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Abstract 

In this paper we provide a deeper insight into our recent primal-dual proximal algorithm with 

memory for solving operator inclusion problem with maximally monotone operators. We propose block­

asynchronous version of the best approximation primal-dual proximal algorithm with memory. We 

concentrate on particular instances which cover the practical problems arising e.g. in image processing. We 

consider the standard minimization problem of the a sum of lower semiconlinuous convex functions, some 

of them being composed with linear bounded operators. This problems is known to be solved effectively 

provided that the proximal operators related to the funct ions involved take closed form expressions. In 

particular, we formu late optimality conditions for solving the considered problem under less restrictive 

regularily conditions. The proposed method is illustrated with image reconstruction problem. 

I. INTRODUCTION 

Optimization problems arising in image processing often take the form of minimi zation of a finite sum 

of convex proper lower semicontinuous functions. 

Let H;, Gk , i = 1, ... , M , k = l , ... , IC be real Hilbert spaces. Let f; H; --; IR U { +oo} and 

9k : G, --; IR U { +oo} be proper lower semicontinuous convex not necessari ly differentiable functions 

and let L;.k : H; --; Gk be bounded linear operators, i = 1, . ... ltf , k = l , ... , IC. 

In this article we are interested in solvi ng the following optimization prob lem 

min 
'J-11 EH L ,··· ,1JM El-I Al 

(I) 

In particular when !tf = K = l we get 

minF'p(p) := J(p) + g(Lp) 
7)E /-/ 

(2) 
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and for M = 1, I< = 2 we get 

minFp(p) := f(p) + gi(Lip) + g2(L2p). 
pE H 

(3) 

The problem of providing solution procedures for problems (1)-(3) has been addressed in numerous 

papers, e.g. [9]. (10] , [II], (12], (13], (14]. (15], (21]. 

In [9] an inertial ADMM algorithm has been proposed for the minimization of the sum of two 

convex proper l.s.c functions, one of which being composed with a linear operator as well as an 

algorithm for minimization of the sum of finite number of convex proper l.s.c functions. In (10] an 

inertial forward-backward-forward prima l-dual splitting algorithm was proposed for minimizing a finite 

number of intimal convolution functions composed with linear operators and a convex differentiable 

function with lipschitzian gradient. In [ 11] an inertial Douglas-Rachford algorithm has been proposed 

for minimizing a finite number of intimal convolution functions composed with linear operators. In [14] 

and (15] generalization of the algorithm of [9] by incorporating more general linear constraints. In [21] 

an inertial forward-backward algorithm has been proposed to so lve saddle point problem corresponding 

to the minimization of two functions composed with linear operators. The importance of preconditioning 

procedures applied to saddle point problems and minimization of the sum of two convex functions has 

been elucidated in (12]. [13] (see also [21]). 

The present paper is related to our recent paper [4] in which we proposed a prima l-dual proximal 

best approximation algorithm with memory to solve (I). Now we aim at adapting the idea proposed in 

[16] into our algorithm with memory. This idea relies on asynchronous and block-wise realization of the 

Fejerian step. 

The organization of the paper is as follows. In section 2 we provide necessary theoretical backgrounds 

and we define the primal-dual approach to solve (I). In section Ill we recall projection schemes to solve 

(I). In particular. Iterative Scheme 3 under Assumption 2 is a best approximation algorithm with memory 

investigated in [4]. To make Iterative Scheme 3 operational, in section IV we provide explicit formulas for 

projections onto three half.spaces. In section V we provide an asynchronous version of Iterative Scheme 

3. In section VI we discuss the results of numerical experiments . 

II. THEORETICAi. AACKGROUND 

To construct conjugate dual problems we apply the sta ndard approach via perturbation functions as 

described e.g. in [5] , [7] [8]. 
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Let H i, Gk, i = 1, ... , M, k = 1, ... , K be real Hilbert spaces. Let p = (p1, ... ,PM) E EBf~1 H i. 

Let E := EB;t:1, 1 Hix EB{~1 Gk and let A: EBf! 1 Hi--+ EBf=l Gk be a bounded linear operator defined 

as 

A(p) := (t L il Pi, ... , t L,KPi), 

and let J: EBt~1 Hi --+ IR U { +oc }, g : EB{~1 Gk --+ IR U { +oo} be defined as 

M I( 

f(p) := L fi(P;), g(v i, ... ,v,<) := LBk(vk), 
i= I k=l 

where Vk E Gk for k = 1, ... , K. 

