series and sev-
eral well established information criteria, most of them require significant
amount of historical data for the effective performance, and therefore, are in-
adequate for short time series. In [1], the authors review and investigate the
performance of the common information criteria, namely Akaike information
criteria (AIC, AICc) and Schwarz (Bayesian) Information criterion (BIC),
concluding that the indiscriminate use of them in selecting the best predic-
tive model may lead to inaccurate results, as their performance is model
dependent. Especially, results for the small sample sizes, for which real-life
applications are routinely made, are unsatisfactory, e.g., for the time series
models ARMA(1, 1), ARMA(1, 2) or, ARMA(2,1) similar to the results ob-
tained for the normal models, none of the considered information criteria
selected the correct model (i.e., the model from which the data were gener-
ated), and in these cases, the true positives (TP) ratios are all below 45% [1].
Nonetheless, practitioners are often posed to the dilemma of model selection
and forecasting despite the shortness of the available data.

At the same time, one of the main advantages of the Bayesian approach
to time series analysis and the main challenge for practitioners, is the ability
to describe the data imprecision in terms of prior probability distributions
[2]. Many authors show the critical importance of the prior assumptions for
the Bayesian inference. Hopefully, data mining techniques may support the
selection of time series models. We use artificially generated template time
series, and find these series, and in consequence these models, our data are
similar to. Then, the degrees of similarity are used for the computation of
prior model weights. The inspiration for the proposed approach comes from



the idea of imaginary training samples and the expected posterior priors as
introduced by [3].

The intelligent combination of data mining and Bayesian time series anal-
ysis and forecasting has been proven successful, see e.g., [4, 5]. or the recent
application to process quality control [6].

Within this research, we focus on short time series of 50, 100 and 1000 ob-
servations, and first, analyze performance of selected well-known information
criterion. Secondly, we propose an automatic approach for the construction
of the prior probability distributions. The proposed method incorporates se-
lected data-mining techniques and similarity measures for the training exam-
ples into the Bayesian averaging. The performance of the proposed method is
illustrated with simulation study for benchmark datasets. The experimental
results confirm that the proposed approach may outperform the well-known
methods for short samples.

The structure of this report is as follows. Next Chapter explains the pro-
posed approach. The numerical results of the similarity simulation analysis
are gathered in Chapter 3. The experimental results for the benchmark data
are presented in Chapter 4. This report concludes with general remarks and
further research opportunities in Chapter 5.

2 Data-mining approach to prior weights

In this Section, we explain the proposed approach of calculating the similar-
ity measures of training examples, and then the weights for model averaging.
The approach assumes defining a set of considered predictive time series mod-
els M = {My, M,, ..., M;}). Next, for each of the J models (processes), its s
realizations (training examples) are generated and considered for similarity
calculations. For the clarity reasons, the length of generated series is the
same as length of the considered time series.

According to [7] we define a set M = {Mj, M, ..., M;} of multiple com-
petitive predictive models of a considered process.

Predictive model [2]
Predictive model A describes a vector of observable random variable vy, over
a sequence of time t = 1,2,3,.... Let Y;_; denote a sequence {y;}:=} ;. A
model A specifies a corresponding sequence of probability density functions
p(y|Yi—1,04, A), where 64 € ©4 is a ka X 1 vector of unobservables.

Then, the posterior density of a vector of interest w is defined as follows:

p(wly, M) =Y p(M;ly, M)p(wly, M) (1)

J=1



where p(M;|y, M) are the prior model probability distributions constructed
from weights.-

Within this research, various AR(p) models are used as competitive pre-
dictive models.

p
Yi = Z Piyp—i + (2)
i=1

where a; ~ N(0,0%) are normally distributed independent random vari-
ables with the expected value equal to zero, and the finite standard deviation
0?2 € (0,1) and ¢; € (—1,1).

Thus, our assumed model describes a classical autoregressive stochastic pro-
cess of the pth order AR(p). For a comprehensive description of the AR(p)
process see e.g., the seminal book by Box and Jenkins [8] or a popular text-
book by Brockwell and Davis [9].

Having defined the training models M, the weights are determined by
the distances learned between the considered time series and the training
examples where the training examples are generated from M. To sum up,
the definition phase requires providing & - number of alternative models to be
considered, p - max order of the AR process considered to training examples
and « - min difference between autoregressive coefficients of AR models. The
input for the approach is the considered (short) time series y and s - number
of sample time series from each of the template AR processes. Its output is
the value of prior model probability distributions (weights). The overview of
the proposed procedure is presented in Fig. 1.
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Figure 1: Overview of the proposed Bayesian forecasting with Data-Mining
priors (B-DM) approach.

