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Process control using predicted quality data 

Olgierd Hryniewicz and Janusz Karpinski 

Abstract SPC procedures are usually designed to control stability of directly ob­
served parameters of a process. However, when quality parameters of interest are 
related to reliability characteristics it is practically hardly possible to monitor such 
characteristics directly. Instead, we use some training data in order to build a model 
that is used for the prediction of the value of an unobservable variable of inter­
est basing on the values of observed explanatory variables. Such prediction models 
have been developed for normally distributed characteristics, both observable and 
unobservable. However, when reliability is concemed the random variables of in­
terest are usually described by non-norma! distributions, and their mutual depen­
dence may be quite complicated. In the paper we consider the model of a process 
when traditionally applied assumptions are violated. We show that in such a case 
some non-statistical prediction models proposed in the area of data-mining, such as 
Quinlan's C4.5 decision tree, perform better than popular linear prediction models. 
However, new problems have to be considered when shifts in the levels of process 
parameters may influence the performance of applied classification algorithms. 

1 Introduction 

Statistical decision procedures of Statistical Quality Control (SQC) are mainly de­
signed for the analysis of independent, and usually normally distributed, quality 
characteristics. For modem production processes new measurement techniques al­
low to describe processes using many characteristics and these characteristics are 
often assumed to be independent. For many years the T2 control chart, introduced 
by Hotelling in the 1947, was the only SPC tool used for SPC of processes de­
scribed by such multivariate data, see /Vlo 11 t.go1.ne1.y (201 l ). However, during the last 
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twenty years same new techniques have been proposed for dealing with interdepen­
dent statistical quality data. For example, control charts for the parameters of the so 
called profiles have been introduced in order to control not only numerical values 
of quality characteristics, but the structure of their mutual dependence as well, see 
the paper by \.Vood,Lll e l al. (2004), the book by Noorsarrn el at. (20 1 l), and recent 
papers by Xu d :d. ('.WJ 2), and by W:mg and H11wa11g (2(11 2) for mare information. 
These methods can be used for the analysis of different dependencies of a regres­
sian type, both linear and non-linear. However, in practically all cases the proposed 
models have been obtained under the assumption of normality of measured charac­
teristics. Moreover, it is assumed that all important quality characteristics of interest 
are directly measurable. 

In many production processes parameters of produced objects can be measured 
for all produced items. Thus, one can say that a 100% quality inspection can be im­
plemented for such processes. However, the parameters that can be measured during 
the production process may not be necessarily the same as the actual quality char­
acteristics that determine the quality of produced items. When reliability is a key 
quality parameter, the important reliability characteristic such as the life-time can­
not be directly measured during a production process. We face the sirnilar situation 
when the measurement of quality characteristics may have a negative impact on the 
quality of inspected items. Sirnilarly, the same problem is when the measurements 
of quality characteristics are costly (e.g. when the time of measurement is too long 
for a production process), and thus infeasible. In all such cases there are attempts to 
measure these characteristics indirectly by the measurements of other characteris­
tics. 

The problem of an indirect inspection of important quality characteristics was 
noticed for the first time more than fifty years ago, but since that time it has at­
tracted the attention of relatively few authors. There exist two generał approaches to 
cope with this problem. In the first approach, introduced by Owen and collaborators, 
see Owen and Su ( l 977), a multivariate probability distribution of the random vector 
(Z,X1, .. . ,Xk) is built, where Z is the quality characteristic of interest, and X1, .. . ,Xk 
are the characteristics that are directly measurable in a production process . The pro­
cedures obtained using this approach are acceptable only in the case of the multi­
variate (usually bivariate) normal (Gaussian) distribution describing (Z,X1, ... ,Xk)­
Another approach is based on the assumption that that the relation between the ran­
dom variable Z and the variables X1 , ... ,Xk is described by a certain (usually linear) 
regression model. Also in this case the normality assumption about Z is usually used 
in practice. In both cases there is a certain link of the proposed methods to the multi­
variate SPC tools mentioned in the first paragraph of this section. However, it has to 
be assumed that at certain moments of time both predicted and explanatory values 
have to be observed. 

Unfortunately, for many processes the actual multivariate probability distribu­
tion of (Z,X1, ... ,Xk) is different from the norma! (Gaussian) one. Moreover, the 
number of predictors (explanatory variables) X1, ... ,Xk is not small, and this cre­
ates additional problems with the usage of classical statistical procedures. In such 
cases building of a well-established probabilistic model is rather infeasible. Instead, 
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Hryniew icz (2013) has proposed to use the data mirung methodology for a simple 
classification of inspected items. In the first step used in his approach same (usu­
ally two: conforming and nonconforming) classes of inspected items are defined in 
relation to the possible values of Z. Then, a classifier (e.g. linear classifier, deci­
sion tree or artificial neural network) is built using a training data consisted of the 
limited number of observations (Z,X1, ... ,Xk)- Finally, the classifier is used in the 
inspection process for labeling the produced items . 

