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Abstract 

The paper is devoted to the problem of fitting optimal stochastic 

process of underlying asset movements in the option pricing. We use 

martingale theory and Monte Carlo methods to simulate some Levy 

processes. We argue that presented method may be used for solving 

the "volatility smile" problem. A real market example of finding an 

appropriate process is also described. 
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1 Introduction 

The Black-Scholes formula is a very important and one of the best known 

results in financial mathematics. It enables to calculate the price of a deriva­

tive under the assumption that there is not a possibility of arbitrage in the 

market. General considerations concerning no-arbitrage pricing of derivatives 

one can find in [2], [4] and [6]. 

It is assumed in the Black-Scholes model that the stochastic process which 

describes the price movements of an underlying financial instrument St is 

the geometrical Brownian motion. The advantage of this assumption is a 

simplicity of the pricing formula. However, it is commonly known that the 

Black-Scholes formula does not describe the real "behaviour" of derivatives 

very well. 

There are two main differences between the Black- Scholes model and 

the real market. The first is non-symmetric distribution of the standardized 

returns of logarithms of S1. The second difference, called "volatility smile", 

consists in the "U" shape of the graph of volatility as the function of striking 

price, while from the Black- Scholes model it follows that this function should 

be constant. 

Our paper is devoted to improve the pricing model. To simplify our 

considerations, especially from statistical point of view, we focus our atten­

tion on improvement of the model with respect to the second issue. For 

that purpose we look for a stochastic process fitted to the real prices with 

respect to the mentioned property of the volatility. As t.he domain or om 

explorations we choose the exponential function of a linear combinations of 

Brownian motion, two independent Poisson processes and the drift. The set 
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of exponents of this type is a natural subclass of Levy processes. It contains 

non- continuous processes, which may model jumps of the underlying asset.. 

We look for the best model with respect to a suitable /,~-norm. The next step 

is to price the derivative under the assumption of no arbitrage. It requires 

calculation of the form of the equivalent martingale measure for S,, which is 

a complicated problem from mathematical point of view. The counterpart of 

the Black- Scholes formula is also complicated for computation and therefore 

in place of analytical calculations we use Monte Carlo methods. 

Basic assumptions and theorems are included in Section 2. In particular, 

this section contains mathematical details of our pricing model. Sectiou 3 is 

dedicated to description of the fitting method. We also discuss results of an 

application of our method for the no-arbitrage pricing of a real derivative. 

Finally we present some conclusions. 

2 Stochastic models of underlying asset move­

ments 

In this section we present a few models of stochastic processes of underlying 

asset movements. We also discuss a methodology of using martingale theory 

and Monte Carlo methods for option pricing. 

2.1 Basic assumptions and theorems 

The process of movements of the underlying asset (e.g. index, price of a 

stock) may be modelled by some stochastic process (see e.g. [2], [4], [6]). A 

classical example of such a process is the geometrical Brownian motion and 
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a well known result is the Black- Scholes formula for the calculation of the 

price of European- style options (see e.g. [l], [2] , [4]). 

Geometrical Brownian motion and many other important stochastic pro­

cesses for modelling movements of the underlying asset are special cases of 

transformations of Levy processes. In this paper we present. an approach 

suitable for these general processes based on theory of martingales. It. uses 

the local characteristics for Levy processes (see [6]). Let us now int.rod11c<' 

some necessary concepts and basic facts, which can be also found in [5] a11<l 

[6]. 

Let (n, F, Ft, P) be a probability space with right- continuous, complete 

filtration (F1)tEIO,TJ> where T < oo. The assumption that Tis finite is fulfilled 

in this paper because the financial instruments considered here have only 

finite life-time intervals. 

Def. 1. A stochastic process (Y,)tEIO,TJ is called a Levy process if it fulfils the 

following conditions: 

1. Yo= 0 a.s. {almost surely), 

2. (Y,)tEIO,TJ has independent increments, 

3. for all s 2'. 0 and t 2'. 0 the random variable Yt+s - Y, hu.s th" ,mnc; 

distribution as Y, - Yo, 

4- for almost all w E n the trajectories of (Y,)tEIO,TJ are right- continuous 

and have left- side limits {i.e. they are cadlag functions) , 

5. Y, is a stochastically continous process. 
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We assume that (Yt),EIO,TI is an F,-adapted process. This means that for 

each time moment T we know the whole behaviour of process Y, till T. 