As presented, the data-mining methods are incorporated for the selec-
tion of alternative models in Bayesian averaging and their prior weights are



calculated using DTW distance. DTW (Dynamic Time Warping) [10] is
the elastic distance measure and enables to calculate the smallest distance
between two series.

The approach may be divided into the following two steps:

1. checking the similarity between two time series;

2. aggregating similarities for training examples from the same model.

2.1 Similarity between time series

The similiarity of two time series is evaluated by calculating the distance
between them. Within the proposed approach, the DTW (Dynamic Time
Warping) measure as introduced by Berndt and Clifford [10] is adapted.
DTW is the classical elastic measure and enables to calculate the smallest
distance between two series of observations taking into account dilatation in
time.

Let X = {z1,22,...,znx} and Z = {z1, 22, ..., 2 } denote time series to be
compared. The distance d between two points z; and z;, the so called local
cost function, is defined as follows

d(i, j) = f(zi, 2) 2 0 (3)

The magnitude of the difference d(z, j) = |z; — z;| (Manhattan) or square of
the difference d(i,j) = (z; — 2;)? (Euclidean) are some of the most common
local cost functions considered in applications.

The DTW distance is based on the following recursive relation, which
defines a cumulative distance g(¢, ) for z € {1,..., N} and j € {1,..., M'}

g(ivj) - d(Z,]) +min[g(i - 1aj)7g(i - 17j - 1)7g(ivj - 1)] (4)

The cumulative distance is the sum of the distance between current elements
and the minimum of the cumulative distances of the neighboring points.
Two points (z;, z;) and (@i, 2jx) on the N-by-M grid are called neighboring
if(i—ix|=1land|j—j*|=0)or (i —i*x|=0and |j—j=*]|=1).
When two compared series are of the same length the value of g(N, M)
defines the distance between them. However, when N # M the situation is
more complicated, and the elements of both series have to be aligned in some
way. The alignment of the elements from X and Z such that the distance
between them is minimized is called a warping path. The DTW problem
is defined as a minimization of cumulative distances over potential warping
paths based on the cumulative distance for each path. This problem is solved



using dynamic programming, and its complexity is O(NM), and its solution
is considered as the distance between two compared time series.

In Figure 2., the performance of the Euclidean and DTW distances is
compared for exemplary series of observations from AR(-0,9), AR(-0,5) and
AR(0,0) processes.

4 DTW Euclidean

dist( AR (-0.9), AR (0.0) ) 3,7 3,7
dist( AR (-0.5), AR (0.0) ) 3,5 41

3

—~AR(-0.9) -~ —AR(-0.5) -AR(0)

Figure 2: Euclidean and DTW distances for exemplary series of observations

As observed, the DTW distance between series from AR(0,0) and AR(-
0,9) amounts to 3,7, whereas the distance between series from AR(0,0) and
AR(-0,5) is smaller, and amounts to 3,5. On the other hand, the Euclidean
distance between series from AR(0,0) and AR(-0,9) is also 3,7, but the dis-
tance between series from AR(0,0) and AR(-0,5) results 4,1, which is contra-
dictory to intuition.

Our experiments confirm the good properties of the DTW measure, espe-
cially for time series with identified dilatation in time, because DTW seems to
preserve trends. For further reading, we refer to, e.g., the recent survey and
experimental comparison of representation methods and distance measures
for time series data provided by Wang et al. [11]. Wang et al. conclude that
especially on small data sets, clastic measures like D'TW can be significantly
more accurate than Euclidean distance and other lock-step measures.

Calculating distances between the monitored process y and the training
time series from the template database using the DTW distance. For m € J
and their realizations 7 € s, the distance between the training time series and
the considered monitored series of observations is calculated

distmi = DTW (ym.i, y) (5)



2.2 Aggregation of the similarities for training examples
from the same model

Aggregating similarities to establish weights corresponding to models { M, ..., M},
The mean aggregation operator is considered to construct weights for each
model based on distances retrieved for each of the s sample time series. For
model M, where m € J having s realizations, the average distance between
the training time series and the considered monitored series of observations
is calculated as follows a2

o Zi:l d’LStm,i

fist,, = 2i=t @Stmi 6
dis . (6)

Having evaluated the average distance for each of the template models { M, ..., M,
the k models with smallest distance are selected. Then, the prior weights
{wy, ..., wy} are calculated

disti

B Efl,:]_ disth

One of the simplest scenarios assumes that prior model distributions are
represented with a uniform distribution driven by w;.