Classifiers used in the inspection process are usually built using small amount 
of data, named training data. Thus, the results of classification are not error-free. 
What is mare important, however, that the relation between the results of classi­
fication and the actual level of the quality characteristic of interest may be quite 
complicated. Therefore, as it has been noted in llryJ1i,;:wicz (201 3), there is a need 
to investigate the impact the quality of the classification procedures on the efficiency 
of SPC procedures used in production processes. Because of the complexity of pos­
sible models that describe interdependent and non-norma! processes the evaluation 
mentioned above can be only dane using computer simulations 

The remaining part of this paper is organized as follows . In Section 2 we de­
scribe the simulation experiment proposed in H1yniewi..:z (2013) for the evaluation 
of different prediction algorithms. In the next section we use the simulation results 
for the performance analysis of of four algorithms used for the prediction purposes. 
We consider the simple linear regression model with a binary output (RegBin), two 
versions of the Linear Discrimination Analysis algorithms (LDA-s with a symmetric 
decision criterion, and LDA-as with an asymmetric decision criterion), and the Clas­
sification Decision Tree Quinlan's C4.5 algorithm. We evaluate these algorithms in 
terms of prediction errors for both nćm-shifted and shifted process levels. In Sec­
tion 4 we consider the usage of the proposed prediction algorithms for the moni­
toring production processes with 100% inspection. We consider two cases: when 
decisions are made using the approach based on the classical Shewhart control chart 
methodology, and w hen decisions are made using the approach based on the Moving 
Average (MAY) control chart methodology. Same conclusions from the performed 
experiments, and indications for a future work are presented in the last section of 
the paper. 

2 Simulation of indirectly observed processes - description of the 
simulation model 

The problem of process control when quality characteristics of interest are not di­
rectly observable, but only assessed on the basis of observations of other, possi­
bly related, variables is, as it has bin described in llrynicwicz (2(JI J ), much mare 
complicated than the classical one when when all variables of interest are directly 
observable. The variability of an indirectly quality characteristic of interest con­
sists of two parts. One is related to the inherent variability of the process itself, and 
the second one is related to unavoidable uncertainty of classification (prediction) 
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procedures. When we have at aur disposal only the predicted values of the quality 
characteristic, these two types of variability are practically inseparable. 

As it has been noted in the previous section, the majority of statistical proce­
dures used for the prediction of unobservable quality characteristics is based on 
the assumption of multivariate normality. Usually this assumption is reduced to 
the case that the quality characteristic of interest and its observable predictor are 
jointly distributed according to a bivariate norma! distribution. When severa! pos­
sible predictors are available it is also often assumed that these predictors are sta­
tistically independent. Under such assumptions simple regression models (usually 
linear) are built and used for the purpose of quality evaluation. Unfortunately, when 
quality characteristics of interest describe reliability these simple assumptions are 
hardly acceptab!e. First of all, reliability characteristics, such as the life time, are 
usually described by strongly skewed distributions. Moreover, predictors are fre­
quently modeled by random variables defined on subsets on positive real numbers, 
and their distributions can be quite far from the norma! distribution. Finally, behind 
the values of observed predictors there are same common physical and chemical 
phenomena which often make them strongly statistically dependent. One can a!so 
add another dimension by assuming strong non-linearity of the relations describ­
ing physical phenomena with the observed life times, described e.g. by models of 
so called competitive risks. Thus, the real models describing the process of e.g. 
reliability prediction may be very complicated, and usually extremely difficult to 
identify. 

In order to investigate the impact of same of the problems mentioned above on 
the efficiency of prediction (classification) process a simulation model that consists 
of three levels has been built. On the first level we have four random variables, de­
noted by A,B,C,D, respectively, which describe observable characteristics. These 
variables may be described by severa! probability distributions (norma!, uniform, 
exponential, Weibull, log-norma!) chosen by an experimenter. Observed variables 
may be pairwise dependent, and their dependence may be described by severa! cop­
ulas (norma!, Clayton, Gumbel, Frank) chosen by an experimenter. The strength of 
dependence is defined by the value ofKendall's coefficient of association -r. Detailed 
information about the usage of copulas for the description of complex dependence 
structures can be found in the monograph by Nelscn (2006). These assumptions al­
low to simulate quite complicated structures of interdependent predictors. On the 
second level we have four hidden (unobservable) random variables HA,HB,Hc,Hn 
defined on a positive part of the real line. Their probability distributions may be 
chosen from the set of distributions used in the theory of reliability (exponential, 
Weibull, log-norma!). Each of the hidden random variables is related to its respec­
tive observed variable, i.e. HA to A, HB to B, etc., and this relation is described by a 
chosen copula (with a given value of Kendall's -r) describing their joint probability 
distribution, and a certain linear dependence between their expected values. Finally, 
on the third level, hidden random variables are transformed to the finał random vari­
able T that describes the life time that can be observed only in specially designed 
experiments. The relation between HA ,HB,Hc,Hn and T is strongly non-linear, and 
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T =f(HA,HB,HC,HD) 
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is described by operators of a "min-max" type. The structure of the simulation model 
described above is presented on Figure 1. 

The simulation system described above allows to simulate sets of data with a very 
complex, and practically impossible to be predicted in advance, structure. In this pa­
per we show the results of experiments using the model described in Hryn i,:wil'l. 
(21) 13). In this model A is distributed according to the normal distribution N(S;0.5), 
B has the exponential distribution with the expected value equal to 10, C is dis­
tributed according to the log-normal distribution such that log of C is distributed 
according to the N(S; 1), and D has the Weibull distribution with the scale parame­
ter equal to 10, and the shape pararneter equal to 2. 

The dependence between A and B has been described by the Clayton copula with 
't' = O, 8. The joint distribution of B and C is described by the norrnal (gaussian) 
copula with 't' = -0, 8 (Notice that this is bivariate "normal" distribution, but with 
non-norma! marginals !), and the joint distribution of C and D has been described by 
the Frank copula with 't' = O, 8. 