With this notation the problem (I) is equivalent to 

min f(p) +(go A)(p). 
11Effi;'!_ 1 l-f1 

The perturbation function cf> : E --+ IR U { +oo} related to problem (5) is 

cf>(p , 11) := f(p) + jj(Ap + v), 

where v = (vi,-- . ,vK) E EBf=l Gk. The conjugate cf>': E--+ !RU {+oo} is 

cf>'(p' , v') = SUJJ(µ,v)Ee((p' Ip)+ (11' Iv) - f(p) - jj(Ap + v)) 

= ]'(p' - A'v') + g'(11') , 

(4) 

(5) 

where p* = (pj, ... , Pi.,), v* = (vj, ... , vi<), where vZ E Gk for k = 1, ... , K. Then the dual to (5) is 

and the dual to (]) is 

min 
vEEB~c= l G1: 

(6) 

(7) 

Where Li,; : Gk --+ H; is the Hermitian conjugate of L ik· To get basic duality relations for problems 

(I) and (7) a number of different regularity conditions can be used (see Chapter I of [7]). As shown in 

[[7], page 14] one of the weakest regularity conditions is based on the strong quasi-relative interior of a 

set and has the form 

K M 

0 E sqri(domg - Adorn]) = sqri(IJ dom Bk - A IJ dom f ;), (8) 
k I i = l 

where for any function h X --+ IR U {+oo) domh := {x E X I f(x) < +oo) and the strong 

quasi-relative interior of a set S is defined as 

December I 8, 2017 

sqri S := {x E S I LJ >-(S - x) is a closed linear subspace of H). 
-l>O 
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The concept of strong quasi-relative interior was introduced independently by [6], [19] , [27], [28]. 

With the regularity condition (8) we get the following duality relation. 

Theorem 11.1 (/28, Corollary 2.8.5/, /8/) Suppose thar the regularity wllditiun (8) holds. Then the 

Ju/lowing are equivalent: 

I) ( I) a/ld (7) is solvable 

2) set 

K Al 

z == { (p ,, ... ,PAI , v; , .... vi() E E I - L Li,;vZ E aJ;(p;), L L;kPi E agZ(vZ), 
k~ I i I (9) 

i = 1 ... , M , k = 1, ... , K} 
is nonempty. 

In the sequel we concentrate on finding an element from the set Z. For convenience of the reader we 

close this section by recalling the concept of proximity operator which is one of our main tools. 

Definition II.2 For any x E H and ally proper convex and lower semi-continuous fimcrion f : H --+ 

!RU { + '.Xl} the proximity opera/or prox1(x) is defined as the unique solution to the optimization problem 

min (1(v ) + ~llx - vll 2) . 
y E II 2 

Theorem 11.3 / 3, Example 23.3 / Lei J : H --+ JR U { + oo} be a proper convex lower semi-continuous 

.fimclion, x E H and , > 0. Then 

where JA (x) = (Id - A) - '(x). 

Ill. BEST APPROXIMATION PRIMA L-DUAL SPLITTI NG ALGOR ITHM WITH MEMORY 

In this section we formulate best approximation primal-dual splitting algorithm with memory fo r 

problem ( !). Letp = (Pt , · .. ,PAI) E rrt! , H;, v* = ('u; , ... , vi<) E IT~~! Gk. Let A: H1X·· ·XHM --+ 

G1 x · · · x GK be the bounded linear operator defined by (4). 
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For any an = (a1 ,n, ... , a,w,,,) E I1;':'., 1 H.;, bn = (b1,n , ... , bK,,.) E I1f~1 Gk let Hn 

E I 'l'n(P, v') ~ 0), where for any n E 1\1 

'l'n(P, v'): = (p - an I a~ - A'v') + (Ap - b,, I b~ - v') , 

M 

a~ = (ai,n, ... , a;;,1,n) E II 8/;(a;,,,), 
i= l 

K 

b~ = (Vi,n, · · · , bi<,n) E II 8gk(bk,n)-
k I 

{(p, v') E 

Let X,1 := (P1 ,n, ··• ,PAl ,n, 'Vi ,n, ··· 1'Vj(), Pn := (P1,n,· · ,PAl,n) and v~ := (vi,n,···,vK) for any 

n E 1\1. The starting point of our consideration is the classical projective splilling scheme. 

Algorithm 1 Generic primal-dual projection splitting Iterative Scheme 

Choose an initial point xo E E 

Choose a sequence of parameters {An)n~o E (0, 2) 

for n = 0, l . do 

Xn+I = Xn + An(PH" (xn) - Xn) 

end for 

It was shown in [18], that in case when M = l, f 1 = 0 and L 1k = Id, k = l , ... , K, Iterative Scheme 

has the following properties. 

Proposition 111.1 ({18, Proposition 3.1 /) Any sequence {x,,)nEN generated by /Jerative Scheme 1 be­

haves as follows. 

1) For any x E Z, the sequence {ll x,, - xii }nE~ is nonincreasing - that is { Xn)nEN is Fejer monotone 

with respect to Z . 

2) If' Xn 0 E Z for some no 2'. 0, then x,, = x,,0 for oil n 2'. no. 

