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Abstract

In this paper we provide a deeper insight into our recent primal-dual proximal algorithm with
memory for solving operator inclusion problem with maximally monotone operators. We propose block-
asynchronous version of the best approximation primal-dual proximal algorithm with memory. We
concentrate on particular instances which cover the practical problems arising e.g. in image processing. We
consider the standard minimization problem of the a sum of lower semicontinuous convex functions, some
of them being composed with linear bounded operators. This problems is known to be solved effectively
provided that the proximal operators related to the functions involved take closed form expressions. In
particular, we formulate optimality conditions for solving the considered problem under less restrictive

regularity conditions. The proposed method is illustrated with image reconstruction problem.

I. INTRODUCTION
Optimization problems arising in image processing often take the form of minimization of a finite sum
of convex proper lower semicontinuous functions.
Let H;, G, i = 1,...,M, k = 1,..., K be real Hilbert spaces. Let f; : H; -+ RU {+oo} and
gk : Gi — RU {400} be proper lower semicontinuous convex not necessarily differentiable functions
and let L;, : H; — G} be bounded linear operators, i = 1,.... M, k=1,... K.

In this article we are interested in solving the following optimization problem

M K M
1 7 » " L ) . 1
e in lzlfl(pv)+;gk (;‘ mlh) (1

In particular when A/ = K =1 we get

min Fp(p) := f(p) + g(Lp) ()
peH
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and for M =1, K =2 we get

}?éi}} Fp(p) := f(p) + 91(L1p) + g2(L2p). 3

The problem of providing solution procedures for problems (1)-(3) has been addressed in numerous
papers, e.g. [9]. [10], [11], [12], [13], [14]. [15], [21].

In [9] an inertial ADMM algorithm has been proposed for the minimization of the sum of two
convex proper Ls.c functions, one of which being composed with a linear operator as well as an
algorithm for minimization of the sum of finite number of convex proper l.s.c functions. In [10] an
inertial forward-backward-forward primal-dual splitting algorithm was proposed for minimizing a finite
number of infimal convolution functions composed with linear operators and a convex differentiable
function with lipschitzian gradient. In [11] an inertial Douglas-Rachford algorithm has been proposed
for minimizing a finite number of infimal convolution functions composed with linear operators. In [14]
and [15] generalization of the algorithm of [9] by incorporating more general linear constraints. In [21]
an inertial forward-backward algorithm has been proposed to solve saddle point problem corresponding
to the minimization of two functions composed with linear operators. The importance of preconditioning
procedures applied to saddle point problems and minimization of the sum of two convex functions has
been elucidated in [12], [13] (see also [21]).

The present paper is related to our recent paper [4] in which we proposed a primal-dual proximal
best approximation algorithm with memory to solve (1). Now we aim at adapting the idea proposed in
[16] into our algorithm with memory. This idea relies on asynchronous and block-wise realization of the
Fejérian step.

The organization of the paper is as follows. In section 2 we provide necessary theoretical backgrounds
and we define the primal-dual approach to solve (1). In section IIT we recall projection schemes to solve
(1). In particular, Iterative Scheme 3 under Assumption 2 is a best approximation algorithm with memory
investigated in [4]. To make Iterative Scheme 3 operational, in section IV we provide explicit formulas for
projections onto three halfspaces. In section V we provide an asynchronous version of Iterative Scheme

3. In section VI we discuss the results of numerical experiments.

II. THEORETICAT. BACKGROUND

To construct conjugate dual problems we apply the standard approach via perturbation functions as

described e.g. in [5], [7] [8].
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Let H;, Gy, i=1,...,M, k =1,...,K be real Hilbert spaces. Let p = (p1,...,pm) € BN, H,.
Let B:= @Y Hix @), Gy and let A: @M, H; - BF_, G be a bounded linear operator defined

* M M
Alp) = (Z Lilpi;m,zLiKpi) ) (C))
i=1 i=1

and let f : @11\:11 H; 5> RU{+occ}, §: @/{-(;1 Gj, = RU {400} be defined as
. M K
F) =3 filp), G, vi) = Y gkl(v),
i—1 k=1
where vy € G, for k=1,..., K.