The hidden variable HA is described by the Iog-normal distribution such that 
log of HA is distributed according to the N(3; 1), and its joint probability distri­
bution with A has been described by the normal copula with 't' = -0, 8. The joint 
distribution of Hs and B has been described by the Frank copula with 't' = O, 9, 
and the marginal distribution of Hs is assumed to be the exponential with the ex­
pected value equal to 10. The joint model of He and C is similar, but the copula 
describing the dependence in this case is the Gumbel copula, and the marginal dis­
tribution of He is also assumed to be the exponential, but with the expected va!ue 
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equal to 20. Finally, the hidden variable Hn is described by the Weibull distribution 
with the scale parameter equal to 50, and the shape parameter equal to I, 5, and its 
joint probability distribution with D has been described by the Clayton copula with 
't' = -0, 8. The random variable T that describes the life time has been defined as 
T = min[max(HA,HB),Hc,Hn]. 

The parameters of the aforementioned distributions have been found experimen­
tally in sucha way, that unreliable items have their lifetimes T smaller than 5. More­
over, the relation between the observed variables A,B,C,D and their hidden coun­
terparts HA,HB,Hc,Hn is such that a shift in the expected value of each observed 
variable, measured in terms of its standard deviation, results with the similar shift of 
the expected value of its hidden counterpart, measured in terms of its own standard 
deviation. The description of this experiment is presented on Figure 2. 
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3 Quality prediction of indirectly observed processes - evaluation 
of simulation experiments 

3.1 Classification methods usedfor the prediction of quality 
characteristics 

In the experiment described in Section 2 we generate the va!ues of the random vari­
able T that has the interpretation of the life time. For the purposes of quality inspec­
tion it is important if this va!ue is greater than a certain critica! value Tcrit. Therefore, 
we need a classification method for the appropriate labeling produced item basing 
of the results of the measurements of some explanatory variab!es. In other words, 
we have to c!assify measure items into two c!asses: conforming (with T > Tcrit) and 
nonconforming (if otherwise) items. There exist dozens of methods used for solving 
such c!assification problems. Some o them, based on some statistical assumptions, 
have certain optima! properties. The properties of other methods, mainly based on a 
data mining approach, can be only assessed experimentally. In our research we have 
considered the performance of severa! c!assification methods in the analysis of data 
generated by our simulation system. 

First considered c!assification method is a naive linear regression. Let us label 
the class of unreliable items (i.e. those whose life-time is shorter than 5) by 1, and 
the class of remaining items by 2. Then, !et us consider these labels as real numbers, 
treating them as observations of real dependent variable in the regression analysis 
of the following form: 

(1) 

where CL is the predicted class of an /tern described by explanatory variab!es 
A, B, C, D, and XA ,XB ,xc ,xv ,XF are respective coefficients of regression equation es­
timated from a training set of n elements. The value of CL estimated from (1) is a 
real number, so an additional requirement is needed for the fina! c!assification (e.g. 
if CL < I, 5 an item is c!assified as unreliable, and otherwise, as a reliab!e one). 
The only advantage of this naive method is its simplicity. It can be easily imple­
mented using statistica! tools available in spreadsheets. We have also used the linear 
regression model for the prediction of T and further classification, but the resu!ts 
of classification were similar to the resu!ts of c!assification using this naive binary 
regression approach and are not presented in this paper. 

The second considered classifier is based on classical statistical results of Fisher. 
It is known as the Linear Discrimination Analysis (LDA), and is described in many 
textbooks on multivariate statistical analysis, and data mining (see, e.g. H.as ti;; et 
al. (200S). In this method statistical data are projected on a certain hyperplane es­
timated from the training data. Those data points who are c!oser to the mean value 
of the projected on this hyperplane training data representing the class 1 than to the 
mean value of training data representing the remaining class 2 are classified to the 
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class 1. Otherwise, they are classified to the class 2. The equation of the hyperplane 
is given by the following formula : 

(2) 

where L is the value of the transformed data point calculated using the values of 
explanatory variables A,B,C,D, and YA ,YB,Yc,YD,YF are respective coefficients of 
the LDA equation estimated from a training set of n elements. The calculation of the 
LDA equation (2) is not so simple. However, it can be done using basie versions of 
many statistical packages such as SPSS, STATISTICA, etc. 

If Zi denote the decision point, a new item is classified to the class 1 if L 2?: Zi, 
arid to the class 2, otherwise. In our research we have considered two methods of the 
calculation of Zi, and thus two method of classification. In the first method, called 
in this paper as the LDA-s, this point, denoted by ZLs, is just the average of the mean 
values of the transformed data points from the training set that belonged to the class 
1 and the class 2, respectively. In the second method, called in this paper as the 
LDA-as, the decision point, denoted by ZIAs, is - as suggested in i\.1u rlagli (1 986) 
- the weighted average of the center points of data sets representing the class 1 and 
the class 2, with weights proportional to the sizes of these classes in the training 
data. 

The fourth considered classification method is based on the implementation of 
the one of the most popular data rnining classification algorithms, namely the clas­
sification decision tree (CDT) algorithm C4.5 introduced by Quinfan (1 993), and 
described in many textbooks on data rnining, such as WiHcn et al (20[ [ ). In our ex­
periments we used its version (known as J48) implemented in the WEKA software, 
available from the University ofWaikato, Hamilton, New Zealand, under the GNU 
license. The decision tree is constructed using "IF„THEN .. ELSE" rules, deducted 
from the training data. In the description of this classification method in this paper 
we use the notation of the MS Excel function IF(lt,t,f), where lt is a logical condi­
tion (e.g. C < 50), t is the action w hen lt = true, and fis the action when lt =fa/se. 
The actions t and f can be implementations of other IF functions, or - finally - the 
assignments of classes to the considered items. 