3) If {xn)nEN has a strong accumulation point in S, then the whole sequence converges to that point. 

4) if Z is nonempty, then {xn) is bounded. Moreover, if there exists ,I,_, A such !hat O < 1 ~ An~ A< 2 

for all n, then 
+oo 
L ll xn+I - x,,11 2 < +oo 
n = O 

In the general case of problem ( I) the following properties of Iterative Scheme I has been shown in [16] 

(see also [I]). 

Proposition 111.2 ({ /6, Proposition 4/, see also fl, Proposition 3.2 I) Suppose that Z cf 0. Then sequence 

Xn fienerated by Iterative Scheme I /,as the .followin11 properties 
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1) { Xn }nEN is Fejer 111u1wtu11e with respect tu Z. 
+oo 

2) I: A,.(2 - A.,.)llxn+l - x,.11' < +oc 
n = l 

3) Suppose that fur eve1y p E H, eve,y v' E G and every strictly increasing seq11ence {kn)nEN EN, 

iPk. ~ p, vi.,, ~ v"J ==> (p, v') E Z 

Then Xn ~ x = (p,v') E Z. 

4) Suppose that the sequences {a,,}nEN, {a~}nE"• {b,,}nEN, {b;,JnEN are hounded. Then 

lim ((Pn - a" I a;, + A'v;,) + (Ap,, - bn I b;, - v~) '.o 0. 

We consider the fo llowing choices of (a,,,., a;,n) E gra ah, i = l, ... , NJ , (bk.,,., bic,n) E gra agk , 

k = l, ... , K , n. E N, where for any set-va lued mapping B , graB denotes the graph of B. 

Assumption l 

I) In case when M = l , f := f 1 = 0, L 1,k = IdJi,r k = l , .. ,J( 

bk,n := pmxµ.,_,,g, ((1 -kt\ O:k,j,n)Pn + O:k,O,nUn + kt\ O:k,j,,i bj,n + µk ,nvz,n) 
j=O j = I 

K 

Un: = prux~ .. J(Pn - 1n L vi_,,), 
k=I 

where µk ,n, ,n, O:k,j.n E IR, 0 '.o j < k '.o K, n E N satisfy sume additiu11al requirements (see 

Algorithm 3 of [ 18 I). 

2) In the general case u.f problem (l) 

at 1n := prox;., J; (P-i.,n - { 11 ~[~ 1 L1~~vk ,n) 
Al 

bk ,n := prox1.1,,.g1,: (L LkiP?. ,11 -/- µ11Vk,n) 
i = I 

where ,n, µn E [,, 1/e] fur E > 0, n EN. 

i = 1, ... ,NI 

k = l , ... , K , 

Observe that if M = l, then an := a1 ,n for all n. E N. The following Proposition is proved in [I] (see 

also [ 18]). 

Proposition 111.3 With { a;," }nEN, { bk,n }nEN satisfying requirement 1 or 2 of Assumption 1 the sequence 

{ x },iEI\/ generated hy Iterative Scheme 1 behaves as follows. 
+oo 

]) L IIP,,n+I - Pi.nll 2 

n = l 

+oo 
< +oc fur all i = l , ... , M and L llvZ.n+t - Vk,n ll 2 < +oo fur all k = 

n = l 
l , ... , K. 
I oo Ix 

2) L IIP,,n - a;,,.[I' < +oo fur all i = l,. 
n = I 

.. , M and I: llvi.,, - bk.nil' < +oo fur all k = l, ... , [(. 
n = l ., 

3) Pi.n ~ p,Iur all i = L ... )M andvk,n ._..._.,_ Vk .fOrall k = 1, ... , K, X := (P t, ·•. :Ptvt,V~,- . . ,V j<) E 

Z. 
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For any x, y E E let us define H(x, y) := { h E E I (h - y I x - y) ::; 0} . The following strongly 

convergent projection method relies on the idea which goes back to Haugazeau [3], see also [20], [25], 

[26]. 

Algorithm 2 Abstract Haugazeau Algorithm 

Choose an initial point Xu = (Pu, Vo) 

for n = 0, 1 . . do 

Xn 1 1/2 = Xn + >.,,.(PH ,. (x .,J - x,,,) 

Xn+1 = Pn(x",x.)nC. (xu), where Z C Cn 

end for 

Proposition 111.4 (/Hi, Proposition 6/, see also /2, Proposition 2./ I) Suppose Z # (/)_ Let c: > 0 and 

An E (e, l ] for n E !\!. For any sequence {xn}nEN generared hy Iterative Scheme 2 the follow ing hold. 

