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Increased competition on a global market forces producers to follow policies leading 

to finite production runs. This situation requires the implementation of a new type of 

inspection procedures with the aim to improve or sustain production quality levels. 

One of the most important aspects in the design of inspection processes is the 

specification of inspection intervals. This paper provides a simple procedure to 

determine an approximate optima! inspection interval h for a given inspection plan 

characterized by its probability of type-I error a and probability of type-II error /J for 

processes with finite runs. 
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1. Introduction 

Quality is the most important decision factor, however, the occurrence of 

assignable or random causes results in variation of a different degree in the quality 

characteristic of interes!. Thus, it is desirable to inspect the output at different stages 

of a production process in order to correct it and/or to assure its quality. The 

inspection is usually clone on the basis of random samples drawn periodically from the 

process. The process of the design of an inspection procedure consists, mainly, of two 

stages: 

1) specification of the inspection (sampling) plan to be preformed at the end of a 

given inspection interval, and 

2) determination of the inspection (sampling) interval for a given inspection plan. 



In this paper we focus on the second stage of this process. There many approaches to 

determine the inspection interval. However, the economical approach has attracted 

many researchers, who proposed many models and algorithms to determine optima! 

inspection intervals. Further information on this subject can be found in Bather 

(1963), Chiu and Wetherill (1975), Duncan (1956, 1978), Gibra (1970), Ladany 

(1973), Lorenzen and Vance (1986), Montgomery et al (1975), Montgomery (1980, 

1982), Panagos et al (1985), Saniga (1989). The generał economic model for the 

optimization of statistical process control can be found in Keats et al (1997). The 

review of the problems of the optima! design of control charts is given in Ho and Case 

(1994). 

Nowadays industry faces rapid changes in user's requirements, which force firms to 

follow the "just-in-time" policy that allows them to produce a smaller number of 

items in response to customer's immediate request. This environment leads to 

frequent setups of the process, causing shorter (finite) production runs. The new 

circumstances require methods to determine inspection interval different from those 

for infinite production runs. Some research has been done to solve this problem, and 

the most interesting results have been presented in the paper by Del Castillo et al 

(1996). The problem was also considered in the papers by Quesenberry (1991), 

Crowder ( 1992), Del Castillo and Montgomery ( 1994, 1995) who discussed methods 

for the calculation of a sampling interval in the context of the design of control charts. 

Unfortunately, most of the proposed algorithms are too complicated to be used at a 

production line. In this paper we present an easy to compute procedure that solves the 

problem of the determination of the optima! economic inspection interval, h, for a 

process of a finite length. Our approach is based on the results presented in a seminal 

work of von Collani (1986, 1989). As the objective function we propose the loss per 

unit produced. The calculation of this characteristics requires a detailed information 

about the process behavior, the knowledge of statistical properties of the inspection 

procedure. Moreover, we assume that some economic quantities like the gain from the 

correctly operating process and some other cost parameters are also known. 

The paper is organized as follows. In the second section we introduce the 

mathematical model of the inspection process when the production period is finite, i.e. 

in the situation of finite production runs. In the third section we present an economic 



model that describes the consequences of the implementation of the inspection 

procedures. This model is used in the fourth section for the optimization of the 

inspection interval. Finally, in section 5, we discuss the obtained results and present 

their possible generalizations. 

2. The mathematical model of the process 

The process under investigation is assumed to have a finite length of I items, 

and constant production rate of v items per hour. The process starts in a stable state of 

control (in-control State I) centered at the target value µ 0 • We also assume that its 

variability is known, and described by the standard deviation a-. Now, Jet us assume 

that the process can go out of control, and its deterioration which takes the form of a 

shift of a known magnitude ( ± oa-) in the process mean. The deterioration shifts the 

process from the in-control State I to the out-of-control State Il characterized by the 

its mean value, either µ 1 = µ 0 - oa- with probability P(µ = µ 1) or µ 2 = µ 0 + oa­

with probability P(µ = µ 2 ), where 0>0 is the shift size, while the variance remains 

unchanged. Let us formulate some further assumptions. 

1) The states of the process are recognized by inspection only. 

2) The process is not self-correcting, that is, once a transition to State II has 

occurred, the process remains there until some corrective actions are taken to 

return the process to State I. 

3) The duration of State I is a random variable, T', which is exponentially 

distributed with a known parameter A.. 

