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Abstract

In the paper we propose a fuzzy version of the Kendall control
chart introdueed by Hryniewicz and Szediw ariginaliy for moni-
toring production processes. This chart is a relatively simple tool
for looking for dependencies between consecutive observations of
the process. The proposed fuzzy version of the Kendall control
chart tx based on the fuzzy Kendall's 7 statistic and possibility
and necessity measures used in the possibility theory and fuzzy
sets.

Keywords: Control chart. Fuzzy data, Kendall r.

1 Introduction

Statistical process control (SPCY aitus at the goal of achicving continuous
improvement in quality, This improvement may he attained hy retnoval
of all possible causes (knowi as assignable canses) of process deteriora-
tion. In order to accomplish that goal the SPC procedures have been
devised to assure continuous wonitoring of the process under study and
quickly detect the occurrences of assignable canses of its deterioration,
The Shewhart control chart. and other control charts - like CUSUNI,
AMAVL and EWRMA - are the most popular SPC methods used to detect
whether observed process is nnder statistical control, Lo if it is not dete-
riorated. Oue may note, however, that the exactly same procedures may
be used for the monitoring of other processes. It is sufficient to note that
the concept of heing nnder statistical control” is equivalent to another
frequently used concept of heing stable”. In the SPC context stability
weans that the results of all process measurcwents are governed by the

same probability distribution.




Statistical procedires of SPC may be also nsed for the monitoring
of other processes. In all such applications the concept of “stability” has
to be the same. However. the concept of the assignable canse’ may he
quite different. The detection of the presence of an “assignable cause’
may be interpreted. for example. as the influence of a certain event on the
results of public opinion polls. In all such or similar cases the statistical
procedure remains the same. but its nterpretation may depend upon
w particular context.

Originally all SPC statistical tools have heen desigued nnder the as-
suption that process measurements are described by independent. and
identically distributed random: variables. Moreover. it is also assuned
that all measuretents are precisely reported. and the only source of their
nncertainty is due to their randomuess. In the majority of practical cases
these assuptions ave fulfilled at least approximately. However. there
exist processes where consecutive ohservations may he correlated in an
obvious way. Consider. for example, consecutive observations comiug
from public opinion polls. When these observations are made in short
time intervals. and their values are influenced by the same cvent. it
seents to he unwise to assume that they are mutually independent. In
such sitnation they nsnally form a dependent time series whose stability

cannot be evalnated using statistical procednres developed under the
assumption of independence.

I the area of statistical quality confrol this problens drew attention
of researchers in the late 1970s. First. the phenomenon of autocorvelated
observations was noticed for processes deseribed by individual observa-
tions (e.g. chemical processes). Later, its importance was recognized
for the case when samples taken from processes are independent, bt
meastirerments within eaclh sample are autocorrelated. The most gewn-
eral. and the most difficult to be addressed, case of the antocorrelation
both within sawples aud between samples has not been treated yet in
a sufficiently practical way.

The design of control charts wuder the assumption of autocorrela-
tion has attracted many researchers during the last wore than twenty
vears. Oue of the most frequently nsed approaches was published in
Alwan and Roberts {2 who proposed to chart so called residhials, ie.
differences between actual observations and their predicted, in accor-
dance with a pre-specified mathematical meodel, values. This approach
has its roots in the statistical analysis of tilne series used in automatic
control. originated by the famous book of Box and Jeukins (2], In other
approaches, the effect. of antocorvelation was taken into account in the




design of control Hinits of a contyol chart. A comprehensive overview of
pertinent literature can be fonud in a recent publication of Hryvniewicz
and Szediw [K].