(7)

Wi

3 Numerical Results

In this Chapter, the simulation study checks the effectiveness of the well-
known and commonly used information criterion - BIC for small samples
from various autoregressive processes in line with [8]. The performance of
the criterion is evaluated through Monte Carlo simulations for samples of
size 100 and 1000. Table 1. and Table 2. summarize the obtained results for
exemplary AR(1) and AR(2) processes of moderate and strong negative au-
tocorrelation. For respective positive autocorrelation, the results are similar
and lead to the same conclusions.



Table 1: Performance for the BIC for simulated autoregressive processes of
order 1 and 2 with moderate negative autocorrelation (-0.4) for samples of
size 100 and 1000,

AR(1) est. par AR(1) BIC AR(2) est. par. AR(2) BIC True Ord AR(1) sel.

1000 [-0.409] TRUE  [0.99991534] [-1.99999993 -0.99999993| nan 2 TRUE
1000 [-0.40.8 TRUE  [0.99994173] . [-1.99999973 -0.99999973| nan 2 TRUE
1000 [-0.40.7] TRUE [1.] ) ) - 2 TRUE
1000 [-0.40.6] TRUE  [0.99744928] 3971 . i 2 TRUE
1000 [-0.40.3] TRUE  [-0.85011151] 3104 [-0.45143124 0.46918402] 2 862 2 FALSE
1000 [-0.40.4] TRUE  [-0.66324755] 3017 [-0.4237208 0.36110914] 2 885 2 FALSE
1000 [-0.403] TRUE  [0.52760544] 2 906 [-0.37152362 0.29343919] 2822 2 FALSE
1000 [-0.402 TRUE  [-0.47480786] 2919 [-0.37817226 0.20249097] 2 885 2 FALSE
1000 [-0.40.1] TRUE  [-0.43145405] 2 840 [-0.40223421 0.06763289] 2843 2 TRUE
1000 [-04]  TRUE  [0.35930001] 2 888 [-0.36264945 -0.00906047] 2894 1 TRUI
1000 [-0.4-0.1] TRUE  [0.40491605] 2 898 [-0.45627706 -0.12656484] 2 889 2 FALSE
1000 [-0.4-02] TRUE  [0.30765432] 2925 [-0.37266501 -0.21062889)] 2 887 2 FALSE
1000 [-0.4-03] TRUE  [0.28093272] 2941 [-0.37257875 -0.28450227] 2 864 2 FALSE
1000 [-0.4-0.4] TRUE  [0.30391497] 3027 [-0.42029523 -0.38294085)] 2875 2 FALSE
1000 [-0.4-0.5] TRUE  [0.24862351] 3199 [-0.37213851 -0.49696284] 2922 2 FALSE
1000 [-0.4-06] TRUE  [0.23204219] 3303 [-0.37391891 -0.61%3415 | 2830 2 FALSE
1000 [-0.4-0.7] TRUE  [0.21919818] 3495 [-0.36879389 -0.68095906] 2878 2 FALSE
1000 [-0.4-08] TRUE  [0.22079662] 3774 [-0.39617456 -0.78151739)] 2 850 2 FALSE
1000 [-0.4-0.9] TRUE  [-0.20823812] 4780 [-0.401198 -0.91832112] 2 952 2 FALSE
100 |-0400/ TRUE  [-0.99911832| 10 658 i - 2 TRUE
100 [-040.8 TRUE  [-0.99941467) 7269 - i 2 TRUE
100 |-0407] TRUE  [-0.99969738| 3 618 . . 2 TRUE
100 [-0.40.6] FALSE  [-0.99360436] 339 [-0.469274 0.52803043] 313 2 FALSE
100 [-0403 TRUE  [-0.77632671] 332 [-0.41117353 0.46866421 312 2 FALSE
100 [-040.4] TRUE  [-0.81702453] 299 [-0.45408944 0.4471683 | 282 2 FALSE
100 |-0403 TRUE  [-0.61732300] 321 [-0.4611985 0.28315013] 318 2 FALSIE
100 [-0.402] TRUE  [-0.44157287] 204 [-0.42128782 0.04624576] 208 2 TRUE
100 [-0.40.1] TRUE [-0.5655] 287 [-0.60549867 -0.07029883] 201 2 TRUE
100 [-0.4] TRUE  [-0.46947771] 266 [-0.48555754 -0.03821165) 270 1 TRUE
100 [-0.4-0.1] TRUE  [-0.45031099] 271 [-0.46648451 -0.03653231] 276 2 TRUE
100 [-0.4-0.2] TRUE  [-0.36502912] 294 [-0.4087339 -0.12137979) 297 2 TRUE
100 [-0.4-0.3] TRUE  [-0.31313784] 292 [-0.44678491 -0.4136535 | 278 2 FALSE
100 [-0.4-0.4] TRUE  [-0.41397367] 290 [-0.58269877 -0.40021461] 276 2 FALSE
100 [-0.4-0.5] TRUE  [-0.24781814] 321 [-0.35923199 -0.44982645] 303 2 FALSE
100 [-0.4-0.6] TRUE  [-0.38289503] 320 [-0.56816743 -0.19257865) 208 2 FALSE
100 [-0.4-0.7] TRUE  [-0.13958258] 345 [-0.2435961 -0.68104896) 288 2 FALSE
100 [-0.4-0.8] TRUE  [-0.23766029] 121 [-0.44467018 -0.82658981] 315 2 FALSIS
100 [-0.4-0.9] TRUE  [-0.22014092] 464 [-0.42187128 -0.9059012 | 291 2 FALSE