The inspection procedure consists of a periodical drawing of samples of known size at 

interval of h hours. According to the inspection results, appropriate actions should be 

taken in order to bring the process into State I, however, there are chances for two 

erroneous signals: 

a) a false alarm which occurs with known probability a when the inspection 

gives a signal that the process is in state II when it is not (type- I error); 

b) a non-detection of an existed shift which occurs with known probability /J, i.e. 

indication that the process is in state I whereas it is in state II (type -II error). 



Now, Jet us introduce severa! random variables that will be used for the formulation of 

the objective function. Let UJ be the number of samples drawn during state I of the 

jth cycle. A random event {u J =i} means that during the jth cycle the transition from 

the in-control State I to the out-of-control State II occurs in the time interval 

(ih, (i+ I )h), and is equivalent to a random event {ih < T' < (i+ I )h}. The probability 

mass function of UJ for the exponentially distributed time T* is given by 

P(UJ =i)= (1 - e-,U, Xe- ,U,Y, i= 0,1,2,... j = 1,2, ... (I) 

It is easy to show that U1 has the expectation 

and the variance 

0"2 u 
1-(1-e-,łh) 

(1-e-,łh)2 

(2) 

(3) 

Now, Jet us introduce a random variable v; that describes the number of samples in the 

t cycle drawn during the out-of-control State II. The random event {v; = k} means 

that the shift is detected after the inspection of the kth sample, i.e. that k samples are 

required to detect an existed shift during the /h cycle. Since the probability of not 

detecting the existed shift is equal to /J, the probability of its detection is equal to I- /J. 
Thus, the probability mass function of v; is given by the following formula 

P(vJ =kJ.) - /J)/Jk-l, k = 1,2, . .. ; J = 1,2, . . . (4) 

Hence, the expected number of samples drawn in State II of each cycle is given by 

and its variance is given by 

E(vJ )= µ v = _1_ , 
I- /J 

0"2 =--/J-
v (I-/J)l . 

(5) 

(6) 



Now, let's denote by F;· the number of false alarms during thet cyc!e. Since false 

alarms occur only from sampling in state I, and since each sample in this state triggers 

a false alarm with probability a, the number of false alarms is described by the 

binomial distribution with parameters ( ½, a), where ½ is a random variable 

described previously. Since ½ 's are i.i.d. we can easily find the expectation of the 

conditional random variable F; I ½ that is equal to E (F; I ½) = E (F I U) = aU, and 

its variance that is equal to V (F; I ~) = V(F I U) = a(l-a)U. Consequently, the 

unconditional expected number offalse alarms observed in each cycle is given by 

E(FJ= µ 1, = ).,: , J = 1,2, . .. , 
e -I 

(7) 

and its variance is given by 

a;. = v(FJ= v(F)= v[E(F I u)]+ E[V(F I u)]= v(aU)+ E[a(i-a)u]= 

2 2 { ) a 2e»• a(l -a) =a a11 +a I-a µ11 =-(--\2-+-».--
e». -IJ e - I 

(8) 

The next random variable ~. j =l,2, ... represents the number of samples drawn from 

the process during its /h. It is easy to notice that ~ = ½ + ~ for all j = I, 2, .... 

Assuming the independence of ½ and ~ for all j = I, 2 ... the sequence of random 

variables {wi} ~ are i.i.d. with the expectation 
J• I 

_ _ I I _ eJ..h-/3 _l+B(e»•-1) 
µw - µu + µ v - ---+ -- - -----'--- - ». , (9) 

eJ..h -I l-/3 (l-/J)(eJ..h -1) e -I 

and variance 

2 2 2 eJ..h /3 e»• 
aw =a11 +av = J..h 2 +---2 = ( », )2 +B(B-1), (10) 

(e -1) (1-/3) e -I 

where 

I B=--. 
1-/3 

(11) 

Let Sk be the number of samples taken from the process up to its kth renewal, i.e., Sk 

gives the time of the kth renewal in terms of number of sam pies. Hence, 



Since 

k 

sk = I;w1 , k = 1,2, ... . (12) 
J== I 

fw }~ are i.i.d., then the above sequence of random variables defines an ~ j J•I 

ordinary renewal process. 

Further, as we have assumed that inspections are performed every h hours, then for a 

process with a run of t consecutive items at production rate of v items per hour, the 

expected number of samples completed during the run is t/vh samples. Now, Jet N1 , 

denotes to the number of renewal cycles completed within a production run of t items 

(or h/v samples). To analyze this random variable Jet us use the approach proposed 

by Blackwell (1977) and Yang (1983) who utilized the basie results of Cox (1962). 