The comuon feature of all SPC procedures proposed for dealing with
antocorrelated data v their high level of complexity, As a matter of fact,
shop-floor practitioners are usually nnable to work with autocorrelated
data without an assistance of specialists. Moreover, in many cases it
is necessary to nse specialized software. Therefore. there is a practical
need to detect antocorrelation in data as quickly as possible.  Statis-
tical tools available for such analysis are available. but generally they
have been developed for dealing with normally distributed antoregres-
sion processes. In practice. however. we usually do not know whether
the imvestigated process can be deseribed by the norinal antoregressive
madel. Thus. there ix a need to develop a simple (for practitioners)
non-paranietric (distribution-free) tool that would be useful for the de-
fection of antocorrelation in data. Such a tool - a Kendall coutrol chart
- has Deen proposed recently by Hryniewicz and Szediw [8]. We present
this procedure in the second section of this paper. In the third scection
we present the extension of the results of Hryniewicz [7]. who developed
a fuzzy version of the Kendall of test independence for imprecise (fuzzy)
data. The results presented in the second ad third sections allow us to
propose a fuzzy version of the Kendall control cliart. This new result is
presented in the fourth section of the paper. The paper is concluded in

its fast section.

2 Kendall control chart for testing lack of
autocorrelation in case of crisp data

Dependence or antocorrelation of statistical data has great influence on
the beliaviour of statistical procecdures. Practical consequences of such
dependence may he quite ditffevent. In some cases certain types of depen-
dence may be considered natural and even desivable. hut iu the wajority
of practical cases the existence of antocorrelation hetween ohserved sta-
tistical data is considered as an nuwanted feature. In auy case. however,
decision processes based on dependent statistical data are difficult to
be designed. as probabilities of erroneons decisions. whose knowledge
s necessary for the proper design of the procedure. are difficult to be
computed. When we look at statistical texthooks we may find that the
coefficient of autocorrelation is the main statistic proposed for testing




independence of serial data. However. ity usage is well justified only
for normally distributed data. When the assmuption of normality is uot
valid. statistical tests hased on the coefficient of autocorrelation may not
be as effective as in the normal case. Therefore, we need to nse methods
that are not dependent upon the tvpe of probability distribution. ie.
distribution-free non-parametric statistical methods,

Hryniewicz and Szediw in their paper (8] propose to use for this
purpose the well known Kendall's 7 statistic. which is a fundamental
statistical measure of association.

Let Zy,Za, . ... Zy denote a random sample of n consecitive pro-
coss observations. These observations cau he transformed into two-
ditensional vector (X;.Y7), where X; = Z; and ¥, — Z,oq for i ~
1.2..... w10 Then, the Kendalls 7 sample statistic which measures
the association between random variables X and Y is given by the fol-

lowing fornmla

1 -1
- —) Vi1 (n
n-1
i=1
where
Vo= card{(X,.};): X‘,.)< X))« );}Ai e 2)
n—72

Kendall's 7, givent by (1) can be represented as a function of the muuber
of disconcordances AL i.e. the number of pairs (Z,. Zig 1) and (£, Z.4)
that satisty cither Z; < Zy and Z; > Zjpyor Z; > Zyand Ziy < Zj .
In these terms woe have

1A
Th=1= B
{n—1}n —2} (3)
where
rzflrlfrl
M=3"S"HZi < Zj Zicy > Zjoq) (-4}
i—1 1

and J7{A) represents the indicator function of the set A, When the
vectors (X7 Yo 000X, ) and (Y0350 1) are mutually independent,
the pairs of observations (X;. Y7), i = 1.2.....n — 1 are also indepen-
dent. and the probability distribution of (1) is well known, However,
in case of time series. even in the case of mutual independence of in-
dividual observations in the series 2y, Zo.... . Z,. pairs of observations