3.2 Description of classifiers used in the simulation experiments 

The classification rules ( binary regression models, LDA linear equations with re­
spective decision rules, and decision tree "IF„ THEN„ELSE" rules) are built using 
certain training data sets consisted of the values of all explanatory variables and the 
values of the quality variable of interest. In our experiment these training data sets 
have been generated by our simulation program using the model described in the 
previous section. In the artificial intelligence community it is assumed that good 
training data sets should consist of severa! hundreds of items. In our reliability pre­
diction problem such large data sets are absolutely infeasible. In our simulation 
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experiments for the generation of training data sets we have taken an upper feasi­
ble limit on the number n of observed items, namely n = 100. In order to estimate 
the effect of the randomness of the training data sets on the classification decision 
rules, and finally on the results of classification during a production process, we 
have generated several different data sets. For each of these data sets we have built 
all considered classification rules. Similarly to Hryni,:wiez (201 3) we present the 
results for only 10 such sets. 

The coefficients of the regression equation (1) are presented for the considered 
ten data sets in Table 1. Those coefficients that have been indicated by the regres­
sion statistical tool as statistically non-significant have been printed in this Table in 
italics. However, we have to remember that in the calculation of the significance of 
regression coefficient it is assumed that observed data are distributed according to 
the normal probability distribution. In our case it is is obviously not true, so in our 
classification experiment we have used full regression equations. 

Table 1 Regression model - different sets of training data 

Dataset XA XE XC XD XF 

Set 1 -0,133 -0,034 -0,0001 -0,026 3,036 
Set 2 0,010 -0,039 0,0001 -0,033 2,321 
Set 3 0,144 -0,033 <0,0001 0,0002 1,359 
Set4 -0,194 -0,034 -0,0005 -0,019 3,396 
Set 5 -0,346 -0,021 -0,0006 0,002 3,763 
Set 6 0,073 . -0,047 <0,0001 -0,023 2,058 
Set 7 -0,142 -0,040 -0,0004 -0,0008 3,019 
Set 8 0,109 -0,038 <0,0001 -0,001 1,611 
Set 9 -0,346 -0,039 0,0002 -0,034 4,054 
Set 10 -0,002 -0,018 -0,0005 0,042 1,745 

Just a first look at Table 1 reveals that the estimated regression equation (1) may 
be completely different, depending on the chosen training data set. However, some 
generał pattern is visible: only explanatory variable B is significant for all regres­
sion lines. On the other hand, explanatory variable C seems to be of no practical 
importance in the classification process. 

A comparison of the decision model parameters for different training data sets 
in the LDA case is presented in Table 2. In this case we cannot say about statistical 
significance of the parameters of the decision rule. However, the generał impression 
is that some predictors are of limited importance for the classification purposes. 
The particular models look completely different depending on the training data set. 
However, in all the cases the explanatory variable C seems to have no effect (very 
low values of the coefficient describing this variable) on the classification. 

Now, let us considered different decision rules estimated for the CDT algorithm. 
Because of a completely different structure of decision rules presented in Table 3 we 
cannot compare directly these rules with the rules described by the equations (1-2). 
They also look comp!etely different for different training data sets, but in nearly all 
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Table 2 Linear discrirnination ana!ysis - different sets of training data 

Dataset YA YB YC YD YF Zu ZIA, 

Set I 0,687 0,174 0,001 0,133 -6,338 0,628 1,255 
Set2 -0,045 0,178 -0,001 0,151 -2,710 -0,014 -0,028 
Set 3 -0,646 0,148 <0,0005 -0,001 1,663 0,464 0,927 
Set4 0,880 0,152 0,002 0,087 -7,499 0,585 1,171 
Set5 1,500 0,091 0,003 -0,008 -9,121 0,254 0,508 
Set 6 -0,342 0,219 <0,0005 0,107 -1.399 0,706 1,412 
Set 7 0,703 0,196 0,002 0,037 -6,044 0,784 1,568 
Set 8 -0,501 0,173 <0,0005 0,006 0,636 0,629 1,258 
Set 9 1,458 0,127 0,001 0,143 -10,048 0,344 0,687 
Set 10 0,008 0,087 0,002 -0,206 0,272 0,771 1,542 

cases (except for the Set 9) decision are predominantly (and in one case exclusively) 
based on the value of the explanatory variable C. 

Table 3 Decision trees - different sets of training data 

Dataset 

Set 1 

Set 2 
Set 3 

Set4 
Set5 

Set 6 
Set? 
Set 8 
Set 9 
Set IO 

Decision rule 

JF(C <= 70,0181;/F(C <= 56, 1124; l;IF(C <= 
63,2962;2; l));IF(D <= 16,4381;2;IF(A <= 4, 3509;2; 1))) 
IF(C <= 56,4865; l;IF(D <= 17, 3301;2;/F(A <= 4,0217;2; 1))) 
IF(C <= 73,6148;/F(C <= 57, 1355; l;IF(A <= 5,0876;2;/F(D <= 
4,497;2; l)));IF(D <= 17,3499;2; 1)) 
IF(C <= 70, 2191; l;IF(D <= 15, 9098;2; 1)) 
IF(C <= 73, 1584; 1; (IF(D <= 17,0516; (IF(C <= 87, 8921; (JF(D <= 
5, 0679;2; 1));2)); 1))) 
IF(C <= 60, 3912; l;IF(D <= 16,3504;2; 1)) 
JF(C <= 71, 8184; 1;2) 
IF(C <= 71,4456; l; (IF(C <= 983, 0929;2; (JF(D <= 18, 8213;2; 1))))) 
IF(B <= 14, 7339;(/F(D <= 16, 7482;(/F(D <= 4,527; 1;2)); l)); 1) 
IF(C <= 60,5044; 1;2) 