Cox (I 962) has shown that the approximate expected value of the number of renewals 

N,. in the time interval (O,t') can be found from the following expression 

t' a 2 -µ2 
E(N,.) = -+--2-+ o(l). 

µ 2µ 
(13) 

Using (13) along with the previous results we arrive at the following approximation 

for the expected number of the renewal cycles completed during the production run of 

length t: 

(14) 

Let F, be a random variable representing the number of false alarms observed during 

the production run oflength t. lt is defined by 

N, 

F, = LFJ ,. (15) 
J=I 

Thus from the well known Wald's equation we find the expected number of false 

alarms for the whole production run from the following formula 

This result will be used for the evaluation of economic consequences of the inspection 

procedure. 



3. The economic consequences (costs and profits) of the inspection procedure 

This is rather obvious that an item produced during the in-control State I of a 

production is on average more profitable than that produced in the out-of-control State 

IL Thus, the process should be kept running in state I as frequently as possible, and 

whenever an alarm is observed some investigations should be conducted and upon 

their results the appropriate corrective actions must be taken to put the process in the 

state of control again. The production process can be considered as a series of renewal 

cycles, each cycle consisting of the in-control State I period, the out-of-control State II 

period, and the idle time period necessary for taking renewal actions. In any renewal 

cycle there are two types of actions associated with the application of an inspection 

procedure, namely, the inspection actions and the renewal actions. 

The inspection actions consist of all actions that are responsible for detecting a 

shift. They consist of the periodical inspection and testing, and the investigations 

of the false alarms. The economic consequences of these actions are represented 

by their respective costs. Let a; be the cost of inspection per sample. Thus, the 

expected cost of inspection for the who le run is 

• t 
S =a,-, vh 

(17) 

Let a2 be the cost of investigating a false alarm (which might include the cost of 

stopping the process during its investigation). Hence, the expected cost for false 

alarms for the whole run is given by 

(18) 

The renewal actions consist of all duties responsible for the transition of the process 

from State II to State I. The economic consequences ofthese actions are of two fold: 

- negative ones, that are represented by the costs of the renewal actions, a;, which 

might include the cost of the possible shutdown of the process while repairing, and 

- positive ones, that are represented by the benefit from the transition to the in-control 

State I . 



Suppose that gł and g 2 are the expected profits from an item produced in State I and 

State II, respectively. Thus, gł - g 2 (:2: O) is the gain per unit from the transition from 

the out-of-control State II to the in-control State I. Since the expected duration of 

State I is 1/). hours, and the production rate is u items per hour, then the expected 

gain per cycle due to inspection is equal to v(gł - g 2 )/).. Let b • be the expected net 

benefit per renewal, i.e., the difference between the expected gain and the expected 

renewal cost per cycle. Thus, we have 

(19) 

and the expected gain from the transitions to state I is given by 

G, =b'E(N,),_,b'(-1-+ a~-:,~). 
vhµw 2µw 

(20) 

However, if do not use any inspection procedure the process remains in State II until 

the end of the production run. Thus, the expected gain from producing in State II for 

the whole run is t g 2 • The economic consequences of the inspection procedures are 

used in the next section for finding an optima! inspection interval. 

4. Optimization of the inspection interval 

Let L(t) be the expected loss incurred in the run. From the considerations presented in 

the previous sections we can find that L(t) is given by the following formula 

L(t) =a;..!_+ a;µFE(N, )-b' E(N, )-tg2 • 
vh 

(21) 

The expected loss per unit produced expressed as a function of h for a given 

production run t, is given now by 

~- b. -a;µF 
(22) 

vh vhµw 

This function has to be minimized in order to determine the optima! inspection 

interval h for a process with a finite run t. 



To reduce the number of the input parameters of the objective function we can 

follow von Collani (I 986, 1989). The following relation gives the time-standardized 

loss function 

(23) 

a; b' /41 I I 
Let a1 = ----.-- , b = ----.-- , y = Ań, r = - , A = - , and B = --. 

a2 a2 v a 1-/3 

Hence, 

or, equivalently. 

