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Abstract 

In the paper we propose a fuzzy version of the Kendall control 
chart introduced by Hryniewicz and Szediw originally for moni­
toring production processes. This chart is a relatively simple tool 
for looking for dependcncies between consecutive observations of 
the process. The proposed fuzzy version of tbe Kendall control 
chart is based on the fuzzy Kendall's r statistic and possibility 
and necessity measures used in the possibility theory and fuzzy 
sets. 
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1 Introduction 

Statistical proceBs control (SPC) aims at the goal of achieving continuous 
improvement in quality. This improvement may be attained by removal 
of all possible causes (known as assignable causes) of proceBs deteriora­
tion. In order to accomplish that goal the SPC procedures have been 
devised to assure continuous monitoring of the process under study and 
quickly detect the occurrences of assignable causes of its deterioration. 
The Shewhart control chart, and other control charts - like CUSUM, 
MAV, and EWMA - are the most popular SPC methods used to detect 
whether observed proce8S is under statistical control, i.e if it is not dete­
riorated. One may note, however , that the exactly same procedures may 
be used for the monitoring of ot.her processes. It is sufficient to note that 
the concept of 'being under statistical control' is eqnivalent to another 
f:requently used concept of 'being stable'. In the SPC context stability 
means that the results of all process measurements are governed by the 
same probability distribution. 



Statistical procedures of SPC may be also used for the monitoring 
of other processes. In all such applications the coucept of 'stability' has 
to be the same. However, the concept of the 'assignable cause' may be 
quite different. The detect.ion of the presence of an 'assignable cause' 
may be intcrprctcd, for example, as the influence of a certa.in cvent on the 
results of public opinion polls. In all such or similar cases the statistical 
procedure remains the same, but its interpretation rnay depend upon 
a particular context. 

Originally all SPC statistical tools have been designed under the as­
sumption that process measurcments arc described by independent and 
identically distributed random varia.bies. Moreover, it is also assumed 
tha.t all measurernents are precisely reported , and the only source of their 
uncertainty is duc to their randornness. In the majority of pra.ctical cases 
these a.ssumptions a.re fu!filled at least a.pproxima.tely. However , there 
exist processes where consecutive observa.tions may be correla.ted in an 
obvious way. Consider, for e.xarnple, consecutive observations corning 
frorn public opinion polis. When these observa.tions a.re macie in short 
time intervals , and their values a.re influenced by the same event, it 
seems to be unwise to a.ssume that they a.re mutua.lly independent. In 
such situa.tion they usually form a dependent time series whose stability 
cannot be eva.lua.ted using sta.t,istical procedures developed under the 
assumption of independence. 

In the a.rea of sta.tistica.l quality control this problem drew a.ttcntion 
of researchers in the late 1970s. First, the phenomenon of autocorrelated 
observations was noticed for processes described by individual observa.­
tions (c.g. chemical proccsscs). Latcr, its irnportance was recognized 
for the case when samples t.a.ken frorn processes a.re independent, but 
rneasurernents within ea.ch sample a.re autocorrelated. The most gen­
erał, and the most difficult to be acldressed, case of the autocorrelation 
both within sa.mples and between sa.mples has not been trea.ted yet in 
a sufficiently pra.ctical way. 

The design of control cha.rts under the a.ssumption of autocorrela­
tion has a.ttra.cted ma.ny researchers during the last more than twenty 
years. One of the most frequently used approaches was published in 
Alwan and Roberts [?] who proposed to chart so called residua.Is, i.e. 
differences between adual observa.tions and their predicted, in accor­
dance with a pre-specified mathematical model , va.lues. This approach 
has its roots in the statistical a.nalysis of time series used in a.utomatic 
control, origina.ted by the farnous book of Box and Jenkins [2] . In other 
approaches, the effect of autocorrelation was taken into account in the 

2 



design of control limits of a control chart. A comprehensive overview of 
pertinent literature can be found in a recent publication of Hryniewicz 
and Szediw [8] . 