(.X;.10) are dependent. and tie probability distribution of 7, for small

values of p has heen obtained only recently (5] Ferguson et al. [5]
preseut a table with precise probabilities P (A <) for n— 3., 10,

and with approximate probabilities for n > 10. The analysis of these
probabilities presented i [8] shows that it is not possible to construet
a one-sided staristical test of independence against the alternative of
positive dependence with the satue probability of false alarms as in the
cave of a Shewhart control chart. Thus, for small values of the nwmber
of consecutive observations # it s in principle impossible to make pre-
cise cotparisons of control charts based on Kendall's r with classical
three-sigina Sheswhart control charts. Moreover, the close iuvestigation
of the probability distribution of A preseuted in [8) shows that due to a
diserete nature of the Kendall's 7 this situation is the sanie in even for
larger valdnes of i,

The application of Kendall's 7 requires the usage of tables with crit-
ical values of this staristic. This is rather practical, so Hryniewicz
and Szediw [8] proposed a new procedure designed as a Shewhart-type
control chart hased on 7, with the following coutrol linits: the lower
limit

Ky = mae{E{r,) — bolr,).—1) 5
and the npper Hmit
Ky = min{E{m,) + ka(m). 1), (6)
They ealled that procedure Hhe Kendall control chart. To caleudate the
Hmits of the Kendall control chart we use the following formulae for the
expected valie and the variance of 7, given in (5):
9
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Hryniewivz and Szediw [8] voticed that the probability distribution of
7o 18 not svannetric for small values of u. Therefore. the properties
of the proposed control chart for testing tudependence of consecutive
observations from a process may be improved by using control lines that
are asymunetric avound the expected value of 7,,. However, for sake of
shwplicity, thes decided not to consider this possibility, and investigated
the properties of the Kendall's control chart in its symunetric version.



3 Kendall test for fuzzy data

The situation becomes much more difficult to analyze when the ob-
served data points are imprecisely defined, and deseribed by fuzzy sets.
Hrvuiewicz 7] considered this problem for the case of fuzzy bhinomial
data. However. nothing precludes consideration of a more general case
wheu thie seties of consecutive observations is given by a vector of fuzzy
data (Zy. Zy... .. Za). It is rather unlikely that this fuzzy time series
foris an uncquivocal ordering of all data points. Thercfore, the value
of the Kendall's 7 statistic for the fuzzy data has to be also fizzy.

In order to compute the fuzzy version of the Kendall's r statistic for
the considered fuzzy time series let s assume that each fuzzy observation
oo Now, we

i described Dy a mewbership function (=), ¢ = 1.
can use the Zadeh's extension principle for the definition of the fuzzy
equivalent of the Wendall's 7 statistic in the considered fuzzy case. First,
let us rewrite (2) in the following form

. cardj (2, Z00) 1 Z) < Zi Zjgr < Zir )

— d=dooon-10 (9)

We have to write the fuzzy form of (9) for the fuzzy vector (21 . Z; ..... Zy).
Let us notice now that each fuzzy data point Z; is completely defined
Ly the set of its a-cnts (27 Z7:], 0 < o < 1. Heneeo the fuzzy equiv-
alent of Vi, denoted by Vi, is defined by the set of its a-cats (19 V5
0 < n < 1. where

Vi = ;,G,V%I'}m/" : T Dt} (10)
and

e "‘1"'411’/1'{(:1‘«3jrl)“3i12< ST < gt} (1)
for /7 = 1..... n - 1. Having the a-cuts [V V9100 < a < 1 for all

/== 1o, n we can straightforwardly calculate the a-cuts of the fuzzy
Kendall's 7 statistic {78 7{1], 0 < o < 1, and tlms we can obtain its
membership function.

Despite the compact notation of {10} and (11} the calenlation of the
membership funetion of the fuzzy Kendall's 7 statistic may be. in a gen-
eral case. a difficult and computationally intensive task. For this purpose