One can notice that the weight assigned to the explanatory variables in the CDT 
algorithm is nearly exactly opposite to the weights assigned in the RegBin (I) and 
LDA (2) c!assification models. In order to explain this shocking difference one 
should look at Figure 3. The dependence between the life time E and the explanatory 
variables C and D in not only non-linear, but non-monotonie as well. This depen­
dence cannot be captured by the measures of linear correlation in the linear models 
(1)-(2). However, it seems that the explanatory potentia! of these two variables is 
much greater than the potentia! of the variables A and B. We have investigated this 
problem in our further simulation experiments. 
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Fig. 3 Dependencies between the life-time E and explanatory variables A,B,C,D [Hryrtiewia 
(201,) J 

3.3 Evaluation of classi.fiers - constant process levels 

In order to evaluate the quality of different classification methods used for the pre­
diction of quality characteristics generated by our simulation model we have per­
formed severa! tests. Each of the performed_ experiments consisted of I OOO simula­
tion runs. For each run a set of classifiers that were built using the same training set 
was chosen randomly from among the available IO sets. Then, a sample of n items 
described by vectors ofvariables (T,A,B, C,D) was generated using the already de­
fined model. The va!ues of (A,B,C,D) were used for the prediction of the quality of 
the simulated items. The actual (generated) value of Twas used for the calculation 
of the actual fraction nonconforming, and the labels obtained by the c!assifiers were 
used for the calculation of the predicted fraction nonconforming. Thus, obtained for 
the each type of classifier values of the reported fraction nonconforming are aver­
aged over IO particular classifiers used for the prediction of the quality. In Table 
4 we present the results of the estimation of actual and reported fractions noncon­
forming (process levels) using the samples of n = 5000 items. Together with the 
average values (Avg) we present the values of the coefficients of variation (CVar) 
which represent the variability of the estimated process !evels, and the coefficient of 
skewness (Skew) . 

Table 4 Actual and reported values of the fraction nonconforming 

Actual RegBin LDA-s LOA-as C4.5 

Avg 0,253 0,161 . 0,250 0,183 0,255 
CVar 0,024 0,181 0,180 0,356 0,193 
Skew 0,052 0,624 0,231 1,133 0,349 
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From the analysis of the data presented in Table 4 one can easily see that the 
reported level of the fraction nonconfonning may be significantly different from 
the actual one. This is the result of wrong classifications made by the classifiers. 
There are two types of misclassified ides: false positives (FP), i.e. nonconfonning 
items classified as confonning ones, and false negatives (FN), i.e. confonning items 
falsely classified as nonconfonning. This problem will be discussed later on, but 
naw we have to no tice its most important consequences. When the fraction of FP's 
is greater than the fraction of FN's the reported fraction nonconfonning is lower 
than the actual one, as it is the case for RegBin, LDA-s, and LDA-as · classifiers. 
When the reported fraction nonconfonning is greater than the actual one, as it is 
the case for the C4.5 classifier, the fraction of FN's is greater than the fraction of 
FP's. Usually non-detection of a nonconforming item leads to worse consequences 
than a false detection of a confonning item, and in such a case RegBin and LDA-as 
classifiers seem to be inferior to their remaining two competitors. 

From Table 4 one can also see that the coefficient of variation for the reported 
fraction nonconfonning (process levels) is significantly greater than for the case of 
the actual one. This is the result of additional variability introduced by the random 
chcice of classifiers. In Table 5 we show how the reported fraction nonconfonning 
vary for different sets of training data used for building classifiers. The results pre­
sented in this table are based on the simulation of samples of n = 1000 items. The 
to tal number of simulation runs was 1 OOO. Hence, for each of the considered sets of 
training data (and the classifiers built using these data) there were, on average, 100 
data points. Therefore, the particular values of the fraction confonning displayed in 
this table are not very accurate. 

Table 5 Actual and reported values of the fraction nonconforrning - different sets of training data 

Set Actual RegBin LDA-s LDA-as C4.5 

Set 1 0,252 0,137 0,262 0,170 0,220 
Set 2 0,255 0,155 0,328 0,332 0,205 
Set 3 0,254 0,141 0,212 1,148 0,259 
Set4 0,252 0,131 0,179 0,129 0,304 
Set5 0,254 0,207 0,303 0,250 0,337 
Set 6 0,252 0,164 0,210 0,145 0,254 
Set? 0,253 0,184 0,263 0,176 0,234 
Set 8 0,254 0,157 0,213 0,144 0,244 
Set 9 0,252 0,214 0,289 0,221 0,323 
Set 10 0,252 0,129 0,232 0,118 0,185 

The information contained in Table 5 is mare readable when presented graphi­
cally, as on Figure 4. From this picture one can see that the RegBin classifier consis­
tently reports lower fraction nonconfonning, and its shows that the fraction of FP's is 
for this classifier excessively high. The LDA-as classifier behaves sirnilarly, except 
for the cases of Set 2 and Set 5 where it reports, respectively, fraction nonconform­
ing higher or equal to the actual one. This is also the reason for the large coefficient 
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Fig. 4 Actual and reported values of the fraction nonconforming - different sets of training data 

of variability of this classifier, as it can be read from Table 4. The behavior of the 
LDA-s and C4.5 classifiers is similar. The reported fraction nonconforming varies 
significantly from set to set of training data for both these c!assifiers . However, the 
coefficient of variation for the LDA-s classifier is slightly smaller. 