The common feature of all SPC procedures proposed for dealing with 
autocorrelated data is their high level of complcxity. As a matter of fact, 
shop-floor practitioners are usually unable to work with autocorrelated 
data without an assistance of specialists. Moreover, in many cases it 
is necessary to use specialized software. Therefore, there is a practical 
need to detect autocorrelation in data as quickly as possible. Statis­
tical toob available for such analysis are available, but generally they 
have been developed for dealing with normally distributed autoregres­
sion processes. In practice, however. we usually do not know whether 
the investigated process can be described by the norma! autoregrcssivc 
model. Thus, there is a need to develop a simple (for practitioners) 
non-parametric (distribution-free) tool that would be useful for the de­
tection of autocorrelation in data. Such a tool - a Kendall cont,rol chart 
- has been proposed recently by Hryniewicz and Szediw [8]. We present 
this procedure in the second section of this paper. In the third section 
we present the extension of the results of Hryniewicz [7], who developed 
a fuzzy version of the Kendall of test independence for imprecise (fuzzy) 
data. The results presented in the second and t.hird sections allow us to 
propose a fuzzy version of the Kendall control chart. This new result is 
prescnted in the fourth scction of the paper. The paper is concluded in 
its last scction. 

2 Kendall control chart for testing lack of 
autocorrelation in case of crisp data 

Dependence or autocorrelation of statistical data has great influence on 
the behaviour of stat.istical procedures. Practical consequences of such 
dependence may be qui te different. In sorne cases certain types of depen­
dence may be considered natura! and even desirable, but in the majority 
of practical cases the existence of autocorrelation between observcd sta­
tistical data is considered as an unwanted feature. In any case, however, 
decision processes based on dependent statistical data are difficult to 
be designed , as probabilities of erroneous decisions, whose knowledge 
is nccessary for the proper design of the proced ure, are difficult to be 
cornputed. When we look at statistical textbooks we may /ind that the 
coefficient of autocorrelation is the rnain statistic proposed for testing 
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independence of serial data. However, its usage is well justified only 
for normally distributed data. When the assumption of normality is not 
valid, statistical tests based on the coefficient of autocorrelation may not 
be as effective as in the norma! case. Therefore, we need to use methods 
that arc not dependent upon the type of probability distribution, i.e. 
distribution-free non-parametric statistical methods. 

Hryniewicz and Szediw in their paper [8] propose to use for this 
purpose the well known Kendall 's r statistic, which is a fundarnental 
statistical measure of association. 

Let Z1, Z2, ... , Zn denote a random sample of n consecutive pro­
cess observations. These observations can be transformed into two­
dimensional vector (Xi, Y;), where X; = Zi and Y; = Zi+ 1 for i = 
1. 2, ... , n - l. Then, the Kendall's r sample statistic which mcasures 
the association between random variables X and Y is given by the fol­
lowing formula 

where 

4 n-1 
'Tn = --I:V;-1, 

n-1 i=l 

v; _ card{(X1, Yj): X;< Xi, Y1 < Y;} __ _ _ 
' - n - 2 , t - 1, ... , n l. 

(1) 

(2) 

Kendall's r11 given by (1) can be represented as a function of the number 
of disconcordances M, i.e. the number of pairs (Zi, Z;+ 1) and (Z1 , ZJ+1) 
that satisfy either Z;< Z1 and Z;+ 1 > Z1+1 or Zi > Z1 and Zi+ I < ZJ+i• 
In thesc terms we have 

where 

4M 
Tn = 1 - -,---~,----7, 

(n - l)(n - 2) 

n - 1 n - 1 

M = L L I(Z; < Zj, Zi+I > Zj+1), 
·i= I j='J 

(3) 