Table 2: Performance for the BIC for simulated autoregressive processes of
order 1 and 2 with strong negative autocorrelation (-0.9) for samples of size
100 and 1000,

Size Act. par. Stat. AR(1) est. par AR(1) BIC AR(2) est. par. AR(Z) BIC True Ord AR(1) sel.

1000 [-0.909] FALSE - = - 2 FALSE
1000 [-0.90.8 FALSE - . - - 2 FALSE
1000 [-0.90.7] FALSE - - . . 2 FALSE
1000 [-0.906] TRUE - - - . 2 FALSE
1000 [-0.905] TRUE  [-0.99985545] - [-1.99999905 -0.99999905] nan 2 TRUE
1000 [-0.90.4] TRUE [-1] - ) : 2 TRUE
1000 [-0.90.3] TRUE  [-0.99992074] - - = 2 TRUE
1000 [-0.90.2] TRUE  [-0.99995772] . [-1.99999994 -0.99999994] nan 2 TRUE
1000 [-0.90.1] TRUE  [-0.99882807] 2 890 [-0.87785919 0.12108994] 2 883 2 FALSE
1000 [-0.9] TRUE  [-0.90467191] 2967 [-0.92020911 -0.01725652] 2974 1 TRUE
1000 [-0.9-0.1] TRUE  [0.79518711] 2809 [-0.89552481 -0.12628212] 2 800 2 FALSE
1000 [-09-0.2] TRUE  [-0.72293297] 2 884 [-0.86500172 -0.19637283] 2 852 2 FALSE
1000 [-0.9-03] TRUE  [0.71352927] 2931 [-0.93058083 -0.30453577] 2 841 2 FALSE
1000 [-09-0.4] TRUE  [-0.63585017] 3070 [-0.90940107 -0.43097116] 2 871 2 FALSE
1000 [-09-0.5] TRUE  [-0.60884975) 3151 [-0.90103684 -0.47976178] 2 897 2 FALSE
1000 [-09-06] TRUE  [-0.57421867] 3410 [-0.93639121 -0.63227373] 2911 2 FALSE
1000 [-0.9-0.7] TRUE  [-0.52757977] 3507 [-0.89509946 -0.69765305] 2 849 2 FALSE
1000 [-09-08] TRUE  [-0.49835803] 3 x84 [-0.89446149 -0.79650712] 2 886 2 FALSE
1000 [-0.9-0.9) TRUE  [-0.47955252] 4487 [-0.91083249 -0.8997689 | 2 842 2 FALSE
00 [-0900 TRUE  [-0.99719076| 27726 |-1.99999998 -0.99999999)] nan 2 TRULE
100 [-0.908 TRUE  [-0.99773483] 25785 [-1.99999997 -0.99999998] nan 2 TRUE
100 [-0907] TRUE  [-0.99799189| 22 902 = ) 2 TRUE
100 [-0.90.6] TRUE  [-0.99826375 20 209 . . 2 TRUE
100 [-0.90.5 TRUE l-1.| 17 455 - . 2 TRUE
100 [-0.904] TRUE  [-0.99886386] 13 830 . s 2 TRUE
100 [-0.903 TRUE  [-0.99920196] 9714 - - 2 TRUE
100 [-0.90.2] TRUE  [-0.99957583] 5 298 [-1.99999997 -0.99999998] nan 2 TRUE
100 [-090.1] TRUE  [-0.93616013] 300 [-0.86626565 0.07376972] 304 2 TRUE
100 [-09] TRUE  [0.95011361] 289 [-0.8464681 0.10994096] 293 1 TRUE
100 [-0.9-0.1] TRUE  [0.76175558] 272 [-0.79385354 -0.04164955) 276 2 TRUE
100 [-0.9-0.2] TRUE  [-0.75246776] 292 -0.83273737 -0.10592143] 296 2 TRUE
100 [-0.9-0.3 TRUE  [-0.64571773] 313 [-0.8954 1888 -0.39018598] 301 2 FALSE
100 [-0.9-0.4] TRUE  [-0.67723427] 348 [-1.00209091 -0.46411015] 330 2 FALSE
100 [-0.9-0.5] TRUE  [-0.6155713)] 312 [-0.93634553 -0.51713239] 286 2 FALSE
100 [-0.9-0.6] TRUE [-0.569693)] 378 [-0.96289554 -0.69074195] 317 2 FALSE
100 [-0.9-07] TRUE  [-0.55650753] 387 [-0.99089992 -0.76781253] 301 P FALSE
100 [-0.9-0.8] TRUE  [-0.48622115] 395 [-0.89560854 -0.82267709] 286 2 FALSIS
100 [-0.9-0.9] TRUE  [-0.4724781] 375 [-0.82484756 -0.79240311] 288 2 FALSE