For Levy processes the local characteristics, called Levy characteristics, 

are the following functions: 

B,: [O, T]--, JR, B, = bt , (1) 

C, : [O, T] --, JR, C, = ct , (2) 

11: [O, Tj--, M(JR), 111 = v(dx)t, 11( {O}) = 0, 1 (lxj 2 /\ l)v(dx) < oo , (3) 

where b and care some constants, and M{JR) is the space of non- negative 

measures on JR. 

Let {Y,),EIO,TI be the Levy process. 

Def. 2. The following transformation of probabilistic measure P for each 

a E IR 

dP(a) = exp (aYr -T (ab+ a;c + 1 (e= - 1 - ag(x))v(dx))) dP , 

where g(x) = xl(lxl ~ r) and r is a positive constant connected with char­

acteristics, is called the Esscher transformation. 

Theorem 1. The triplet (b(a), c(a), v(a)) of the Levy characteristics of the 

process (Y,),EIO,TJ with respect to the measure P(a) is described by the fornm­

las: 

b(a) = b + ac + 1 g(x)(e"x - l)v(dx) 

c(a) = c 

v(a)(dx) = e0 xv(dx) 
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In the following, we will be interested in the stochastic processes of the 

form 

St = exp(Y;) , 

i.e. St are the transformation of process Yi to its exponent.it}! form. 

Theorem 2. If the constant a satisfies the following conditions 

b + (a+ D + 1 (e=(ex - 1) - g(x)) v(dx) = 0 

1 le"x(ex - 1) - g(x)lv(dx) < oo 

then (St),ElO,T) is a martingale with respect to the measure P(a). 

The proofs of the above theorems can be found in [6]. 

2.2 General method for option pricing 

(4) 

(5) 

(G) 

We use theorems and definitions from Sec. 2.1 for our main aim. We arP 

to acquire the iterative stochastic equation (ISE) for stochastic process of 

movements of the underlying asset. 

Let r denotes a constant risk- free interest rate and 

(7) 

be the discounted process of values of the underlying asset. We have to tind 

the measure P(a) equivalent to P for which z, is a martingale. To solve this 

problem one should use theorems 1 and 2. The next step is to find a form of 

the process S, according to this new probabilistic measure P(a) . 
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2.2.1 Classical Black-Scholes model 

Let us now illustrate this approach for the classical example of geometrir 

Brownian motion. 

We assume that the market operates in a continuous way and there are 

no additional transaction expenses and taxes. Let W, denotes the standard 

Brownian motion. Let a > 0 and µ > 0 be constants which we will call t.ht• 

volatility and drift respectively. 

For the Black- Scholes model we have Y, = µt + a W,. Then 

S, = So exp (µt + aW,) (8) 

In this case the form of S, for the equivalent measure P(a) is 

S, = So exp ( (r - ~a2 ) t + aw;'">) , (9) 

where w;C•l denotes the standard Brownian motion for the measure P(a). 

To use Monte Carlo methods (see Section 2.3) we should change equation 

(9) to the form of the iterative stochastic equation (ISE). Let [0, T] denotes 

the life time interval for the given financial instrument. We have to discretize 

[0, T] into the set of time moments T = { t0 = 0, t 1, ... , tn = T}, where n is 

number of steps. We assume that distances between points in the set. T me• 

constant, i.e. t,+ 1 - t; = t::i.t = canst for i = 0, ... , n - l. 

From the above discretization, the equation (9) changes to the form 

S,+ 1 = S,exp ( (r -~a2 ) t:.t + a~t) , (]()) 
where to, t 1 , ... , En-l are iid (i.e. independent, identically distributed) rnu­

dom variables from N(O, 1) distribution. This sequential form of the equa­

tions we call the iterative stochastic equations. The formula (10) is called 
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an Euler scheme in the literature. It is generally known that if 6.t t.euds t.o 

0, the approximation given by ISE converges to the underlying origiuat.e<l 

stochastic process (see e.g. [6]). 

2.2.2 Proposition of generalization of Black- Scholes model 

The method presented in Sec. 2.2.1 may be used for other types of stocha.5tic 

processes. Due to immense flexibility of Monte Carlo met.hods (8ee Sec. 2.3) 

we can use almost any kind of Levy process for modelling price movements 

of the underlying asset. 

There are only two serious limitations. The first one is the problem 

of estimating additional parameters of the given process. In the Ca8e of 

geometrical Brownian motion (Section 2.2.1) there are only t.wo parn.111et.ers 

- the volatility (a) and the risk- free rate (r). The third parameter -· drift. 