With this notation the problem (1) is equivalent to

)+ @ A)p). 5

min
PEDL, H:

The perturbation function ® : £ — R U {+oco} related to problem (5) is
®(p,v) := f(p) + §(Ap +v),
where v = (vy,...,vK) € @,’f,] Gy, The conjugate ®* : E — R U {+o0} is

(I)*(p*v“*) = Sup(p,ﬂ)EE((p* ‘ p) + <’”* 1 77) - f(p) - g(Ap + 7’))
= " - A% + 5 (0,
where p* = (p},...,p};). v* = (vf,...,v)), where v; € G for k =1,..., K. Then the dual to (5) is
max — —®*(0,v"), (©)
v €@, Gx

and the dual to (1) is

M K K
min Y f <~ >, L;;vz) + > gk, ©)
=1 ko1 k 1

veEDE | Gi
Where Ly, : G — H; is the Hermitian conjugate of L;;,. To get basic duality relations for problems
(1) and (7) a number of different regularity conditions can be used (see Chapter I of [7]). As shown in
[[7], page 14] one of the weakest regularity conditions is based on the strong quasi-relative interior of a
set and has the form
K M
0 € sqri(domg — Adomf) = sqri(H dom gy, — AHdom fi)s (8)
kL i=1
where for any function A : X — R U {+o00} domh := {z € X | f(z) < +oo} and the strong
quasi-relative interior of a set S is defined as

sqri S:={z €S| U A(S — ) is a closed linear subspace of H}.
A>0
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The concept of strong quasi-relative interior was introduced independently by [6], [19], [27], [28].

With the regularity condition (8) we get the following duality relation.

Theorem ILI.1 (/28, Corollary 2.8.5], [8] ) Suppose that the regularity condition (8) holds. Then the
Jollowing are equivalent:
1) (1) and (7) is solvable

2) set
K M
A ;:{(pl, DALV V) EE | — ZLL'UZ € ﬁﬁ(pi),ZLmPi € gk (vp),
k=1 il )

is nonempty.
In the sequel we concentrate on finding an element from the set Z. For convenience of the reader we

close this section by recalling the concept of proximity operator which is one of our main tools.

Definition IL.2 For any © € H and any proper convex and lower semi-continuous function f : H —

RU{+20} the proximity operator prox 7(x) is defined as the unique solution to the optimization problem
. 1 2
min y)+ =llx —1 .
min (f(./) 5llz = vl )

Theorem IL3 /3, Example 23.3] Let [ : H — R U {-+c0} be a proper convex lower semi-continuous
Junction, x € H and v > 0. Then
Jyos(@) = prox,(a),

where Ja(z) = (Id — A)~' ().

ITI. BEST APPROXIMATION PRIMAL-DUAL SPLITTING ALGORITHM WITH MEMORY

In this section we formulate best approximation primal-dual splitting algorithm with memory for
problem (1). Letp = (p1,...,par) € HLA:'I Hi,v* = (vf....,v%) € H,’:Zl Gr.Let A: Hyx---xHpy —
G x -+ x Gk be the bounded linear operator defined by (4).
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For any an = (i, amn) € [Ii) His ba = (bun,- - bxn) € [Ty G let Ha = {(p,v*) €
E | ¢n(p,v*) <0}, where for any n € N
Pn(p,") £ = (p — an | @} — A') + (dp— by | By — v"),

M

(l; = (aT,nr ¥ o 1a1.:\’[,7),) € Hafi(a[,‘n)a

i=1
K
b; = (bT.nﬂ g b;(,n) € H agk(bk,n)-
kL
Let 2y 1= (Pins- s PMns Vs - -5 Vsc)s P 2= (D1, .- Paim) and vy = (0] ,,...,v)) for any

n € N. The starting point of our consideration is the classical projective splitting scheme.