As it has been a!ready noted, the difference between the reported fraction non­
conforming and the actual one shows if the fraction of FP's exceeds that of FN's or 
not. However, it is much more important to know what are the actual values of the 
fractions of misclassified items. On Figure 5 we show the results of another simula­
tion experiment (for the sample size n = 500) where the actual fractions of FP's are 
presented for different classifiers and different training data sets. Prom this figure 
we see that the C4.5 classifier outperforms its competitors, as for nearly all train­
ing data sets it gives the lowest fraction of false classifications of the FP type. The 
RegBin and LDA-asym classifiers are definitely bad with respect to the fraction of 
FP's. 

The similar picture that presents the actual fractions of FN's for different classifiers 
and different training data sets is shown on Figure 6. In this case the classifiers that 
have worse behavior with respect to FP's look better. However, the C4.5 classifier 
which outperforms the other ones with respect to FP's does not perform very bad 
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with respect to FN's. So one can say that for the process under control this classifier 
is the best from among those considered in this paper. 

3.4 Evaluation of classifiers • variable process levels 

In the section 3.3 we have considered the case when the probability distributions of 
the explanatory (predictive) variables A, B, C, and D are the same for the training 
data used for the construction of classifiers and the process data. Tuus, the actual 
and reported fraction nonconforming for the training and process data are governed 
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by the same probability distribution. However, processes where the considered clas­
sifiers are used may vary in time in many different ways. In this paper we consider 
only the simp!est case when the change of the process parameters is described by 
the shift (up or down) of the expected value of only one of explanatory variables. We 
will report these shifts as the multip!es of the standard deviations of the respective 
explanatory variables. 

First of all, we have to note that the shift of the expected value of an explana­
tory variable may result in two mechanisms of the change of the observed process 
Ievel. First, it changes, but to usually unknown extent (because of very complicated 
relations between the values of considered variab!es), the actual fraction of noncon­
fonning items. Second, it results in changing the efficiency of the used classifiers. 
After such a shift has occurred the existing classification rules do not fit to the ac­
tual data, and the probabilities of false classification, both for FP's and FN's, may 
change quite dramatica!ly. 

Let us consider the shifts of the expected values of the explanatory variables 
that results in the deterioration of the actual process level described by the actual 
fraction nonconfonning. In our model we observe such deterioration for the positive 
(upwards) shifts of the expected value of A, and the negative (downwards) shifts 
of the expected values of B, C, and D. In Table 6 we present the values of actual 
and reported fraction nonconfonning when the magnitude of shifts of the expected 
values of the explanatory variab!es is small, and is equal to the O, 5crx, where crx 
is the standard deviation of an explanatory variable X . We have chosen such small 
shifts in order to show the effect of the worsening of the efficiency of the considered 
classifiers. 

Table 6 Actual and reported values of the fraction nonconforming for a deteriorated process 

Shift Actual RegBin LDA-s LOA-as C4.5 

No shift 0,254 0,162 0,248 0,181 0,257 
A (up) 0,252 0,180 0,277 0,204 0,260 
B (down) 0,253 0,117 0,192 0,134 0,255 
C (down) 0,303 0,152 0,235 0,173 0,608 
D (down) 0,270 0,155 0,238 0,176 0,219 

The results presented in Table 6 show a really strange behavior of the considered 
classifier. When the expected value of A is shifted the actual fraction nonconfonning 
remains practica!ly the same (the observed differences may be explained as the ef­
fect of the randornness of the simulation process), but all classifiers show significant 
(except for the C4.5) deterioration of the process. When the expected value of Bis 
shifted the situation with the actual fraction nonconfonning is sirnilar, but the clas­
sifiers behave in a completely different way. They show significant (except for the 
C4.5) improvement of the process (!ower value of the fraction nonconfonning). The 
situation becomes dramatically bad in the case of the shift of the expected value of 
C. In this case the actual fraction nonconfonning increases significantly, but this is 
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reported only by the classifier C4.5. All the remaining classifiers show the improve­
ment of the actually deteriorated process ! When the expected value of D is shifted 
the actual fraction nonconfonning increases quite significantly, but this has not been 
reported only by any of the considered classifiers ! 

This strange behavior may be explained when we look at the definitions of clas­
sifiers presented in Tables 1 - 3. The classification rules for the RegBin, LDA-s, and 
LDA-as classifiers depend practically exclusively on the values of A and B4. On 
the other hand, the decision rules of C4.5 depend predorninantly on the values of C 
(only in one case the decision rule does not depend on the value of C) and D. 

Naw, let us look at the case when shifts in the expected values of the explanatory 
variables result in the improving of the process. Sirnilarly to the case discussed 
above assume that the magnitude of the shift is equal to O, 5 ax, but in this case the 
expected value of A decreases, and the expected values of B, C, and D increase. The 
actual and reported fraction nonconforrning for such a case are presented in Table 7. 

Table 7 Actual and reported values of the fraction nonconforrning for a improved process 

Shift Actua! RegBin LDA-s LDA-as C4.5 

No shift 0,254 0,162 0,248 0,181 0,257 
A (down) 0,252 0,151 0,232 0,170 0,252 
B (up) 0,253 0,209 0,303 0,230 0,264 
C (up) 0,234 0.179 0,278 0,197 0,151 
D (up) 0,244 0,175 0,282 0,207 0,333 

Just as in the previously considered case of a deteriorated process the behavior 
of the considered classifiers is often different than expected. Only in the case of 
the shift in A the classifiers behave as expected (they show the improvement) . In 
contrast, in the case of the shift in D, and of the shift in B, the classifiers behave 
contrary to the expectation (they show the deterioration). In the case of the shift of 
the expected value of C only the C4.5 classifier behaves as expected. 