(µ) - does not appear in the appropriate equation (9). But for more complex 

stochastic processes there are additional necessary parameters. 

The second problem arises from a necessity of solving some additional 

equations. These deterministic equations connect all parameters of the given 

process. 

Let us consider next more general model of stochastic process. Assume 

where µ, a, k1 > 0, k2 < 0 are some constants, W1 is, as previously, Brownian 

motion, Ni"' and N,,"2 are Poisson processes with intensity K. 1 aud K.1 , respec­

tively (hence K.1, 11:2 > 0). All of the processes W,,Nt' ,N,"2 are rnut.11aHv 

independent. 
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From (5) we have 

With respect to the equivalent martingale measure P(a), S, is of the form 

S, = So exp ( (µ- k1K.1 - k2K.2 + ao-2) t + aW;M+ 

+ kiN,P(a) "' exp(aki) + k 2N,P(a) ,-2 exp(uk,J) , (lJ) 

where w;(a) is the Brownian motion with respect to the new measure P(a.). 

N,P(a) " 1 exp(ak,) and N,P(a) " 2 exp(ak2) are the Poisson proces:;es with re,;pect. t.o 

P( a) with intensities K.1 eak, and K.2e"k', respectively. 

From (13) it is easy to see that 

S, = Su exp ( (µ - k1K.1 - k2K.2 + aa2) (t - ·u) + a (w;(•> - w:<01 ) + 

+ ki (N,P(a) "I exp(ak,) _ N/:(a) ,_ 1 exp(aki)) + 

+k2 (N,P(a), "2exp(ak2) _ N/:(a), ,.,exµ(nk2))) (l4) 

and 

Sr= So exp ( (µ- k1K.1 - k2K.2 + aa2 ) T + aw.p•>+ 

+kiN{(a) ,-,exµ(aki) + k2N.;(u). ,-2 exp(ak,)). (] 5 ) 

We take advantage of these equations to argue for necessity of using Mollt.e 

Carlo methods in Sec. 2.3. 

A special case of model (11) is the geometrical Brownian motion with 

Poisson jumps. In such a model stochastic process has the form 

Y, = µt + aW, + k (N," - K.t) , (lu) 
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where µ, a and k are some constants, W, is Brownian motion anrl lvt is 

a Poisson process with intensity i- (hence i- > 0). Processes W, and N,~ 

are independent of each other. It is easy to see that we acquire the model 

described by (16) for k2 = 0 in equation (11). 

From (5) we have 

( I 7) 

This equation connects all parameters of the stochastic process of t.he form 

(16) and has to be solved with respect to variable a. Aft.er changing tlH' 

measure according to method presented in Sec. 2.2 we have 

s, = So exp ( (µ - kt-+ aa2 ) t + aw;'(a) + kN,P(") ~exµ( .. k)) ( 18) 

where notation has the similar meaning as in (13). 

2.3 Monte Carlo methods for pricing financial instru­

ments 

We now introduce some basic concepts of Mont.e Carlo (ahhreviat.c,d MC) 

methods for pricing financial instruments. They may be used for various 

processes of movements of the underlying asset and many type.~ of financial 

instruments. 

The necessity of using MC is straightforward. Assume that. the process 

of movements of underlying asset is modelled by (11). The payment. function 

for European- style call option (see e.g. [2]) is given by 

J(S,) = (Sr - K)+ , ( HJ) 
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.. 
where (x)+ denotes the non- negative part of x and I< is striking price for 

this option (see e.g. [4], [61). Let C0 denote the price for such an opt.ioB . 

Mathematically, price is defined as discounted expected valu<' of fut 11n· ,.ii.sh 

flow. 

Under this assumptions we calculate the price for European--st.ylP rn.ll 

option for a c/ 0: 

Co= exp(-rT) EP(a)((Sr - I<t IFo) = 

= EP(a){Soexp ((µ- k1K.1 - k2K2 + aa2 - r) T+ 

+ aw;<a) + k1N,J:(a) "' exp(akt) + k2N,;<a), "' exp(ak,)) _ I<}+ = 

= EP(al{S0 exp(k1Z1 + k2Z2 + aZ3) - K}' , (20) 

where 

Z1~Poiss(K.1e0 k'T), (21) 

Z2 ~ Poiss (1,.2e"k'T) , (22) 

z3 ~ N cµ -k1K1 - k2;2 + aa2 -r)T, vr). (2:3) 

The cumulative distributiou function of the sum k 1 Z 1 + k2Z2 + a Z:i is given 

by the formula 

(24) 

where 

<I> = <I> (t -k1k- k2l - (µ- k1"-1 - k2K2 + aa2 - r)T) (25 ) 
k,l afl 

From .equations (20) - (25) the seeking price has the form 

Ca=l.00 
(Soexp(x)-I<)dY(:1:). 

h,(-fo) 
(2li) 
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As we can see, the formula (26) can not be solved analytically. Hence. we 

should use simulations. 