Algorithm 1 Generic primal-dual projection splitting Iterative Scheme

Choose an initial point zy € E
Choose a sequence of parameters {\,},>0 € (0,2)
forn=0,1... do

Tny1 = 2p + An (P, (Tn) — 2n)

end for

It was shown in [18], that in case when M =1, f; =0and Ly, = Id, k =1,..., K, Iterative Scheme

1 has the following properties.

Proposition IIL.1 (/18, Proposition 3.1]) Any sequence {z,}nen generated by lterative Scheme 1 be-
haves as follows.
1) For any & € Z, the sequence {||z,, — Z|| }nex is nonincreasing — that is {xn }nen is Fejér monotone
with respect to Z.
2) If &y, € Z for some ng > 0, then x, = zp, for all n > ng.
3) If {zn}nen has a strong accumulation point in S, then the whole sequence converges to that point.
4) If Z is nonempty, then {x,} is bounded. Moreover, if there exists A\, X such that 0 < A < Ay < X < 2
Sfor all n, then

+oo

Z lznt1 — mn||2 < +o00
n=0

In the general case of problem (1) the following properties of Iterative Scheme 1 has been shown in [16]

(see also [1]).

Proposition IIL2 (/16, Proposition 4], see also [ 1, Proposition 3.2]) Suppose that Z # ). Then sequence

Zn, generated by Iterative Scheme 1 has the following properties
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1) {zn}nen is Fejér monotone with respect to Z.
+oo s
2) Z >\n(2 = )\n)H-Tn+1 = -Tn”z < 4o
n=
3) Suppose that for every p € H, every v* € G and every strictly increasing sequence {kn}nen € N,

ok, = p, vi, =V = (pv")eZ
Then z, = & = (p,v*) € Z.
4) Suppose that the sequences {ay }nen, {ay}nex, {bn}nen, {0} }nen are bounded. Then
Tim ((pn — an | aj, + A%0p) + (Apy = ba | 0 = 03) 0.
We consider the following choices of (aiu,a;,) € gradfi, i = 1,.... M, (bkn,bf,) € gradg,

k=1,...,K,neN, where for any set-valued mapping B, graB denotes the graph of B.

Assumption 1

1) In case when M =1, f:=f1 =0, Ly =Id fork=1,..., K

k—1 k—1
bkn 2= Prox,, o ((1 — Y Qkjn)Pn + QkonGn + 3 kjnbjn + uk_nv;‘._",)
J=0 Jj=1 '

K
an = prox, ¢ (pn — T 3 Vi);
k=1
where g n, Y, Qkjn € R, 0 < j <k < K, n € N satisfy some additional requirements (see

Algorithm 3 of [18]).

2) In the general case of problem (1)
@jp 2= Prox. i (pv',n — Tn Z/{-(:I L;(k.“l):,n,) i=1,... . M
A
bk,n F=Pproxy, g, ( Z Lkipi,n + .unv/t-’n) k=1,...,K,
i=1
where Yn, pn € [€.1/€] for e >0, n € N.

Observe that if M = 1, then a, := a1,, for all n € N. The following Proposition is proved in [1] (see

also [18]).

Proposition IIL3 With {a;n}nen, {bk.n}nen satisfying requirement 1 or 2 of Assumption 1 the sequence
{x}nen generated by Iterative Scheme 1 behaves as follows.
+oo ) +oo .
1) Y pimst — pimll? < 4oc forall i = 1,....,M and Y |v}, (= vgnl|? < +oo for all k =
n=1 n=1
1,... K.
| oo , | ¢ ,
2) 3 pin — @inll* < +ooforalli=1,...,M and Y. |[v},, — bgall* < +ooforall k=1,... K.
n=1 n=1 !
3) pin —piforalli=1,...,M ana’v,’;m — o forallk =1,...,K, & := (p1,...,pMm,05,...,0)) €
Z.
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For any z,y € E let us define H(z.y) := {h € E | (h—y | z —y) < 0}. The following strongly
convergent projection method relies on the idea which goes back to Haugazeau [3], see also [20], [25],

[26].