S(y/r)=- a1 --~-~ +- ---- ----. 1 j b(eY -I)-1) 1 [b(ey -1)-1][!-B(ey +!)] 
y l+B(eY -1) 2r l+B(eY -1) 1-B(eY -1) 

(25) 

The transformation of the objective function (22) to form of (23) has reduced the 

complexity of the optimization problem because of the following reasons: 

(1) the transformed objective function s(y / r) depends only on two cost parameters, 

namely, a1 and b instead of four parameters in the original objective function L (h I t) 

given by (22); 

(2) the time-standardized objective function S(y I r) depends on the process 

parameters _!_, v , and t only through a new variable r. 
A 

The loss function L(h / t) attains its minimum at h • iff the time-standardized loss 

function s(y / r )attains its minimum at /=Ań'. Thus, it is sufficient to optimize the 

time-standardized loss function s(y / r) given by (25) in order to determine the 

optima! standardized inspection interval y ', and thus the optima! inspection interval 

h'. 



The optimal standardized inspection interval y • is can be found by solving the 

following equation 

d -s(y Ir)= o 
dy 

After some calculations we present (26) in the following form 

Let us introduce the following notation 

C= b-Ba1 

B 
b+ ­

A 

D=_!.[bB(B-1)] 
r b+!!_ 

A 

E=!!_ 
2r 

(26) 

(27) 

(28) 

(29) 

(30) 

After some mathematical transformations we obtain the following compact version of 

(27): 

{1+B[eY(l+ y)-1]}[1+B(ey -1)]-c[1+B(eY -l)r + 
+D[I+B(eY -I)}2eY +E(3-3B-BeY)y 2eY =0 

or, equivalently, 

(31) 



(32) 

The solution of any of the above equations determines the optima! standardized 

inspection interval y • for monitoring a process with a finite production run. The 

solution of these equations requires a numerical procedure. Moreover, the impact of 

the input parameters on the optima! length of the sampling interval is not visible. 

Therefore, there is a practical need to obtain an approximate close formula for the 

optima! inspection interval. To find the approximately optima! inspection interval 

y we expand the left hand side of the equation (32) around y=O, and neglect all terms 

of order higher than two. This expansion seems to be reasonable if the length of the 

inspection interval h is small in comparison to the expected time to deterioration 

1/,ł. After some transformations we arrive at the following equation: 

l +l.{B(l-2B) + 2[D+ (3-4B)Elly 2 ""C, 
2 

(33) 

Hence, the approximately optima! standardized inspection interval is given by the 

following simple formula 

2 C-1 
y"" (1-2B)B + 2D + 2(3-4B)E) (l + r)(l + .ll)[b(l - /J) +a]+ 2af] 

(34) 

Once the approximately optima! standardized inspection interval y is obtained, the 

approximately optima! inspection interval h is given by 

, y 1 2r(I-JJ/(a1 + a) 

h =°"i= °"i (I+ r)(l + /J)[b(l- /J) +a]+ 2a/J . (35) 

The determination of the approximately optima! sampling interval ( h) will be 

summarized in following algorithm. 

5. Discussion 

The approximate inspection interval y depends on a ,(J, a1, b, and r. Thus, it is 

desirable to investigate the effects of these parameters on y and on its accuracy as 



well. The exact optima! standardized inspection interval y • has been computed by the 

minimization of the objective function S(y/r) given by (25) with respect to y using a 

standard minimization routine. The approximately optima! standardized inspection 

interval y has been computed from (32). The following nine tabl es contain the 

comparison of the exact and approximate solutions for various values of a, p, a1 and r. 

To compare the exact and the approximate solutions we present not only their values, 

but the values of the objective function of the respective cases as well. 



Table I 

a fJ QI b r y 
. y S(y· Ir) s(y Ir) 