Let us assume that for a given financial instrument we know its life time 

interval [O, T] and the initial value So of the underlying asset. This time 

interval is divided into n steps (see Sec. 2.2.1). The appropriate ISE fornmla 

for stochastic process of the form (11) is given by 

S;+1 = S; exp ( (µ - k1K.1 - k2K.2 + aa2) fl.t+ 

+avt:.tE; + kip) + k2pf) , (27) 

where PA, ... , P~- I and p5, ... , P~- I are iid random variables from Poisson 

distributions with intensities K.1e•k, fl.t and K.2e•k, 6.t, respectively. Other no­

tation has the same meaning as in (10). 

For process (16) ISE has the form 

S,+1 = S; exp ( (µ - kK. + aa2) fl.t + aV!5:i,€, + kp;) (28} 

where the notation is similar to (27). 

Starting with the value S0 , from the appropriate ISE formula (e.g. ( 10) , 

(27), (28)) we obtain values S1, ... ,S1,. These quantities are values of t.l"' 

basic instrument at time moments t1, ... , t,. = T, respectivel_v. TJu,_v fon11 

the sample path S1 of the stochastic process modelling the underlyiug asset. 

movements. In the same manner we can simulate m trajectories S 1, S 2 • ... S"' 

of the desired stochastic process S,, where mis the n-umber of sirrmlations. 

The last step is the calculation of a disco-unted average of the pay111e11t.s 

sequence 

C"' = e-rT _!_ t FVr J(S') , 
m ·i=l 

(29) 
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where r is the risk- free rate and FV r(Y) is the future value of ut~h flow Y 

at time moment T (see e.g. [31). For European- style call opt.ion (see (1!.J)) 

we have more straightforward formula: 

cm = e-rT 2. t f(S') . 
m 

(30) 
i=l 

Payments from sample paths S1, ... sm form an iid sequence. Then, from 

the Strong Law of Large Numbers (in abbreviation SLLN) we have 

(31) 

where C denotes the present value for the given financial instrument , defined 

as discounted expected value (see e.g. [3]). 

In the following we assume that both expected value and variance of f(S,) 

are finite, i.e. Vt, 1Ej2(S1) < oo. 

3 Fitting stochastic model and parameters 

In this section we present a problem connected with applying the Black ­

Scholes model, which appears on real markets. We also present a methodol­

ogy of solving this problem using Monte Carlo simulations. 

3.1 Problem of "volatility smile" 

Assuming that movements of real underlying assets follow geornet.ricn.l Brow­

nian motion (i.e. (8)), we can apply Black- Scholes formula (see e.g. [4j) lo 

practical data from markets. Knowing r , K, S0 , T, C, where C de11ot.cs t.h<' 

real market price, for given European-style call option , we may find a (so 
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called implied volatility). To calculate this value we use inversion of Black­

Scholes formula as a function of a depending on /(. As it is seeu for real 

market data, graph of a(K) for fixed kind of option with various striking 

prices K is not the straight line, but has a "U" shape (see e.g. [l]). This 

observation in financial literature is called a prvblem of "volatility ~mil~·· As 

it was noted, this means that real markets - i.e. real processes of movements 

of underlying assets - do not follow standard geometrical Brownian motion. 

Therefore we should find more appropriate model of stochastic process of 

underlying asset for a given real market data. 

3.2 Fitting process via Monte Carlo methods 

As we have argued in Sec. 3.1, there _is a necessity of modelling real markets 

via stochastic processes other than geometrical Brownian motion. 

It is easy to see that stochastic process of the form (11) is a generalization 

of the process (16). And this last one is the generalization of the standard 

geometrical Brownian motion, i.e. (8). So we postulate to use the process 

(11) to attempt at solving the problem of "volatility smile". We present au 

appropriate general method of doing this via Monte Carlo methods. Wi, also 

present an example of applying this method for S&P 500 option (see Sec. 

3.3). 