Algorithm 2 Abstract Haugazeau Algorithm

Choose an initial point zg = (po, v(;)
forn=0,1... do

T i1/ = T+ A (P, (Tn) — T0)

Tn1 = Pi(ayz)ncn (z0), where Z C Cy,

end for

Proposition 1114 (/16, Proposition 6], see also [2, Proposition 2.1]) Suppose Z # \. Let € > 0 and

An € (e.1] for n € N. For any sequence {xy }nen generated by Iterative Scheme 2 the following hold.

1) {pn}nen and {v}}nen are bounded.

+o0 2 +o00 B
2) Zoupnr.rl = pall* < +oc and ZDH‘UZ. 1 =2l <+
n= n=

| 0o ; | oo .
3) 3 Ipniije —pull® < oo and 35 v7yp — w1 < 40
n= =

4) Surppose that the sequences {a“}.,l;N, {a}}nen. {bn}unen, {b}}nex are bounded. Then
Tim ((pn— an | a; + A*’U:),) + (Apn — by | b:l - 7’;) <0.
5) Suppose that, for every (p,v*) € Z and every strictly increasing sequence {q, }nex in N,
[Py, =p and vy —v*] = (pv*)€Z
Then {py }nen converges strongly to p and {v};}nen converges strongly to v and (p.v*) € Z

In [2] the following Tterative Scheme 3 has been proposed with Cy, = H (2, Ty 1 1/2)-
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Algorithm 3 Proximal primal-dual best approximation iterative scheme for finite number of functions

Choose an initial point 2y = (pp,v;) € £ and e > 0,
20 = (P1,0s- -, PM.0)s V5 = (V105 --+ Vi 0)
Choose sequences of parameters {A, }n>0 € (0, 1] and {v }n>0, {fin }n>0 € [€,1/€]
forn=0,1... do
Fejerian step
fori=1,...,M do
Qi = Proxy 1. (Pin — Tn Z,ﬁl Ljvii )
0 = % (Pin = tin) = 4y Lisvi
end for
for k=1,...,K do
bk = prox,, g, (S| Likpin + v )
tn =t (CM) Likpin — ben) + 05,
SMakn = b — M Lirain
end for
fori=1,...,M do
st = alp + I Libh
end for

S5 = (ST s Shime Shr 1o+ ShrgKon)
=X (ain | ain) + i1 (ban | b .n)
Hy={heE|(h|s};) <nn}

if ||s3]| = O then

D =pn, V* =,
Terminate
else
Tpi1/2 = Tn + M(Ph, (2n) — 20)
Haugazeau step
Tn1 = Ph(yuen)ne, (Zo)
end if

end for

Proposition IIL5 /2, Propoistion 4.2] Let x, = (pn,v) = (Dins-- - DM Vi s+, Vi) € B, let

Cp = H(Tn, Ty 1/2) for all n € N. The sequence {x}nen generated by Iterative Scheme 3 has the
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JSollowing properties

1,... K.
+oo 9 . +oc M 2
2) 3 pin — ainll® < 4oo forall i = 1,...,M and ) || 32,2 Likpin — bpnl* < +oo for all
n=1 n=1
E=1,... K.

3) pijn — Diforalli = 1,...,Mandv;n—>5,’:,furallk: 1L,...,K, Z:=(p1,...,PM. T},...,T)) =

Pz(ZO) € Z.

In [4] we proposed the Iterative Scheme 3 with the following choices of C,,.