/) {Pn}nEN and {v; }nEN are hounded. 
+oo +oo 

2) I; IIPn+l - Pnll 2 < +oc and I; llv~+l - x;ll 2 < +XJ. 
n= O n= O 
I oo I (X) 

3) I; IIPn 11/2 - Pnll 2 < +oc a11d I; llv~+l/2 - x;II' < +'.Xl. 
n= O n= O 

4) Suppose Lhar rhe seque11ces {a..,,}nEN, {a~},,EN, {b.,,)nEN , {b~l,,o are ho1111ded. Then 

Jim ((p.,, - a,, I a~+ A'v~) + (Ap.,, - b.,, I b;, - v~)::; 0. 

5) Suppose 1har, fin every (p, v') E Z a11d every slrictly increasi11g sequence {q.,.).,,e, in !\!, 

[vq. ~ p and v,;,. ~ v'] = (p, v*) E Z. 

Th en {Pn}nEN converges strungly to fi and { v~JnEN converges slrongly Jo V and (P: ii*) E Z 

In [2] Lhe fo llowing ILeraLi ve Scheme 3 has been proposed wilh Cn = H (xn, Xn+i12 ). 

December 18, 2017 DRAFT 



Algorithm 3 Proximal primal-dual best approximation iterative scheme for finite number of functions 

Choose an initial point :co = (po, v0) E E and E > 0, 

Po= (PJ,O, ... , P1'd,o), v() = (vi,o, ... ,vk0 ) 

Choose sequences of parameters {>-n)n"'.0 E (0, l] and bnln"'.O, {µn)n"'. 0 E [c, 1/c] 

for n = 0, 1 . do 

Fejerian step 

for i = 1, ... , l\ll do 

ai,n = proxlnf, (Pi,n - In L,f=l L'kivk,n) 

ai,n = l1-; 1(Pi,n - a;,,n ) - Lf=l Lkivk,n 
end for 

for k = l, ... , K do 

bk,n = prox1,,.g,. (L.f!1 LikPi,n + tLnVk, 11 ) 

bk,n = µ -;; 1 (Li! l L ;.kPi,n - bk,n) + vk,n 

sA1+k,n = bk,n - L.f!1 Lika·i.,n 

end for 

for i = 1, ... , M do 

end for 

s;i = (si,n, · · · ) 8 A,t,n) 8 A1+1,n, · · · , 8 A4+K,n) 

1/n = L '.~1 (a; n I a;,n) + Lf~1 (bk,n I bi.,n) 

Hn = {h E E I (h I s~):,; 1/n) 

if 11s~II = 0 then 

j5 = Pn, ii*= v~ 

Terminate 

else 

Xn+l/2 = Xn + An(P1-1" (Xn) - Xn) 

Haugazeau step 

Xn-H = PH C,,,"")nc,, (xo) 

end if 

end for 

Proposition 111.5 [2, Propoistion 4.2] Let Xn = (p,, , v~) = (P1.n,···,PM,n,Vi,n,···,vi<.nl EE, let 

Cn := H(xn, Xn+ 1;2) for all n EN. The seqllence {xn}nEN generated hy Iterative Scheme 3 has the 
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following properties 
+oo +x 

I) L // Pi,n+ I - P, ,n // 2 < +oo for all i = l , .... Mand L //v;; ,,, 11 - vi:,nl/ 2 < +oo for all k = 
= I n = l 
l , ... ,K. 
+oo +x Al '> 

2) L // P,,n - ai,n// 2 < +oo for all i = l, ... , M and L // L i=I L;kPi.,n - bk,n// - < +oo for all 
n= l n = l 
k = l , ... , K. 

3) Pi ,n--+ pJoralli = l , .. . , M andvZ,n --+ v;;fora/1 k = l , ... ,K, x := (p1, .. . ,fiM,Vj, ... ,vj<) = 

Pz(xo) E Z. 

In [4] we proposed the Iterative Scheme 3 with the following choices of Cn. 

Assumption 2 Let Cn be Riven as one 11( the Ji1llowi11R 

I) Cn := H(x,, , Xn+1;2) ri H (x,,_, , Xn-1;2) Jur n ::>: l a11d Co = H(xo , x 1;2), 

2) Cn := H(xn, Xn+1;2) ri H(xo, x,,_i) Jar n ::>: 1 a11d Co= H(xo. x1;2) , 

3) Cn := H(xn, Xn+1;2) n H(xoJnXn + (l - Tn)Xn- 1))/ur Tn E (D, 1). n c>: 1 and Co = II( xo, x 1;2). 

Under these choices of C,, it was shown in [4] that sequence {xn.}nE'i generated by Iterative Scheme 

3 has properties given in Proposition III.5. Let us note that the Haugazeau step of Iterative Scheme 3 

with Cn. defined as in Assumption 2 requires projection onto the intersection of three halfspaces. 

IV. PROJECTIONS ONTO THE INTERSECTION OF THREE HAI.FSPACES 

In this section we consider the problem of finding projection onto the intersection of three halfspaces. 