However, it is worth noted that the following method is very universal and 

may be used for other types of Levy processes. But we restricted our attention 

only to stochastic process of the form ( 11 ). The main reason of this rPst rid iou 

is that for a given kind of option with fixed moment T we have usually very 

few different striking prices /(. From our point of view, we should geueraliz,, 
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the geometrical Brownian motion as less a.~ it is possible. Acting clilferc11t.lv. 

we may have not enough information for estimation of parameters for too 

complicated stochastic process of underlying asset movements. 

And the standard geometrical Brownian motion models behaviour of real 

markets pretty well. 

Keeping this in mind, now we present the methodology of solving the 

problem of "volatility smiln" . Assume that for a given kind of opt.ion W<' 

have a sequence C = (C(Ki), ... , C(!(P)) of real market prims for difft!n·11t 

striking prices K1 , . .. , KP. The external market parameters r, T, So are also 

given. 

According to the method presented in Sec. 2.3 for the fixed set. of parnnw­

ters (k1, K 1, k2 , K 2, a,µ) we may simulate the prices of the given kind of option 

for all values K 1, ••• , KP. We acquire a sequence C* = (C'(K1 ) , . .. , C'(K7,)) 

of simulated prices. We may also find the l~- norm between both sequences 

of prices C and c•: 
p 

IIC - C"ll11 = L IC(K;) - C*(K) I · (32) 
i=l 

Applying different sets of parameters (k1,K1,k2,K2 ,a,µ), we could find 

the appropriate sequence of simulated prices which minimizes the norm (32). 

We denote by Pmin this set of parameters for which the 11 norm is minimized. 

Additionally, this set of parameters defines also which of models (8) , {16) or 

{11) fits optimally to given real market data. Easily seen, this met.hod may 

be used for other kinds of Levy processes. The only requirement is to use the 

theory presented in Sec. 2.2 and to calculate appropriate !SE formula (s<!e 

Sec. 2.3). 

The sequence Pm,n is also a solution for a problem of "volatility smile". 
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We may calculate the sequence of implied volatilites for a set of sirnulate<l 

prices given by Pmin-

3.3 Example of method application 

In this section we present an example of applying the method developed in 

Sec. 3.2. 

We use this general method for S&P 500 European call option. The 

termination date for this option was 17th of May, 2002. Data for this option 

is gathered in Table 1. There are values of striking prices K in the first 

column of this table. The real market prices and theoretical Black-- Scholes 

prices are specified in second and third column, 1espectively. The risk- free 

rate r in this example is 0.07 and the starting value of underlying asset S'0 is 

1099.1. 

The value of l!- norm between the theoretical prices given by Black 

Scholes formula and the real market prices is 

JIG - Gas 11,, = 2.084 . (33) 

We have found that stochastic process of the form (16) better than standard 

geometrical Brownian motion models the real market prices. For the set of 

parameters 

1,, = 0.25 , k = 0.1 , a= 0.13 , µ = 0.1 , (34) 

the norm (32) between real market data and simulated prices equals 

1.74803. Comparing this value with 33 we can see that this model improved 

relatively fitting of the prices by 16.12 %. 

The prices simulated by the process (16) with set of parameters :34 are 

given in the last column of the Table 1. 
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K C ( real prices) Cns (Black- Scholes prices) c• (simulated prices) 

1050 49.2 49.1 49.4603917 ' I 

1055 44.2 44.1 44.64002077 

1060 39.2 39.1 39.5105021.5 

1065 34.2 34.1 34.18952799 

1070 29.3 29.11 29.41484469 

1075 24.4 24.157 24.39709814 

1080 19.6 19.303 19.6238879 

1085 14.9 14.67 14.83853433 

1090 10.7 10.452 10.6537997 

1095 6.9 6.872 6.938917236 

1100 4.1 4.106 4.012709425 

1105 2.3 2.198 2.080002264 

1110 1 1.042 0.976715763 

1115 0.45 0.433 0.4126718G ! 

1120 0.25 0.157 0.216773132 

1125 0.15 0.049 0.173951727 I 
1130 0.1 0.013 0.107346476 

Table 1: Real and simulated prices for S&P 500 option 

17 



4 Conclusions 

The method described in our paper enables to find a stochastic process, 

which is fitted to a real asset better than the geometrical Brownian motion. 

The theoretical considerations are confirmed by the calculations for a real 

derivative. It is possible to find a process with the property of the "U" shape 

of volatility as the function of the striking price. A disadvantage is a large 

number of simulations required in the presented method. However it seems 

that the procedure is worth carrying out, if the properties of the underlying 

asset do not change in time. The domain of exploration of the process is uot. 

very wide and therefore the method is statistically reliable. 
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