Assumption 2 Let C, be given as one of the following
1) Cp = H(zp, Tpy12) NV H(Tn—1,T,_12) for n > 1 and Co = H(xo,21/2),
2) Cp = H(zp, Tpy172) N H(z0,2n-1) for n > 1 and Co = H(zo.1/2),
3) Cp = H(zn, Tpi1y2) NV H (2o, Tnn + (1~ Tn)Tn-1)) Jor 7o € (0,1),n > 1 and Co = H(xo. &1/2).

Under these choices of C), it was shown in [4] that sequence {x;, },ev generated by Iterative Scheme
3 has properties given in Proposition IIL5. Let us note that the Haugazeau step of Iterative Scheme 3

with C), defined as in Assumption 2 requires projection onto the intersection of three halfspaces.

IV. PROJECTIONS ONTO THE INTERSECTION OF THREE HAT.FSPACES

In this section we consider the problem of finding projection onto the intersection of three halfspaces.
As mentioned above this problem is in the core of Haugazeau step of Iterative Scheme 3.

Let us consider the general situation, i.e. let w; € H, u; # 0 be elements of a Hilbert space H, ; € R
and C; = {h € H| (h | u;) <m;} fori e K := {1,2,3}. Finding the projection of element 2 € H onto

C :=C1 N Cy N Csy is equivalent to solving the following optimization problem

R T
min §th¢” . (10)
(h | ur)<m
(h | uz)<ns
(h | us)<ns
Let

ladl® (| uz) (| us)

G| (ug | w) el (uy | us)

(ug [ur) (ug |up)  Jus?

and for any I C K, I # (), let G1 1 be the submatrix of G composed of rows indexed by I and columns

indexed by I only.
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By Theorem 6.41 of [17] the solution of (10) is of the form
T =T — uyp — uy — V3us. (11)

To find 7 = [];ex we propose the algorithm summarized in Iterative Scheme 4.

Algorithm 4 Algorithm for finding 7
Let K be a set of all nonempty subsets of K

while K # () do
Choose randomly I € K
if det G,; # O then

Find v = [y;];e; such that G, v = [(z | wi) — nilies

if v >0 then
if for all i € N\, (z — 3" ,c;vkug | i) —ni <O then
Terminate, 7; = v; for ¢ € I and 7; = 0 for ¢ € K\I
end if
end if
end if
K:=K\I

end while

It was shown in [24] that there exists at least one subset 7 of K such that:
det Gy #0,
« solution of G ;v = [(z | wi) — nilier is positive,

o forallie K\I, (x — 3" cpvaup | wi) —mi < 0.

Since there exists only 7 nonempty subsets of K, Iterative Scheme 4 requires at most 7 iterations.

Furthermore the number of iterations can be reduced to 4.

V. ASYNCHRONOUS BLOCK-ITERATIVE BEST APPROXIMATION SCHEME

Following the idea proposed in [16] in the present section we modify our Iterative Scheme 3 in order
to be able to perform calculations in asynchronous and block-wise way. We adopt the following notations

and assumptions as used in [16].

Assumption 3
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1) Let M be a strictly positive integer. Let {I,}nen be a sequence of nonempty subsets of {1,2,.... M}
and {Knp}nen be a sequence of nonempty subsets of {1,2,..., K} such that
Ip=1I, Ky=K,
neN) (U= ={1,2..., M} and Upt)' ' K; = (1.2....K}).
2) Let D be a strictly positive integer. For every i € 1...,M and k € 1...,K let {c;(n)},en and
{dk(n)}nex be sequences in N such that
(Vn c N) (Viefl,....M}) n—l:)g ci(n) <mn,
(Vk e {1,...,K}) n— D < di(n) <n.
3) Let e € (0,1) and, for every i € {1,...,M} and every k € {1,..., K}, {Vin}tnex and {{tgn}nex
be sequences in [e,1/e].
The following proposition proved in [16] provides the properties of the asynchronous and block-wise

variant of the calculations of auxiliary data in the Fejérian step.