As mentioned above this problem is in the core of Haugazeau step of Iterative Scheme 3. 

Let us consider the general situation, i.e. let u; E H. u; cl O be elements of a Hilbert space H, T/i E IR 

and C; = {h E H / (h I u,) ~ r/i) for i E K: = {l, 2, 3). Finding the projection of element x E H onto 

C := C 1 r1 C2 n C3 is equivalent to solving the following optimization problem 

Let 

1nin 
hE H 

{h I n 1)~'T}i 

{h I u2}$;17:2 
{h I 'U3)~l/3 

1 2 
2// h -x// . 

[ 
// u1 11 2 (u, I u2 ) (u, I u3 ) j 

G (u2 / u,) // u2 /l 2 (u2 I u3 ) 

(u3 I u,) (u3 I u2) // u3/ /2 

(10) 

and for any I C K, I cl (/J, let G 1,r be the submatrix of G composed of rows indexed by I and columns 

indexed by I only. 
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By Theorem 6.41 of [17] the solution of (10) is of the form 

To find ii = [iii]iEK we propose the algorithm summarized in Iterative Scheme 4. 

Algorithm 4 Algorithm for finding ,, 

Let K. be a set of all nonempty subsets of K 

while K. fc 0 do 

Choose randomly I E K. 

if dct G1,1 fc O then 

Find v = [Vi ],E t such that G1,1v = [(x I u;) - !);];e t 

if v > 0 then 

if for all i E K\J. (x - ~kEI VkUk I u ;) - 1);. ~ 0 then 

Terminate, ii; = I/; for i E I and ii; = 0 for i E K\J 

end if 

end if 

end if 

K. := K.\J 

end while 

It was shown in [24] that there exists at least one subset I of I{ such that: 

dct.G1,1 c/ 0, 

• solution of Gt ,/V = [(x I u;) - 1);];.e t is positive, 

• for all i E K\J, (x - ~kEl VkUk I u; ) - 1); ~ 0. 

10 

(11) 

Since there exists only 7 nonempty subsets of K , Iterative Scheme 4 requires at most 7 iterations. 

Furthermore the number of iterations can be reduced to 4. 

V. ASYNCHRONOUS BLOCK-ITERATIVE BEST APPROXIMATION SCHEME 

Following the idea proposed in [ 16] in the present section we modify our Iterative Scheme 3 in order 

to be able to perform calculations in asynchronous and block-wise way. We adopt the following notations 

and assumptions as used in [ 16). 

Assumption 3 
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II 

J) Let !VI be a strictly positive integer. Let {In }nEN be a sequence of nonempty subsets of {l, 2, ... , .M} 

and (I<n)nEN be a sequence of nonempty subsets of {l, 2, ... , I< ) such that 

Io = I , I<o = I<, 

(Vn EN) (LJ;'; ~;t-i IJ = {l, 2 ... , M) and LJ;';'.~;t-l I<J = {l , 2 ... , I<)). 

2) Let D be a strictly positive integer. For every i E 1 ... , 1,1[ a11d k E 1 ... , I< let { c;(n) }nEJII and 

{dk(n))nE~ be sequences i11 N such that 

(Vi E {l, ... , M}) n - D :>o c;(n) :>o n, 

(Vk E {l , ... ,K}) n - D :>o dk(n) :>o n. 
(Vn E N) 

3) Let€ E (0, 1) and, for every i E {l , ... , M) and every k E {l, ... , I<), bi,n}nE:- and (µk,n)nE" 

he sequences in [c, 1 / c ). 

The following proposition proved in [16] provides the properties of the asynchronous and block-wise 

variant of the calculations of auxi li ary data in the Fejerian step. 

Proposition V.1 (/ 16, Proposition 7/) Suppose that Z # r/J and that the following are satisfied 

1) For every i E {l, ... , 1\1), {Pi,n)nEN is a hounded sequence i11 H ; a11d, for every k E {l, ... , K }, 

{ vk,n}nE~ is a bounded sequence in Gk. 

2) Assumption 3 is in force. 

3) For every n E N, set 

for i E In do 

ai ,n = prox/,,c;{n) ]i(Pi,r.,(n) - fi,r:;(11) Lik~1 Lki.Vi~,c,(n)) 

ai,n = 1'1~/(n)(Pi .r.;(11) - ai,n) - L[=l Lkiv:,c,(u) 

end for 

for iE {1 , ... ,1\I)\Jn do 

(ai,n, ai,',J = (ai ,n-1, a/,.,,,-1) 

end for 

fork E I<,, do 

bk,n = prox,,.,. ,,,,.19, CL{=! Lk,Pk.d, (n) + µk.d,(n) 11k,d,(n)) 

bk ,n = "k,d,(n) + 11;;,~,cn/I:.[=1 LkiPk,d,(n) - bk,n ) 

end for 

for For every k E {l, ... , K} \K,, do 

(bk,n , bt_,,) = (bk,n-1•bk,n-1) 

end for 
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and d~/ine 

(\in.EN) an= {at,nLEI, .. ,m, a;,_= {ai,nLEt, ... ,·m, 

b,. = {bk,nhEl, .. ,K, b~ = {bZ,,n}kEI, ,K · 

Then Lhe following hold 

/) (VnEN v,EL .M vkEl, .. ,K) a;,n E of;(a;,n) and bk,n E ogk(bk,n)-

2) {a,.}nEN, {a~)-,,rn, {b.,,}nEN, {b~}-,,E~ are hounded. 