O.Ol O.Ol O.I 10 IO 0.1475 0.1399 -8.479 -8.477 

50 0.1533 0.1453 -8.5354 -8.5334 

500 0.1546 0.1466 -8.5483 -8.5464 

50 IO 0.0642 0.0626 -46.537 -46.5361 

50 0.0667 0.0650 -46.6653 -46.6644 

500 0.0672 0.0656 -46.6948 -46.694 

500 IO 0.02 0.0198 -488.94 -488.94 

50 0.0208 0.0206 -489.35 -489.35 

500 0.0209 0.0207 -489.444 -489.444 

I IO IO 0.5071 0.4240 -5.6284 -5.5741 

50 0.5268 0.4404 -5.7909 -5 .7384 

500 0.5314 0.4443 -5 .8281 -5.7761 

50 IO 0.2041 0.1897 -39.7362 -39.7114 

50 0.212 0.1970 -40.1169 -40.0929 

500 0.2138 0.1988 -40.2043 -40.1806 

500 IO 0.0613 0.0600 -466.713 -466.705 

50 0.0638 0.0623 -467.946 -467.939 

500 0.0643 0.0629 -468.23 -468.223 

5 IO IO I 0.9444 -0.9613 -0.8267 

50 I 0.9808 -1.2142 
' 

-1.168 

500 I 0.9895 -1.2711 -1.246 

50 IO 0.5048 0.4225 -28.1884 -27.9199 

50 0.5244 0.4388 -28.9989 -28.7396 

500 0.5292 0.4427 -29.1845 -28.9277 

500 IO 0. 1407 0.1336 -426.869 -426.782 

50 0.146 0.1388 -429.58 -429.496 

500 0.1472 0.1400 -430.204 -430.12 



Table 2 

a fJ a, b r y . y S(y' Ir) s(y Ir) 

O.Ol o.os O.I IO 10 0.1426 0.1344 -8.42 I 8 -8.4 I 93 

50 0.1481 0.1396 -8.480 I -8.4776 

500 0.1494 0.1409 -8.4934 -8.491 

50 10 0.0617 0.0602 -46.4006 -46.3994 

50 0.0641 0.0625 -46.5337 -46.5325 

500 0.0647 0.0630 -46.5643 -46.5632 

500 IO 0.0192 0.0190 -488.493 -488.493 

50 0.0199 0.0198 -488.919 -488.919 

500 0.0201 0.0199 -489.018 -489.017 

I 10 IO 0.4972 0.4074 -5.4934 -5.4254 

50 0.5158 0.4231 -5.6585 -5.5935 

500 0.52 0.4269 -5.6963 -5.632 

50 10 0.1979 0.1823 -39.3623 -39.3305 

50 0.2053 0.1893 -39.7543 -39.724 

500 0.2072 0.1910 -39.8444 -39.8144 

500 10 0.0591 0.0576 -465.399 -465.389 

50 0.0614 0.0599 -466.679 -466.669 

500 0.0619 0.0604 -466.973 -466.964 

5 IO IO I 0.9073 -0.797 -0.5573 

50 I 0.9423 -1.0507 -0.9031 

500 I 0.9507 -1. 1078 -0.9822 

50 IO 0.495 0.4060 -27.5139 -27.1777 

50 0.5135 0.4216 -28.3378 -28.0164 

500 0.5182 0.4253 -28.5262 -28.2087 

500 IO 0.1359 0.1284 -424.109 -423.996 

50 0.1411 o. 1333 -426.91 -426.803 

500 0.1424 0.1345 -427.554 -427.448 



Table 3 

a /J a, b r y 
. y S(y' Ir) s(S, Ir) 

O.Ol O.I O.I IO IO 0.1367 0.1278 -8.3468 -8.3434 

50 0.142 0.1328 -8.4075 -8.4042 

500 0.1431 0.134 -8.4214 -8.4182 

50 10 0.0589 0.0572 -46.2214 -46.2198 

50 0.0612 0.0594 -46.3607 -46.3593 

500 0.0616 0.0599 -46.3928 -46.3913 

500 10 0.0183 0.0181 -487.906 -487.906 

50 0.019 0.0188 -488.354 -488.353 

500 0.0191 0.019 -488.457 -488.456 

I IO 10 0.4851 0.3874 -5.3171 -5.2295 

50 0.5027 0.4023 -5.4857 -5.4027 

500 0.5068 0.4059 -5.5242 -5.4424 

50 10 0.1902 0.1733 -38.8717 -38.8298 

50 0.1973 0.18 -39.2787 -39.2391 

500 0.1991 0.1816 -39.3721 -39.3331 

500 10 0.0564 0.0548 -463.673 -463.66 

50 0.0586 0.0569 -465.014 -465.001 

500 0.0591 0.0574 -465.322 -465.309 

5 10 IO I 0.8628 -0.5852 -0.2002 

50 1 0.896 -0.8394 -0.5526 

500 1 0.904 -0.8966 -0.6331 

50 IO 0.4829 0.386 -26.6331 -26. 1998 

50 0.5005 0.4009 -27.4744 -27.0643 

500 0.5047 0.4045 -27.6665 -27.2622 

500 IO o. 1302 0.1221 -420.485 -420.335 

50 0.1351 0.1268 -423.404 -423.263 

500 0.1362 0.1279 -424.075 -423.936 



Table 4 

a /3 QI b r y s, S(y' Ir) s(s, Ir) 