Proposition V.1 (/16, Proposition 7]) Suppose that Z # | and that the following are satisfied
1) For every i€ {1,...,M}, {pin}nen is a bounded sequence in H; and, for every k € {1,..., K},
{vi nlnex is a bounded sequence in Gy.
2) Assumption 3 is in force.
3) For every n € N, set
foric I, do
Qi = ProXy, .. fi (Pi,n.(n) ~ Yiyei(n) 21‘7—1 invi,;‘.(,t))
—1 K 1x
@ = Vi) Picsm) = @in) = 2k=1 LRVl my
end for
foric {1,....M}\I, do
(ai,ﬂV a‘?,‘n,) = (aiy”—l‘ra’?.u-l)
end for
for k € K,, do
K
b = proxy, , oo (k1 LkiPr.di(n) + M di(m)Vk dy(n))
" = K
bjn = U;,dk(n) + u,c,jk(.,,)(Zk:l Liipidy(n) — bkn)
end for
for For every k € {1,..., K}\K,, do
(bk,nv b‘l:,n) = (bk,nflv bz;,n,_1)
end for
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and define

Ay = {ai,n}iel,..,,nn (l; = {a;':n}iel,,.,,wm
(V’VIEN)
bu = {brntret,.. ks by = {bf ke, K-

Then the following hold

2) {an}tnen, {ap}uens {butnens {0} }nex are bounded.

3) Suppose that the following are satisfied
a) nng”H —pull? < +oc and nli:?)“v;" L — T2 < +.
b) T ((pn — an | @} + A*03) + (Apn — by | b —v3) < 0.
¢) {@n}nen is a stricily increasing sequence in N, for every i € {1,...,M} pi,. — p; and, for
every k€ {1,..., K} v, — 1}
Then

pn—an =0, ap+A*vy =0, Apy, —b, >0, vy —by —0,
and (p.v*) € Z.

Tterative Scheme 5 is an asynchronous and block-iterative modification of our Iterative Scheme 3 which

takes into account modifications of the Fejérian step proposed in [16, Proposition 7(c)].
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Algorithm 5 Asynchronous block-wise proximal primal-dual best approximation iterative scheme for

finite number of functions with memory

1: Choose an initial point zy = (po, v§) € @:‘i] H; x @kl-(:l Gj and € > 0,

2 po = (P10,-- -, PM0)s V5 = (Vig: - Vi)
3: Let I,,, Ky, ci(n), di(n), Yin- pin satisfy Assumption 3

4: Let C,, be defined as in Assumption 2

5: forn=0,1... do

6:

23:

24:

25:

26:

27:

28:

29:

Asynchronous block-wise Fejérian step
for i € I,, do
Qi = ProxX,, o (Dici(n) = Viei(n) P L0 comy)
aj, = 7,-?61'(n) (Pisci(n) — @ign) — Z/{<:1 Liivk ey
end for
for i e {1,...,M}\I, do
(ain; af,) = (@in-1,0f,_1)
end for
for k € K, do
Bk = Prox, . g (M) LikPia, () + Hiesd(n)V dy (n))
bin = u,;,‘w,,)(zi”il LikPiaun) = bkn) + V5 4, (m)
end for
for k€ {1,..., K}\K, do
(bkns bF 1) = (Okn—1,0 1)
end for
fori=1,...,M do
Sin = ain + Xy Liibi
end for
for k=1,...,K do
S*MJrk,n =g — 21]\11 Likain
end for
sn= (8T S Shrg 1m0 A4 Kn)
= i1 (i | afn) + i1 Bk | B0
H,={heE|(h]|s) <m}

December 18, 2017
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30: if ||s}|| = O then

31 D =0pn, V=0

32: Terminate

33 else

34: Tpt1/2 = Tn + Mn(Pu,, (n) — zp)
3s: Haugazeau step

36: Tnt1 = PH(eoz,)nC, (%0)

37:  end if

38: end for

Remark V.2 Let us note that Haugazeau step in Iterative Scheme 5 coincides formally with the Haugazeau
step in Iterative Scheme 3. However, practical realizations of the Haugazeau steps differ significantly due

to the fact that they depend on Fejérian steps which are asynchronous block-wise and synchronous,

respectively.