3) Suppose Lhat Lhe following are satisfied 
loo loo 

a) L IIPn+l - Pnll' < +oc and L llv~ 1 1 - x~ll 2 < +'.Xl. 
n=O n=O 

b) iTio ((Pn - an I a;+ A'v~) + (Apn - bn I b~ - v;) :S 0. 

c) {qn}nEl'i is a slricLly increasing sequence in N, for every i E {l, ... , M } Pi,q,, ~ Pi and, for 

every k E {l, ... , K} "k,q,, ~ v;_ . 

Then 

and (p, ii') E Z. 

Iterative Scheme 5 is an asynchronous and block-iterative modification of our Iterative Scheme 3 which 

takes into account modifications of the Fejerian step proposed in (16 , Proposition 7(c)]. 
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13 

Algorithm 5 Asynchronous block-wise proximal primal-dual best approximation iterative scheme for 

finite number of functions with memory 

1: Choose an initial point xu = (Pu, vii) E Ef)'.':'., 1 H, x EBf~i Gk and c > 0, 

2: PU= (PLO,··· ,PM,o), vii = (vi,0• · · ·, vi<.o) 

3: Let I,,_, K,., c;(n), d,(n), 'Yi,n• µ;,,, satisfy Assumption 3 

4: Let C,. be defined as in Assumption 2 

.5: for n = 0, 1 . do 

6: Asynchronous block-wise Fejerian step 

7: for i E In do 

8: a,,n = prox1 ,.c,("J/, (Pi,c,(n) - 'Yi,c,(n) Lf~1 Lkivk,c,(n)) 

9: ai,n = 'Yi~c~(n/Pi,c;(11) - ai,n) - Lf=l Lkivk,c,(n) 

10: end for 

11: for iE{l, ... ,M}\Jn do 

13: end for 

14: for k E K ,, do 

15: bk ,n = prox,iA,.," <"J9A· (I:f~1 LikPi,d.1,(H) + µk,d(n)vk,di(n)) 

l6: bZ,n = µz.~,(n)(Lt1 LikPi,d,(n) - bk,n) + vz.d,(n) 

17: end for 

18: for k E {l, ... ,K}\Kn do 

19: (bk,n, bi:,n) = (bk,n-1, bk,n-1) 

20: end for 

21: for i=l, ... , Mdo 

22: 8 i,n = ai,n + Lf~1 Lkibk,n 

23: end for 

24: for k = 1, ... , K do 

25: sAf+k,n = bk,n - Lf! 1 L1ka-i,n 

26: end for 

27: s~ = (si,n, · · ·, 8 A1,n1 8 A1+1,n, · · ·, 8 Ar+K,n) 

28: T/n = Lf~1 (ai,n I a;,,,) + L~1 (bk,n I bi:,.,,) 

29: H,, = {h E E I (h Is;,)::; TJn} 
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30: if 11 s; II = 0 then 

31: fi = Pn, ,u* = v~_ 

32: Terminate 

33: else 

34: Xn+I/2 = Xn + An( P11.(xn ) - Xn ) 

35: Haugazeau step 

36: Xn+i = PH(x,,,x,,}nc.(xo ) 

37: end if 

38: end for 

Remark V.2 let us 110/e 1ha1 Haugazeau slep in lrerarive Scheme 5 coincidesfonnally with the Haugazeau 

step in lrerative Scheme 3. However. practical realiza1ions of rhe Haugazeau steps differ significantly due 

/0 !he Jae/ that !hey depend on Fej t!rian sleps which are asynchronous block-wise and synchronous, 

respeclively. 

Proposition V.3 Suppose thal Z # 0. l et { Xn )nEN be a sequence generated by Iterative Scheme 5. 

Define 

(u ) a,,= {a,,,,,)iE{l, .. . ,M), Pn = {p;.,,,};E{l ,.,.,M), 
VnEN 

b~ = {bi'.,nlkE{l, .. ,K), V~ = {vZ,nlkE{I,. ,!<) · 

Then { an}nEN and {Pn)nEJ\1 conl'erge strongly to j5 E IT;'!1 H;, { b~}nEN and { v~}nEN converge strongly 

/0 v* E IT{=1 Gk, and (p, v') E Z . 