Finally, Table 3 shows the summary of the success rate for the BIC cri-
terion when identifying of AR(1) and AR(2) stationary processes.

As demonstrated in Table 3, for samples of size 20 from the AR(2) pro-
cesses, the BIC mostly identifies the AR(1) process, and the success rate
amounts to only 45%. Also for sample sizes equal to 100, the proper discrim-
ination between AR(1) and AR(2) success rate secems unsatisfactory and
equals 38%.



Table 3: Success rate of model order selection discriminating between AR(1)

and AR(2).
True model Criterion N AR(1) AR(2)
AR(2) BIC 20 0.55 0.45
AR(2) BIC 100 038 063
AR(2) BIC 1000 0.08  0.92

4 Experimental results for benchmark data

To show the performance of the proposed forecasting approach with data-
mining priors, we run experiments on small samples from the popular bench-
mark repository. The experiments are performed for the subset of time se-
ries with 47 observations from the M3-Competition Repository by [12]. The
6-month-long forecast of B-DM are compared to best benchmark methods
(ForecastPRO, Theta, Robust-Trend, ANN, ForecastX, Naive2) as referenced
in [12].

First, let us analyze the training examples. Train dataset: sample time
series generated from template AR(2) processes:

P
Ye = Z Piyi—i + a (8)
i=1

where a; ~ N(0,0?), g =y — i, ¢; € (—1,1), 0 = 0.1. We run the simu-
lations on the database of the training examples to realize what is the impact
of the sample size on the similarity measure performance. The comparative
analysis for samples with 20 and 100 observations and the performance of the
similarity measures for the training database is illustrated on the following
charts.
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As illustrated, the DTW measure performs better for larger samples
(n=100). However, in all considered examples for small samples (n=20),



Mean of relative DTW distance for AR[-0.5] to other AR
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the actual model was identified properly according to the adapted similarity
measure.

Finally, the forecasting accuracy of the proposed Bayesian Forecasting
with Data-Mining (B-DM) approach is analyzed. To evaluate the perfor-
mance of the proposed method, the symmetric mean absolute percentage
error (sMAPE) forecasting accuracy measure is used. The following box-
plot shows results scored by the proposed Bayesian with data-mining prioris
(B-DM) approach and by some of the leading benchmark methods [12].
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As observed, the forecasting performance of the proposed B-DM approach
is highly competitive with the best state-of-the-art forecasting methods.

5 Conclusion

As repeated in the literature and shown in this report with simulations,
the state-of-the-art information criteria may inadequately identify the ac-
tual probabilistic model when only small sample of a time series is avail-
able. Hopefully, the intelligent combination of data-mining methods and
the Bayesian time series analysis seems very promising for the forecasting of
small samples. In this report, we have proposed the B-DM method that in-
corporates selected data-mining techniques and similarity measures into the
Bayesian averaging.

The experimental results show that the proposed approach delivers very
accurate forecasts, especially for the time series with small number of ob-
servations (n=20, 50, 100). Furthermore, it is observed that the Dynamic
Time Warping measure helps to identify predictive models better than the
Euclidean distance. Future research assumes next experimental evaluations,
the inclusion of other similarity measures to optimize their performance and
extending the approach for the other classes of predictive models.
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