=1




Fignre 1: Contignrations of observations of a time series for the valnes
of the ILendall's 7 statistic are either the largest or the {owest

we can use a general methodology proposed by Denoux et al. [3] for the
calewdation of fuzzy rank statisties. However, for the partienlar case of
the fuzzy Kendall control chart we can wse a simiple approximate algo-
rithun. The construction of this algorith will he appavent if we consider
the influence of the pattern of consecutive observations on the value of
Kendall's 7. Oun Figure 1 taken from [7] we present three distinetive pat-
terus of crisp data which lead to limiting values of Kendall's 7. namely

and -1, The waximal value of Kendall's 7 0 cqual to 1. s attained
when consecutive points form a monotonically increasing or decreasing
series. On the other hand. the niinimal valie of Kendall's 7 . equal to
-1. is attained when consecntive points munbered by even numbers form

a monotonically decreasing series and simultaneously consecutive points
munbered by odd wunbers form a monotonically inereasing series. and
vice versa, In hoth cases the iereasing aud decreasing series should not
intersect.

Tor the given value of o the largest value of 7 is atrained for a series
of valnes :,l’ g[8 S ) n, 0 < a < 1 that form & mouo-
toue {or nearly umunmlm) increasing (decreasing) series. To find snch
a series we can start with the series o) = :Z.‘L' =10 0<a <1,
[n the next step we can increase certain values of this series in order
to arrive at a monotoue (or nearly monotone) increasing series. The
same procedure should be repeated in search of a monotone (or nearly
monotone} decreasing series. In this case we can start with the series
o= o= Loooon O < o < 1 and in the next step we should

~i Vi
decrease certain values of this series in order to arrive at a monotone (or

nearly monotone) decreasing sevies.
The lowest \(\luv of 7 is attained for a series of values :f‘
J==loo 0 << o < 1 that {ornn an alternating series of values su(h thdt
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the observations with odd (even) indices form a decreasing series, and
the ohservations with even (odd) indices form an increasing series. To
find such a series we can start with the series o', 28, 20 .. or with
In the next step we can incerease certain

the series .. E
values initially defined b\ the Jower limits of the o-cuts and decrease
certain values initially defined by the upper limits of the a-cuts in order

to arrive at an alternating {(or nearly alternating) series.

Let us describe that henristic algorithm in a more fornal way. For
notational convenience we omit the syinbol o which refers to a chosen
a-cut.

The upper lLmit of the a-cut for the fuzzy value of Kendall's 7 is
compnted according to Algorithm 1.

Algorithm 1
hegin
sct = to a small value

loopl: k=k+4 1
i Weprin 220 or (v <z then i) = sqpn
else sp =2+ ¢
ifk<n—1 qufu loopl

use (2.0 20 for the calealation of Ty

- P
SRl T vkl

loop2: k =k +1
if Uzparn 2
olsc spyy =3 = F
ifh—n—1stop
clse goto loop2
wse (27 ) for the cadewation of -,

D or (s < sp) then =L — s

Tro—maxi{rg.
«nd

The lower limit of the a-cut for the fuzzy value of Kendall's 7 ix
computed in a more ('ompli('armi way. as the pattern of consecutive
points for which 7 attains its wminimal value is more complicated (see




Algorithm 2

begin
set 2 to a small value
b=
:[, = It
loopl: if Wzpaoy 2 50) or (o < 20 then 37, = o
clsc G, =1 — <
k=hk+2
if k<=2 goto loopl
b=
=

loop2: if [zpyon 2 25) or (spgo < 2] then 2 = 2o
clse 2, = 3+ <
B=k42
if k< n—2gotoloop2
usc (2f...oo2h) for the calealation of 11,

loop if [paor > 2f) or (opqurr < 2f)] then o), = 2pon

h=k+2

if k< =2 goto loop3
k=1

T

loopd S then sf s = s

h=k1t2
if k<=2 goto loopd
wse {zfooozh) for the calealation of 174

7= min{ T 7o)
crnd




Fip 1 for au example).