(4) 

and J (A) represents the indicator function of the set A. When the 
vectors (X1, X2, ... , Xn) and (Y1, Y2 , ... , Yn) are mutually independent, 
the pairs of observations (X;, Yi), i = 1, 2, ... , n - l are also indepen­
dent, and the probability distribution of (1) is well known. However, 
in case of time series, even in the case of mutual independence of in­
dividuru observations in the series Z1, Z2, ... , Zn, pairs of observations 
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(X;, Y;) are dependent, and the probability distribution of 711 for small 
values of n has been obtainecl only recently [5). Ferguson et al. [5) 
present a table with precise probabilities P,,(M ::; m.) for n = 3, ... , 10, 
and with approximate probabilities for n > 10. The analysis of these 
probabilities presented in [8] shows that it is not possible to construct 
a one-sided statistical test of independence against the alternative of 
positive dependence with the same probability of false alarms as in the 
case of a Shewhart control chart. Thus, for small values of the number 
of consecutive observations n it is in principle impossible to make pre­
cisc comparisons of control charts based on Kendall's T with classical 
three-sigma Shewhart control charts. Moreover, the close investigation 
of the probability distribution of M presented in [8} shows that due to a 
discrcte naturc of the Kendall's T this situation is the same in even for 
larger values of n. 

The application of Kendall 's T reąuires the usage of tables with crit­
ical values of this statistic. This is rather impractical, so Hryniewicz 
and Szediw [8] proposed a new procedure designed as a Shewhart-type 
control cl1art based on Tn with the following control limits: the ]ower 
limit 

KL= rnax(E(rn) - ku(r11 ), -1) 

and the upper limit 

Ku= min(E(rn) + ku(r,.), 1). 

(5) 

(6) 

They called that proccdure the Kendall control chart. To calculate the 
limits of the Kendall control chart we use the following formulae for the 
expected value and the variance of Tn given in [5]: 

V( ) _ 20n3 - 74n2 + 54n + 148 4 
Tn - 2 ? ,n > . 

45(n - 1) (n - 2)- -

(7) 

(8) 

Hryniewicz and Szediw [8] noticed that the probability distribution of 
Tn is not symmetric for small values of n. Therefore, the properties 
of the proposed control chart for testing independence of consecutive 
observations from a process may be improved by using control lines that. 
are asymmetric around the expected value of r,.. However, for sake of 
simplicity, they decided not to consider this possibility, and investigated 
the properties of the Kendall's control chart in its symmetric version. 
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3 Kendall test for fuzzy data 

The situation becomes much more difficult to analyze when the ob­
served data points are imprecisely defined, and described by fuzzy sets. 
Hryniewicz [7] considered this problem for the case of fuzzy binomiaJ 
data. However, nothing precludes consideration of a more generał case 
when the series of consecutive observations is given by a vector of fnzzy 
data (Z1 , Z2, ... , Zn), It is rather unlikely that this fuzzy time series 
forms an unequivocal ordering of all data points. Therefore, the value 
of the Kendall 's T statistic for the fuzzy data has to be also fuzzy. 

In order to compute the fuzzy version of the Kendall's T statistic for 
the considered fuzzy time series Jet us assume that each fuzzy observation 
is describ,x:I by a membership function µi( z ), i = 1, ... , n. Now, we 
can use the Zadeh 's extension principle for the definition of the fuzzy 
equivalent of the Kendall's T statistic in the considered fuzzy case. First, 
let us rewrite (2) in the following form 

IT,_ cardj;<;{(Zj, Zj+l): Zj < zi, Zj+l < Zi+d . _ l 
Vi - n - 2 li - l ... 'n - l. (9) 

We have to write the fuzzy form of (9) for the fuzzy vector (Z1 , Z2, ... , Z11 ). 