0.05 O.Ol O.I 10 10 0.1736 0.1631 -8.2688 -8 .2657 

50 0.1803 0.1694 -8.333 -8.3299 

500 0.1819 0.1709 -8.3477 -8.3447 

50 IO 0.0751 0.0731 -46.003 -46.0015 

50 0.0779 0.0759 -46.1511 -46.1497 

500 0.0787 0.0766 -46.1851 -46.1838 

500 IO 0.0233 0.0231 -487.133 -487.132 

50 0.0242 0.024 -487.609 -487.609 

500 0.0245 0.0242 -487.719 -487.719 

I 10 IO 0.5179 0.4315 -5.5831 -5.5256 

50 0.5379 0.4481 -5.7472 -5.6917 

500 0.5428 0.4521 -5.7847 -5.7298 

50 IO 0.2084 0.1934 -39.5803 -39.5541 

50 0.2163 0.2008 -39.9667 -39.9414 

500 0.2183 0.2026 -40.0555 -40.0304 

500 IO 0.0626 0.0612 -466.108 -466.1 

50 0.065 0.0635 -467.364 -467.356 

500 0.0655 0.0641 -467.653 -467.645 

5 IO IO I 0.9463 -0.9474 -0.8162 

50 I 0.9827 -1.1997 -1.1578 

500 I 0.9915 -1.2565 -1.2359 

50 IO 0.507 0.424 -28.1422 -27.8705 

50 0.5266 0.4404 -28.9543 -28.6921 

500 0.5314 0.4443 -29.1403 -28.8805 

500 IO 0.1412 0.1342 -426.624 -426.536 

50 0.1465 0.1393 -429.345 -429.26 

500 0.1479 0.1406 -429.97 -429.886 



Table 5 

a /3 QI b r y . y S(y· Ir) s{y Ir) 