On Figure 7 we show how the fraction of FP's changes for different classifiers 
when we use different training sets, and the process is deteriorated due to the neg­
ative shift of the expected value of the explanatory variable D. The impact of the 
same shift on the fraction of FN's is presented on Figure 8. 

From Figure 7 and Figure 8 we can see that the classifier C4.5 is consistently 
better than its competitors when the fraction of FP's is considered. Its behavior is 
nearly as good if we consider the fraction of FN's (only RegBin is better). 

The sirnilar situation takes place when we consider the deterioration of the pro­
cess due to a negative shift of the expected value of the explanatory variable C. On 
Figure 9 we show how the fraction of FP' s chan ges in this for different classifiers 
and different training sets. 
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The behavior of the classifier C4.5 in the case presented on Figure 9 is nearly 
perfect. For severa! sets of training data the classifier built on this training data 
shows idea! performance - no FP's have been observed. In the remaining cases the 
behavior of the C4.5 is significantly better than the behavior of its competitors. 
Unfortunately, the behavior of this classifier with respect to the fraction of FN's is 
dramatically worse, as it is seen on Figure 1 O. Due to a relatively small shift in C the 
C4.5 classifier begins to report the majority of all classified items as nonconforming. 
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The impact of this phenomenon on the performance of SPC procedures will be 
discussed in the next section of this paper. 

Let us finish this section with a close summary. Neither of the considered classi­
fiers is consistently better than its competitors. However, a certain ranking of these 
classifiers can be made. The binary regression RegBin classifier is definitely the 
worse, and this is not unexpected as the considered problem is strongly nonlinear. 
Also the LDA-as classifier built using Fisher's linear discriminant function with 
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asymmetrically located decision point has rather disqualifying properties. The simi­
lar classifier, but with symmetrically located decision point (LDA-s), performs much 
better, but in same cases its behavior is really bad. The elear winner is Quinlan 's 
C4.5 classifier which outperforms its competitors in the majority of different sim­
ulation experiment. Its only visible deficiency is the highly excessive rate of false 
negative classifications for certain pattems of process deterioration. 

4 SPC procedures for monitoring the process with predicted 
values of quality characteristic 

The ultimate goal of any SPC procedure is to keep the process at an acceptable 
level. Even if we observe all items in a process we can stili use SPC procedures for 
monitoring the process quality. For example, we can divide the entire process into 
consecutive segments of n elements, and treat these segments as samples for charting 
purposes. Altemative approaches, such as using a sliding window for monitoring the 
process, are also possible. In aur research we considered two approaches: division 
of the process into segments of n = l 00 items considered as samples for charting the 
Shewhart p-chart, and using a mowing average chart (MAV) with a sliding window 
of n = 100 items. 

For the construction of the Shewhart control p-chart one needs a good estimator 
of the fraction nonconforming p. By a a good estimator we understand a stable es­
timator characterized by low variability. The estimated value of the process fraction 
nonconforming p is obtained from the analysis of Phase I process data when the 
process is under control. In Table 8 we present the coefficients of variation of the 
estimates of p for actual and reported process levels, and different sample sizes n 
(i.e. durations of the Phase I). 

Table 8 Coefficients of variation of the estimators of p 

n Actual RegBin LDA-s LDA-as C4.5 

200 0,125 0,242 0,218 0,385 0,228 
500 0,075 0,210 0,195 0,360 0,206 
1000 0,054 0,191 0,187 0,348 0,193 
2000 0,039 0,186 0,184 0,352 0,192 
5000 0,024 0,181 0,180 0,356 0,193 

From Table 8 we can see that stable estimates of p can be obtained from samples 
of n = 1 OOO items. For this sample size the variability of the reported values of 
p depends upon the variability induced by the variability of the training data sets 
used for building classifiers. However, if this sample size is not feasible we can use 
sample sizes of n = 500 items. In our simulation experiments for the construction of 
SPC procedures we use the sample size n equal to 1000, as this seems to be a good 
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compromise between the stability and the need to built the procedure as quickly as 
possible. 

For the evaluation of the performance of the considered SPC procedures we have 
used the following simulation experiments: 

1. A set of classifiers built using the same training data is chosen randomly from 
the set of 10 possible options. 

2. A Phase I sample of n = l OOO items is generated, and actual and reported frac­
tion nonconforming p are estimated. 

3. Classical Shewhart p-chart with 3-sigma limits is designed. 
4. Consecutive segments of the process of the length of m = l 00 items are gener­

ated. 
5. For each of the production segments the estimated values of p are compared 

with the control lines calculated in Step 3). 
6. Steps 4) - 5) are repeated until the out-of-control signal is observed, and a re­

spective run length is determined. 
7. Steps 1) - 6) are repeated 100 times, and the respective average rung length's 

(ARL's) are calculated. 

Such experiments in certain cases were repeated severa! times, so the total num­
ber of simulation runs varies from 100 to 500. This limited number of simulation 
runs does not allow us to evaluate precise values of ARL's, so their va!ues presented 
in the following tables should be considered as only approximate. 