Let us notice now that each fuzzy data point Zi is completely defined 
by the set of its fr-cuts [ZfL , Zful, O< fr :S 1. Hence, the fuzzy equiv­

alent of V;, denoted by V;, is defincd by the set of its fr-Cuts [¼~L• ¼~ul, 
O < fr :S 1, where 

V:" . cardj;<;{(zj, Zj+1): Zj < Zi , Zj+l < z;+ i} 
i,L = ztE[ir:.~Zf.ul n - 2 

{10) 

i=1, ... ,n 

and 

V:" cardji,;{(zj,Zj+1): z1 < Zi,Zj+ 1 < Zi+ d 
i,U = ziE[Ę,~Z?ul n - 2 

(11) 

i=l, ... ,n 

for i = 1, ... , n - l. Having the fr-cuts [¼~L, ¼~ul, O < fr :S 1 for all 
i = 1, ... , n we can straightforwardly calculate the fr-Cuts of the fuzzy 
Kendall's T statistic [Tf , Tuj, O < fr :S 1, and thus we can obtain its 
membership function. 

Despitc the compact 11otation of (10) ar1d (11) the calculation of the 
mcmbership function of the fuzzy Kendall's T statistic may be, in a gen­
erał case, a difficult and computationally intensive task. For this purpose 
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Figure 1: Configurations of observations of a time series for the values 
of the Kcndall 's r statistic are either the largest or the lowest 

we can use a generał methodology proposed by Denom, et al. [3] for the 
calculation of fuzzy rank statistics. However, for the particular case of 
the fuzzy Kendall control chart we can use a simple approximate algo­
rithm. The construction of this algorithm will be apparent if we consider 
the influence of the pattern of consecutive observations on the value of 
Kendall's r. On Figure 1 taken from [7] we present three distinctive pat­
terns of crisp data which lead to limiting values of Kendall 's r , namely 
1 and -1. The maxima! value of Kcndall's T , equal to 1, is attained 
when consecutive points form a monotonically increasing or decreasing 
series. On the other hand, the minimal value of Kendall's r , equal to 
-1. is attained when consecutive points numbered by even numbers form 
a rnonotonically decreasing series and simultaneously consecutive points 
numbered by odd numbcrs form a rnonotonically incrcasing serics, and 
vice versa. In both cases the increasing and decreasing series should not 
interscct. 

For the given value of a the largest value of T is attained for a series 
of values z{' E [zf,1,, zfuL i = 1, ... , n, O < a $ 1 that form a mono­
tone ( or nearly monotone) increasing ( decreasing) series. To find such 
a series we can start with the series z; = zfL, i= 1, ... , n, O < a $ 1. 
In the next step we can increase certain values of this series in order 
to arrive at a monotone ( or nearly monotone) increasing series. The 
same procedure should be repeated in search of a monotone (or nearly 
monotone) decreasing series. In this case we can start with the series 
z; - zf.u, i = 1, ... , n, O < a $ 1, and in the next step we should 
decrease certain values of this series in order to arrive at a monotone ( or 
nearly monotone) decreasing series. 

The lowest value of T is attained for a series ofvalues zf E [zf.i, zf,uL 
i = 1, ... , n, O < a $ 1 that form an alternating series of values such that 
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the observations with odd (even) indices form a decreasing series, and 
the observations with even (odd) indices form an increasing series. To 
find sucha series we can start with the series z?,1,, zfu, zf L, ... or with 
the series zr u, z~ L, z'J u' . . . In the n ext step we can increase certa.in 
valm.>s initiaily d~fined by the !ower limits of the n-cuts and decrease 
certa.in values initially defined by the upper limits of the a -cuts in order 
to arrive at an a!ternating ( or nearly alternating) series. 

Let us describe that heuristic algorithm in a mare forma! way. For 
notational convenience we omit the symbol a which refers to a chosen 
a-cut. 

The upper limit of the a-cut for the fuzzy value of Kendall 's r is 
computed according to Algorithm 1. 