0.05 0.05 . I JO IO 0.168 0.1567 -8.2048 -8.2007 

50 0.1744 0.1627 -8.2709 -8.267 

500 0.176 0.1642 -8.2861 -8.2822 

50 JO 0.0724 0.0702 -45.8466 -45.8448 

50 0.0751 0.0729 -46 -45.9983 

500 0.0758 0.0736 -46.0354 -46.0336 

500 JO 0.0224 0.0222 -486.614 -486.613 

50 0.0233 0.0231 -487.11 -487.109 

500 0.0235 0.0233 -487.224 -487.223 

I JO IO 0.5077 0.4145 -5.4475 -5.3757 

50 0.527 0.4305 -5.6142 -5 .5455 

500 0.5313 0.4343 -5.6523 -5 .5844 

50 10 0.202 0.1858 -39.2018 -39.1681 

50 0.2096 0.1929 -39.5996 -39.5675 

500 0.2115 0.1946 -39.6909 -39.6592 

500 10 0.0603 0.0588 -464.772 -464.761 

50 0.0626 0.061 -466.075 -466.064 

500 0.0632 0.0616 -466.374 -466.364 

5 IO IO 1 0.909 -0.7834 -0.5461 

50 1 0.944 -1.0366 -0.8923 

500 I 0.9525 -1.0935 -0.9714 

50 JO 0.4972 0.4074 -27.4671 -27. 1271 

50 0.5159 0.4231 -28.2925 -27.9676 

500 0.5204 0.4269 -28.4814 -28. 1602 

500 IO o. 1363 0.1289 -423.856 -423.742 

50 0.1416 0.1339 -426.666 -426.558 

500 0.1429 0.135 -427.312 -427.205 



Table 6 

p a, b y 
. y S(y' Ir) S(y Ir) a r 

0.05 O.I O.I IO IO 0.1612 0.149 -8.1209 -8.1155 

50 0.1674 0.1547 -8.1895 -8 .1844 

500 0.1687 0.1561 -8.2053 -8.2003 

50 IO 0.0691 0.0668 -45.6414 -45.6389 

50 0.0717 0.0693 -45.8018 -45.7995 

500 0.0724 0.o7 -45.8387 -45.8364 

500 IO 0.0213 0.0211 -485.933 -485.932 

50 0.0222 0.0219 -486.453 -486.452 

500 0.0223 0.0221 -486.573 -486.572 

I IO IO 0.4959 0.3941 -5.2706 -5.1781 

50 0.5136 0.4093 -5.4406 -5.353 

500 0.5179 0.4129 -5.4794 -5.3931 

50 IO 0.1942 0.1766 -38.7051 -38.6607 

50 0.2013 0.1834 -39.118 -39.0761 

500 0.2032 0.1851 -39.2127 -39.1714 

500 IO 0.0575 0.0559 -463.016 -463.002 

50 0.0597 0.058 -464.381 -464.367 

500 0.0602 0.0586 -464.695 -464.681 

5 IO IO I 0.8643 -0.5722 -0.188 

50 I 0.8976 -0.8258 -0.5409 

500 I 0.9056 -0.8828 -0.6215 

50 IO 0.4852 0.3874 -26.5856 -26.1475 

50 0.5027 0.4023 -27.4284 -27.0137 

500 0.5068 0.4059 -27.6209 -27.212 

500 IO 0.1306 0.1226 -420.221 -420.07 

50 0.1357 0.1273 -423.15 -423.008 

500 0.1369 0.1284 -423 .823 -423.683 



Table 7 

a p a, b r y . y S(y' Ir) s(s, Ir) 

O.I O.Ol O.I 10 10 0.2019 0.1878 -8.0506 -8 .0457 

50 0.2098 0.1951 -8.1227 -8.118 

500 0.2116 0.1968 -8.1393 -8.1347 

50 IO 0.0871 0.0843 -45.437 -45.4347 

50 0.0905 0.0876 -45.6059 -45.6038 

500 0.0911 0.0884 -45.6449 -45 .6427 

500 10 0.0269 0.0267 -485. I 96 -485.195 

50 0.028 0.0277 -485.744 -485.744 

500 0.0282 0.028 -485.871 -485.87 

I 10 10 0.5311 0.4405 -5.5284 -5.467 

50 0.5518 0.4575 -5.6944 -5.6352 

500 0.5566 0.4616 -5.7325 -5.6738 

50 IO 0.2136 0.1978 -39.3908 -39.3627 

50 0.2218 0.2054 -39.7842 -39.7571 

500 0.2237 0.2073 -39.8746 -39.8477 

500 10 0.0641 0.0626 -465.37 -465.361 

50 0.0667 0.065 -466.653 -466.644 

500 0.0672 0.0656 -466.949 -466.94 

5 10 10 I 0.9486 -0 .93 -0.803 

50 I 0.9851 -1.1816 -1.1451 

500 I 0.9939 -1.2383 -1.2233 

50 10 0.5098 0.4259 -28.0848 -27.8092 

50 0.5295 0.4423 -28.899 -28.633 

500 0.5342 0.4463 -29.0855 -28.822 

500 IO 0.1419 0.1348 -426.32 -426.231 

50 0.1473 0.14 -429.052 -428.966 

500 0.1486 0.1413 -429.68 -429.595 



Table 8 

a p a, b r y y S(y' Ir) s(y Ir) 

O.I 0.05 O.I IO IO 0.1956 0.1804 -7.9797 -7.9735 

50 0.2032 0.1874 -8.0539 -8 .048 

500 0.2049 0.1891 -8.071 -8.0651 

50 IO 0.0839 0.081 -45.2598 -45.2569 

50 0.0871 0.0842 -45.4347 -45.432 

500 0.0881 0.0849 -45.475 -45.4723 

500 10 0.0259 0.0256 -484.601 -484.6 

50 0.0269 0.0266 -485.171 -485. 17 

500 0.0272 0.0269 -485.302 -485.301 

I 10 IO 0.5211 0.4231 -5.3922 -5.3154 

50 0.5407 0.4394 -5.5607 -5.4874 

500 0.5451 0.4434 -5.5993 -5.5268 

50 IO 0.2069 0.19 -39.0066 -38.9706 

50 0.2149 0.1973 -39.4114 -39.377 

500 0.2168 0.1991 -39.5044 -39.4704 

500 10 0.0617 0.0602 -464.006 -463.994 

50 0.0641 0.0625 -465.337 -465.325 

500 0.0648 0.063 -465.643 -465.632 

5 IO IO 1 0.9111 -0.7666 -0.5321 

50 I 0.9462 -1.019 -0.8788 

500 I 0.9547 -1.0758 -0.958 

50 IO 0.5 0.4092 -27.409 -27.0642 

50 0.5189 0.4249 -28.2364 -27.9069 

500 0.523 0.4287 -28.4257 -28.1 

500 10 0.1371 0.1295 -423.542 -423.426 

50 0.1423 0.1345 -426.363 -426.253 

500 0.1436 o. 1357 -427.012 -426.903 



Table 9 

a p al b r y s, S(y' Ir) s(s, Ir) 