The most important characteristic of any SPC procedure is its Average Run 
Length (ARL) . When an SPC procedure of a Shewhart control chart type is used for 
monitoring 100% inspected process it is the average number of segments inspected 
till the moment of an alarm signal. In nearly all practical cases when fraction non­
conforming is monitored only charts with upper control lines are used. In our case, 
however, two-sided control chars are needed, because - as it has been shown in Sec­
tion 3.4 - actual deterioration of a process may lead, for certain classifiers, to the 
decrease of the reported fraction nonconforming. In Table 9 we present the values 
of this characteristic for the process under control (No shift), and processes with 
shifted expected values of the explanatory variables. In this table we consider only 
such shifts that lead to the worsening of process levels. 

Table 9 Values of the ARL for the Shewhart control chart 

Shift Actual RegBin LDA-s LDA-as C4.5 

No shift 304,6 320,4 323,7 329,7 276,3 
A (up) 267,8 297,3 202,9 259,1 237,6 
B (down) 298,1 121,9 71,6 142,6 307,9 
C (down) 32,2 369,8 280,2 313,2 19,3 
D (down) 157,3 337,l 229,8 321,5 168,3 

The results presented in Table 9 show undoubtedly, that only the chart based 
on the values predicted by the C4.5 classifier gives values of the ARL similar to 
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those obtained as if the actual values were observed. The remaining classifiers give 
acceptable results only for the case of the upward shift in A . In the case of other 
deteriorations they simply do not signal the worsening of the process quality. 

When a process is continuously monitored one can think about a control proce­
dure using the moving average (MAV) approach. Fraction nonconfolllling is calcu­
lated for a sample of the last m, and is moved when a new measurement is available. 
In contrast to the previously considered monitoring of consecutive segments of a 
process, the values of the fraction nonconfolllling evaluated from consecutive sam­
pies are highly correlated (with the correlation coefficient equal to 1-1/m). There­
fore, the standard deviation of the monitored statistic cannot be calculated from a 
well known formula valid for the binornial distribution. We propose to estimate it 
from the to tal number of n Phase I observation, i.e. from n - m + 1 MAV samples. 
In Table 10 we present the averaged results of this estimation for n = 1000 and 
m = 100 when different c!assifiers have been used for classification purposes. 

Table 10 Standard deviations of the MAV va!ues of p - averaged over different sets of training 
data 

Set Actual RegBin LDA-s LDA-as C4.5 

Avgcr" 0,041 0,034 0,040 0,035 0,041 

The ARL values for the two-sided MAV control are presented in Table 11. 

Table 11 Values of the ARL for the MAV control chart 

Shift Actual RegBin LDA-s LDA-as C4.5 

No shift 13525 7963 6921 10093 10431 
A (up) 9735 8093 5738 7783 6992 
B (down) 7410 2469 1967 24742 8232 
C (down) 825 38994 25326 19892 614 
D (down) 3206 65952 6845 87288 5536 

The analysis of the results presented in Table 11 confirms the finding obtained 
in the case of the procedure based on the Shewhart control chart. Only the chart 
based on the predictions of the C4.5 classifier gives satisfactory results. Interesting 
is the comparison of these results with those presented in Table 9 when we compare 
the numbers of items inspected till the alarm signal. In order, to do this comparison 
we have to multiply the cells of the Table 9 by 100. The MAV procedure triggers 
false alarms (when process is under control) more frequently, but on the other hand 
the average time to alarm signal (measured in the number of inspected items) is for 
this procedure visibly smaller when the best c!assifier (C4.5) is applied. Additional 
investigation of the MAV control lines is thus needed if we want to decrease the rate 
of false alarms when the process is under control. 
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In all comparisons made in this section we used the ARL characteristic for the 
comparison of different SPC procedures. This value may be very misleading if the 
probability distribution of the values of p is skewed and has a large variance. Un­
fortunately, the analysis of data presented in Table 4 shows that the estimates of 
p made using considered c!assifiers are highly variab!e and skewed. Therefore, the 
probability distribution of run length 's is also highly skewed. Therefore, the ARL 
va!ues obtained from a very limited number of simu!ation runs may be inaccurate. 
We have to take this into account if we want to draw from the presented resu!ts con­
c!usions of the quantitative character. For example, for the comparison of different 
procedures we may use the median of the run length. In Table 12 we compare the 
values of the ARL with the corresponding values of the median. 

Table 12 Values of the ARL and the median of RL for the MAY control chart 

Shift 

ARL 
Median 

Actual 

13525 
2110 

RegBin 

7963 
1410 

LDA-s 

6921 
2117 

LDA-as 

10093 
1539 

C4.5 

10431 
1302 

This comparison shows the comparison of the ARL's does not lead to the same 
conc!usions as the ana!ysis of the the medians. This problem needs definitely further 
investigation. 

5 Conclusions 

The results presented in this paper extend the results presented in H1yniewicz 
(20 I 3). They show that in the case of non-norma! distributions of characteristics 
of interest, and non-linear dependencies between observable (explanatory) and not 
direct!y observable (only predicted!) values of processes the properties of control 
charts designed using the standard methodology may be not satisfactory. Severa! 
popular c!assifiers used for prediction purposes have been investigated, and only 
Quinlan's C4.5 decision tree classifier have shown acceptab!e average performance. 
Moreover, their performance is difficult to predict in advance, as it has been a!ready 
shown in .Hryniewicz (2013). Further research is needed with the aim to ana!yze 
the impact of the size of training sets, and the size of the Phase 1 samples, on the 
characteristics of control charts. Additional research on the possible application of 
mare complicated c!assifiers is also needed. The results presented in this paper show 
that the application of modern data mining techniques for SPC purposes, which is 
strongly advocated by some specialists, is promising but, as for naw, the obtained 
resu!ts are far from beeing satisfactory from a practical point of view. 
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