Algorithm 1 
begin 
set € to a small value 
k=O 
zk+ 1 = Zk+l, L 

łoopl : k = k + 1 
i f [(zk+ l,L ~ z;;) OT (zk+l,U < z,rn then zZ+ i = Zk+ l,L 

else zZ+i = zi, + t: 
if k < n - 1 goto loopl 
use (zj, ... , z~) for the calculation of TV,1 

k=O 
2 k+1 = 2k+ 1.u 

łoop2 : k = k + 1 
if [(zk+ l ,L ~ ziJ or (zk+1,u < zZ)) then zZ+i = zk+1,u 

else zZ+i = zA; - E 

if k = n - 1 stop 
else goto loop2 

use (zj, ... , z,~ ) for the calculation of TV,2 

TV = max( TV, 1 , ru,2) 
end 

The !ower limit of the a -cut for the fuzzy value of Kendall 's r is 
computed in a more complicated way, as the pattern of consecutive 
points for which r attains its minimal v-.;lue is more complicated (see 
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Algorithm 2 
begin 
set 6 to a small value 
k=l 
zk; = Zk,U 

loopl : if l(zk+2,L 2': ziJ or (zk+2,u < zZ)] then zZ+2 = Zk+2,U 
else zi:+2 = zZ - 6 

k=k+2 
if k < n - 2 goto loopl 
k=2 

loop2: if l(zk+2,1, ::": zZ) or (zk+2,u < zZ)) then z;,+2 = zi,+2,L 
else zZ+2 = z;; + c 

k=k+2 
if k < n - 2 goto loop2 
usc (zj, ... , z,:) for the calculation of TL,1 

k=2 
zk = Zk,U 

loop3: i/ [(zk+2,L ::": zZ) or (zk+2.u < zZ)) then zi,+2 = Zk+2,U 
else zZ+2 = z;; - t: 

k=k+2 
if k < n - 2 goto loop3 
k=l 
zk; = Zk,L 

loop4 : if l(zk+2,l, 2': zZ) or (zk+2,U < zZ)] then zZ+2 = Zk+2,L 
else zZ+2 = z;; + c: 

k=k+2 
if k < n - 2 goto loop4 
use (zj, ... , z~) for the calculation of n,2 
Tl,= min(n,1,TD,2) 
end 
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Fig.I for an example). 
The application of both algorithms does not. guarantee that the com­

puted pair ( TL, Tf.J ) is the true a-cut for the fuzzy value of Kendall's r. 
However, it gives a very good approximation or may be used as a starting 
point for furt.her search of botb limits of the a-cnt. 

4 Kendall fuzzy control chart 

The fuzzy version of the Kendall T statistic may be naw used for the con­
struction of the Kendall control chart for fuzzy data. In contrast to the 
case of crisp data, we cannot. plot points on a control chart, and thus we 
cannot determinc in an uncquivocal way whcther the obscrved pat.tern 
of measurement points indicates the existence of associations ( depen­
dencies) between consecutive values of the observed process. There are 
two generał possibilities to cope with this problem: either to find a crisp 
representation of the fuzzy value of Tn (i.e. to defuzzify this statistic) or 
to introduce an additional requirement which will be used for making 
decisions. In this paper we apply the possibilistic approach proposed in 
Hryniewicz [6]. According to this approach our decisions will be made 
after the calculation of possibility and necessity measures that the ob-­
served fuzzy value Tn falls outside the control limits given by (5) and 
(6). 

For deciding whether consecutive fuzzy observations on the Kendall 
control chart a.re dependent ( associa.ted) we propose to use two indices 
proposed by Dubois and Pradc [4], na.mcly the Possibility of Dominance 
and Necessity of Stri.ct Dominance indices. For two fuzzy numbers A 
and iJ the Possibility of Dominance {PD) index is calcula.ted from the 
formula 

PD = Poss(A?: B) = sup min{µ.4(x) ,µ 8 (y)}. (12) 
x ,y:x ?_y 

The PD index gives the measure of possibility that the fuzzy number 
A is not smaller than the fuzzy number B. Positive va.lue of this index 
tells the decision maker that there exists even slightly evidence that the 
relation A > B is true. 