The proof of Proposition V.3 follows the idea of the proof of Theorem 7 of [16]. 

Proof. Iterative Scheme 5 is an instance of Abstract Haugazeau Algorithm from Iterative Scheme 2, hence 

for all i E {l, .. , , M } and all k E {l, .,. , K } the sequences {Pi,n)nEN , {v;;,,)nEN are bounded. Thus, 

for the sequences {an)nEN• {a;)nEN, {bn)nE'i, {b;)nEN we can apply Proposition V.l. By Proposition 

III.4. statements (3a) and (3b) of Proposition V. l hold. Let {qn}nEN be any strictly increasing sequence 

in N and for every i E {l, .. , , M }, Pi,q,, -' p; . and for every k E {l, . . . , K }, v;:,,,,, -' 'Iii, -Then, by (3c) 

of Proposition V. l 

and (p, ·v*) E Z , where j5 := {t.i;_};E{l, .,,M} and ·v := {·v;'.hE{l,.,.,K) · Now since for any slrictly increasing 

sequence { q,, hEN in N we have 

[Pq,, -' p and v;,, -' v"] => (p, v' ) E Z 
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and by statement (5) of Proposition IIl.4, we have Pn-+ fi and v,~--+ v*. • 

VI. NUMERICAL RESUUS 

The evaluat ion experiments concern the image inpainting problem which corresponds to the recovery 

of an image fi E ]Rd from lossy observations y = L 1p, where £ 1 E JRdxd is a diagonal matrix such that 

for i = 1, ... , d we have L(i, i) = 0, if the pixel i in the observation image y is lost and L(i, i) = 1, 

otherwise. The considered optimization problem is of the form 

M Al Al M 

L iPki +w L TV(Dpi) + L '11c(Dpr) + L 's(Dp,) 
k= l l= l r = l 1-= 1 

min 
P1,---,]JMEH 

where 

1) p;, i = l ... , M are patches of dimension w2 x 1, 

2) w is a regularization parameter 

3) dictionary matrix D contains d normalised vectors (atoms) Dk; stored as columns in D = (Di, ... , Dd) E 

R_dXw 2 , 

4) TV: ]Rd H JR is a discrete isotropic total variati on functional (23], i.e. for every p E JRd, TV(p) = 
( d ) 1/2 T g(L2p) := L; 1([6 hp]i)2 + ([6 vp];)2 with £2 E JR2dxd,£2 := [(6 h)T (6 v)TJ 'where 

6 h E JRdxd (resp. 6 v E JRdxd) corresponds to a horizontal (resp. vertical) gradient operator, 

5) i is the indicator function defined as : 

is(P) = {o 
+oo 

i[ p E S 

otherwise, 

6) the funct ion is(p) is imposing the solution to belong to the set S = [O, 1]<l_ 

In the following experiments, we consider the cases of lossy observations: 

1) with "- random ly chosen pixe ls which are unknown 

2) with unknown pixels given by a structured mask. 

Following (22] we use dictionary learning 10 obtai n a dictionary D from a corrupted picture. Then we 

iterate Al gorithm 5 with respect to block-activation of functi ons [Pk[ satisfying Assumption 3 (1) . 
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(a) Original (b) Degraded 

(cl RcsJorcd via [I 61, Alg-2 (d) ResJorcd Ours, Alg-3 

~~--------------~ 
0 10000 """' 

(c) SNR 
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(f) Original (g) Degraded 

(h) Rcs1orcd via [ 16]. Alg-2 (i) Rcs1orcd Ours. Alg-3 

SNR calculaUon 
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VII. CONCLUSIONS 

In the present paper the numerical experiments are performed only for synchronous version of the 

algorithm. The future work will concentrate on testing different strategies of block-activations as well as 

asynchronicity. 

REFERENCES 

fll A. Alota ibi, P. L. Combcttcs, and N. Shahzad. Solving coupled composite monotone inclusions by successive f-cjCf 

approximations of their Kuhn-Tucker set. Sl/tM .I. Oplim., 24(4):2076- 2095, 2014. 

[2] A. Alotaibi, P.L. Combcttcs, and N. Shahzad. Best approximation from the Kuhn-Tucker set of composite monotone 

inclusions. Numerical Funcrionn/ Analysis nnd Optimizntion. 36(12):1513-I.S12. 201.S. 

[3] H.H. Rauschkc and P.1.. Cnmhettcs. Convex Analysis nnd Mo1101011e Opemror Theory in Hilberl Spaces (CMS Books in 

Mathematics). Springer. 2011. 

[4] E. M. Bcdnarczuk, A. Jczierska. and K. E. Rutkowski. Inertial proximal best approxima tion primal-dual algorithm. ArXiv 

e-prims, October 2016. 