Proposition V.3 Suppose that Z # (. Let {x,}nen be a sequence generated by lterative Scheme 5.

Define
Ap = {”’L,n}iE{],.,.,M}i Pn = {pi,u}i&{l,,..,M)v
(vneN) % * * *
bn = {bk,n}kﬂl,w,f()# Up = {Uk,n}ke{l,..,,l(]~
Then {an nen and {pn }nen converge strongly to p € H%l Hi, {b}}nen and {v}}nen converge strongly

to % € Hzil Gy, and (p,v*) € Z.

The proof of Proposition V.3 follows the idea of the proof of Theorem 7 of [16].

Proof. Iterative Scheme 5 is an instance of Abstract Haugazeau Algorithm from Iterative Scheme 2, hence
forall i € {1,....,M} and all k € {1,..., K’} the sequences {pin}nen, {vf, }nen are bounded. Thus,
for the sequences {an }nen, {a }nens {bn}nex, {b}}nen we can apply Proposition V.1. By Proposition
I11.4, statements (3a) and (3b) of Proposition V.1 hold. Let {gn }nen be any strictly increasing sequence
in N and for every i € {1,..., M}, piq, — pi, and for every k € {1,.... K}, vi ,~— ;. Then, by (3c)
of Proposition V.1

Pn—an—0, vy =0, =0

and (p,7*) € Z, where p := {Di}ie(1,...my and 0 := {0] }re(1,... k}- Now since for any strictly increasing
sequence {gn Inen in N we have

[Py, =P and vy =0 = (p,v7)€Z
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and by statement (5) of Proposition II1.4, we have p, — p and v}, — 0*. =

VI. NUMERICAL RESULTS
The evaluation experiments concern the image inpainting problem which corresponds to the recovery
of an image p € R? from lossy observations y = L5, where L; € R¥*? is a diagonal matrix such that
for i = 1,...,d we have L(i,i) = 0, if the pixel i in the observation image y is lost and L(i,7) = 1,

otherwise. The considered optimization problem is of the form

M M M M
Slpkl + @ TV(Dp) + > 4, (D) + Y ts(Dpr)
k=1 =1 r=1 t=1

min
Pryepm €H
where
1) pi,i=1...,M are patches of dimension w? x 1,

2) w is a regularization parameter

3) dictionary matrix D contains d normalised vectors (atoms) Dy; stored as columns in D = (D, ..., Dy) €

Rdxw’»
4) TV :R% 3 R is a discrete isotropic total variation functional [23], i.e. for every p € R, TV (p) =

2 ; T
9(Lap) = ( 4 ([APp])? + ([AVinV) with Ly € R2xd L, .= [(AMT (A%)T]", where
Al € R4 (resp. AV € R%%4) corresponds to a horizontal (resp. vertical) gradient operator,

S) ¢ is the indicator function defined as:

0 if peS
ws(p) =
+o0o0 otherwise,

6) the function .s(p) is imposing the solution to belong to the set S = [0, 1]%
In the following experiments, we consider the cases of lossy observations:
1) with k randomly chosen pixels which are unknown
2) with unknown pixels given by a structured mask.
Following [22] we use dictionary learning to obtain a dictionary D from a corrupted picture. Then we

iterate Algorithm 5 with respect to block-activation of functions |py| satisfying Assumption 3 (1).
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(f) Original

(h) Restored via [16], Alg-2
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VII. CONCLUSIONS

In the present paper the numerical experiments are performed only for synchronous version of the

algorithm. The future work will concentrate on testing different strategies of block-activations as well as

asynchronicity.
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