The degree of conviction that the rela.tion A > iJ is true is reflected 
by the Necessity of Stri.ct Dominance {NSD) index defined as 

NSD Ness(A > B) = 1 - sup min{p.4(x),µ 8 (y)} 
:r·,y:x$_y 

1 - Poss(B ?: A). (13) 

10 



The N SD index gives the measure of necessity that the fuzzy number A 
is greater than the fuzzy number B. Positive value of this index tells the 
decision maker that there exists rather strong evidence that the relation 
A > B is true. 

In our case the calculation of PD and N SD is qui te easy as the limits 
we compare the fuzzy values to are not fuzzy. Hence, for the upper and 
!ower control limits we can calculate the following values of the NSD 
index: 

NSDu = Ness(r,. >Ku)= 1 - °'N,U, (14) 

where 

°'N.U= i~f(a: r,~L ~ Ku) (15) 

and 

NSD1, = Ness(KL > i'n) = 1 - °'N,L , (16) 

whcre 

°'N,L = sup(a: r,~,u S Ki). (17) 
a 

ln order to make an unequivocal decision we have to set a required 
minimal value of NSDu and N SD i. If the calculated value of the NSD 
index is greater than or equal to this minimal value we ca.n sa.y tha.t 
the observed fuzzy da.ta. revea.l a. pa.ttern characteristic for dependent 
statistica.l data. 

In classica.l statistical process control we also use wa.rning signa.ls. In 
the case of the Kendall control chart for fuzzy da.ta. for the generation of 
warning signals we propose to use the PD index defined by (12). Sirni­
la.riy to the previously considered case of the N SD index, the ca.lcula.tion 
of the PD index for both limits of the control chart is the following: 

PDu = Poss(i'n > I<u) = 1 - ap,u, (18) 

wherc 

ap,u = sup(a: r::_u ~ I<u) (19) 
a 

and 

PD1, = Poss(l<1, >i',,)= 1 - °'P,L, (20) 
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where 

(21) 

[n order to make an uneqnivocal decision we have to set a required 
minimal value of PDu and PDL- If the calculated value of the PD index 
is greater than or equal to this minimal valuc we can say that there is a 
warning that the observed fuzzy data reveal a pattcrn characteristic for 
dependent statistical data. lt is worth to note that the value of the PD 
index equal to one shows that the value of the respective N SD index 
has to be greater than zero. 

5 Conclusions 

The Kendall control chart for crisp data was introduccd in order to givc 
practitioners a rclativcly easy to usc statistical tool for looking for depen­
dencies between consecutive measurements displayed on control charts 
such as e.g. the Shewhart control chart. The statistical characteristics 
of the Kendall chart do not depend on the probability distribution of ob­
scrvcd data. Thercfore. it can be safcly used during initial investigations 
of considered processes when the available information is not sufficient 
for a recise description of the process, and thus for choosing a better 
statistical tool. In the considered in this paper case of imprecise data 
this important feature is stil! valid. However, due to the imprecise char­
actcr of data nccessary computations become much morc involved. The 
proposed algorithm for the calculation of a a-cuts of the fuzzy Kendall 's 
statistic r„ is rather simple but it may give only approximate values of 
the a-cut limit.s. 

Further investigations of the Kendall fuzzy control chart should ad­
dress such problems as the efficient computations of the precise limits 
of a-cuts. This problem is really important as the number of obser­
vations that is necessary for good discrimination between independent 
and dependent (autocorrelatcd) processes may be quite large. Thus, 
the optimization problems defined by (10) (11) may require significant 
computational times. Another interesting and important problem which 
is stili waiting for its solution is the influence of fuzziness of data on im­
portant characteristics of a control chart, such as e.g. the average run 
length ARL (the average time to signal). 
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