O.I O.I JO JO 0.188 0.1715 -7.887 -7.8787 

50 0.195 0.1781 -7.9638 -7.9561 

500 0.1969 0.1797 -7.9815 -7.9738 

50 JO 0.0802 0.0771 -45.0273 -45.0235 

50 0.0832 0.08 -45.21 -45 .2064 

500 0.0839 0.0807 -45.2521 -45.2485 

500 JO 0.0247 0.0244 -483.819 -483.818 

50 0.0256 0.0253 -484.417 -484.416 

500 0.0259 0.0256 -484.554 -484.553 

I 10 JO 0.5089 0.4023 -5 .2145 -5.1158 

50 0.5273 0.4178 -5.3863 -5.2929 

500 0.5316 0.4215 -5.4255 -5.3334 

50 10 0.1991 0.1807 -38.5027 -38.4552 

50 0.2066 0.1877 -38.9226 -38.8777 

500 0.2083 0.1893 -39.0189 -38.9748 

500 JO 0.0589 0.0572 -462.214 -462. 198 

50 0.061 I 0.0594 -463.608 -463.593 

500 0.0618 0.0599 -463.928 -463.914 

5 IO JO I 0.8661 -0.556 -0.1728 

50 I 0.8995 -0.8088 -0.5263 

500 I 0.9076 -0.8657 -0.6071 

50 JO 0.4876 0.3891 -26.5267 -26.0825 

50 0.5054 0.4041 -27.3713 -26.9509 

500 0.5097 0.4077 -27.5642 -27.1497 

500 JO 0.1314 0.1232 -419.894 -419.74 

50 0.1363 0.1279 -422.834 -422.69 

500 0.1376 0. 129 -423.51 -423.367 



From the analysis ofTables I - 9 we arrive at the following conclusions 

a) The approximately optima! inspection interval y is always shorter than the 

optima! inspection interval y• for all considered values of a ,~, a, ,b, and r. 

b) The smaller is the values of the inspection costs a, the better is the 

approximation. 

c) The value ofr almost has no effect on the accuracy of the approximation. 

d) The benefit per cycle b has a dominant effect on the accuracy of the 

approximation procedure. The larger is the value of b the better is the 

approximation. 

e) Probabilities of false decisions a and p have minor effect on the accuracy of 

the approximation. However, by increasing their values we observe a slight 

improvement of the approximation. 

Further analysis of Tables I - 9 reveals that from a practical point of view there is no 

difference between the approximate and the exact values of standardized inspection 

interval. Moreover, even if such a difference exists then the difference between the 

corresponding losses is negligible. 

The existence of the closed formula for the approximately optima! inspection interval 

Jet us formulate some practical observations. 

a) Longer inspection intervals correspond to smaller expected shifts of the 

process mean. 

b) Any change in the inspection cost produces a change in the same direction for 

the optima! inspection interval. 

c) The benefit from the inspection affects the interval between inspections in 

such a way that any change of the benefit b results in the change of the 

optima! inspection interval in the opposite direction. 

d) Any change in the probability of false alarms a produces the change of the 

optima! inspection interval in the same direction. 



e) Changes in /3 produce changes in the optima! inspection interval in the 

opposite direction. 

f) Increase of the cost of a false alarm results in a decrease of the inspection 

interval. 

g) Changing the renewal cost changes the interval between inspections in the 

same direction. 

h) Small values of the ratio of the production run length to the length of the in­

control period, r, have minor effect on the optima! inspection interval. 

i) Changes of the mean number of occurrences of the assignable cause in a time 

unit changes the inspection interval in the same direction. The same 

conclusion holds for the production run length. 

j) Changing the production rate changes the inspection interval in the opposite 

direction. 

In the considered model we have assumed that the time between consecutive disorders 

of the process is described by the exponentially distributed random variable. A 

possible generalization of the model can be obtained using the approach proposed by 

Hryniewicz (1992). Another generalization can be obtained when we assume that the 

search for the assignable cause may not be perfect, as it was proposed in Hryniewicz 

(1996). When the inspection procedures, e.g. particular control charts, are specified 

there is also a possibility to look for the optima! values of their parameters. 
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