[SJ J. FrCdCric Bonnans and Alexander Shapiro. Penurbation analysis of optimization problems. Springer Series in Operations 

Research. Springer-Verlag, New York, 2000. 

[6] J. Borwein and R. Goebel. Notions or relative interior in Banach spaces. Journal of Mathematiral Sciences, l 15(4):2542-

2553, 200l 

l7J R. I. Bu(. Conjugate duality i11 convex optimiza1ion, volume 637 of Lecture Notes in Economics and Mathematical Systems. 

Springer-Verlag, Berlin, 2010. 

[8] R. l. Bot and E. R. Csctnek. Regu larity conditions via generalized interiority notions in convex optimization: New 

achievements and their relation to some classical statements. Optimization, 61(1):35- 65, 2012. 

f91 R. I. Bot and E. R. Csctnck. An inertial alternating direction method of multipliers. Minimax Theory /lppl., l(l):29-49, 

2016. 

[IO] R. I. B01 and E. R. Csctnek. An inertial forward-backward-forward primal-dual splitting algorithm for so lving monotone 

inclusion prohlems. Numerical Algorithms, 71(1):)19-.-;;40, 2016. 

[I l] R. I. Bot, E. R. Csetnek, and C. Hcndrich. Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. 

Malh. Compul., 256:472--487. 2015. 

fl2] K. Brcdies and H. Sun. Preconditioned alternating direction method of multipliers for the minimization of quadratic plus 

non-smooth convex functionals, 2015. 

[13] Kristian Brcdies and Hongpeng Sun. Preconditioned Douglas-Rachford splitting methods for convex-concave saddle-point 

problems. SIAM Journnl on N11merical Analysis, 53(1):421-444, 2015. 

ll4J C. Chen, R.H. Chan. S. Ma, and J. Yang. Inertial proximal ADMM fo r linearly c.:onsLraincd separahk: convex optim ization. 

SIAM./. Imaging Sri .• 8(4):2239- 2267, 2015. 

[15] C. Chen, S. Ma, and J. Yang. A general inertial prox imal point algorithm for mixed variational inequality prohlcm. Sli\M 

J. Oplilll., 25(4):2120-2142, 2015. 

fl6l Patrick L. Combcucs and Jonathan Eckstein. Asynchronous hlock-itcrativc primal-dual decomposition methods for 

monotone inclusions. Malhematir:a/ Pm1:rammin1:. pages 1- 28, 2016. 

[17J F. Deutsch. Re.i.t Approximation in l1111er Pmdur:t Spar:es. CMS Books in Mathematics. Springer, 2001. 

Dcccmher 18, 20 I 7 DRAFT 



19 

[18J J. EckslCin and B. E Svailcr. General projective splitting methods for sums of maximal monotone operators. SIAM 1. 

Co111rol Op1im., 48(2):787-811. 2009. 

[ l 9J V. Jeyakumar and Henry Wolkowicz. Generalizations of slater's constraint qualification for infinite convex programs. 

Mathematical Programming, 57(1):85-101, 1992. 

120J Guo ji Tang and Nanjing Huang. Strong cunvcrgcrn.:c ur a spliu ing proximal prujcctiun method rur Lhc sum ur Lwu 

maximal monotont! operators. Operations Research Leners, 40(5):332 - 336, 2012. 

[21J D. A. Lorenz and T. Pock . An inertial forward-backward algorithm for monotone inclusions. Journal of Ma1he111atica/ 

lmagiug and Vision, 51(2):311-325, 2015. 

f221 V. Naumova and K. Schnass. Dictionary Learning from Incomplete Data. t\rXiv e-prints, January 2017. 

1231 L I Rudin, S Osher, and E Fatcmi. Nonl inear total variation based noise removal algorithms. Physir.a IJ: Nnnlinear 

Plienomma, 60( 1-4):259-268, 1992. 

[24] K. E. Rutkowski. Explicit formu las for projections onto intersection of a finite numhcr of half spaces in Hilhcrt spaces. 

/\rXiv e•prims, .June 2016. 

f25 J M.V. Solodov and B.F. Svaiter. Forcing strong convergence of proximal point iterations in a Hilbert space. Ma1he111atical 

Programming, 87( l ): 189-202. 

[26] Y. J. Wang. N. H. Xiu, and J. Z. Zhang. Modified cxtragradiem method for variational inequalities and vcriflCation of 

solution existence. Journal of Op1imization Theory and Applications, 119( I): 167-183, 2003. 

[271 C. Z1linescu. Solvability results for sublinear functions and operators. Zeitschrift fiir Operations Researrh, 31 (3):J\ 79-

A 101. 1987. 

l28J C. Zalinesrn. Convex Analysis in General Vector Spaces. World Scientific, 2002. 

December 18, 2017 DRAFI' 