The application of hoth algorithins does not puarantee that the com-
puted pair {777 ) is the true e-cut for the fuzzy value of Keudall's r.
However. it gives a very good approxination or may be tsed as a starting
point for further search of both limits of the a-cut,

4 Kendall fuzzy control chart

The tuzzy version of the Kendall 7 statistic may he now used for the con-
struction of the Kendall control chart for fuzzy data. In coutrast to the
case of erisp data, we cannot plot points on a control chart. and thus we
cannot deterngine in an unequivocal way whether the observed pattern
of weasurement polnts indicates the existence of associations {depen-
dencies) between consceutive values of the observed process. There are
two general possibilities to cope with this problem: either to fiud a crisp
representation of the fuzzy value of 7, (e, to defuzzify this statistic) or
fo introduce an additional requirement which will be used for making
decisions. [ this paper we apply the possibilistic approach proposed in
[Irvuiewicz (6], According to this approach our decisions will he made
after the caleulation of possibility and necessity measures that the ob-
served fuzzy value 7, falls outside the control Hmits given by (5) and
(6).

For deciding whether consecutive fuzzy observations on the Kendall
control chart are dependent (associated) we propose to nse two indices
proposed by Dubols and Prade (], nawmely the Possibility of Dominance
andd Nevessity of Strict Dominance indices. For two fuzzy munbers A
and B the Possibility of Dominanice (PD) index is calculated from the

forinula

PD = Poss(A > By - sap mindp (). gy} (12)
Py

T

The PD index gives the measure of possibility that the fuzzy number
A is not smaller than the frzzy number B, Positive value of $his index
tells the decision maker that there exists even slightly evidence that the
retation .1 > B is true,

‘The degree of conuiction that the relation A > B is tre is reflected

by the Necessity of Strict Domrinance (NSDJ index defined as
NSD - Ness{A > By =1 sy min{p (0)ps0)
ryry
= 1 — Poss(B = A). (13)

10




The .VSD index gives the measure of necessity that the fuzzy number A
is greater thau the fuzzy number B. Positive value of this index tells the
decision maker that there exists rather strong evidence that the relation
4> Bis true.

L our case the ealeulation of PD and NSD is gquite casy as the limits
we compare the fuzzy values to are not fuzzy. Hence. for the upper and
lower control limits we can calculate the following values of the NSD

index:
NSDp — Ness(7, > Ki) — 1~ av. (1.1
where
Oag = ig{f(u R PR (CR (15)
and
NSDp — Ness(Iy, > 7)) — 1 —nwvg. (16}
where
AN = Suplo o < W) (17

I ovder to make an unequivocal decision we have to set a required
winimal value of NSDp- and NSD,,. If the calculated value of the NSD
index is greater than or equal to this mininial valne we can say that
the observed fuzzy data reveal a pattern characteristic for dependent
statistical data.

It classical statistical process control we also use warning signals. In
the case of the Kendall control chart for fuzzy data for the generation of
warning sighals we propose to nse the PD index detined by (12). Simi-
larly to the previously considered case of the NS D iudex. the calenlation
of the PD index for both timits of the control chart is the following:

PDp = Poss{(Ty > Npr)=1—ap. (18)
where
wppe —suplo e 2 K (19)
and
PDy = Possily > #) =1 —apy. (20)

11




where
app =iuf(a: 7, <Kp). (21
Y o

Iy order to make an unequivocal decision we have to set a reqguired
minimal value of PDy and PDy. If the calculated value of the P D index
is greater than or equal (o this minimal valune we can say that there is a
warning that the observed fuzzy data veveal a pattern characteristic for
dependent statistical data. It is worth to note that the valie of the 7D
index equal to one shows that the value of the respective NSD iudex
has to be greater than zero.

5 Conclusions

The Keudall control chart for crisp data was introduced i order to give
practitioners a relatively casy to use statistical tool for lookiug for depen-
dencies between consecntive measnrements displaved on control charts
such as e.g. the Shewhart control chart. The statistical chavactevistics
of the Kendall chart do not depend on the probability distribution of ob-
served data. Therefore, it can be safely used during initial investigations
of considered processes when the available information is not sufficient
and thus for choosing a hetter

for a recise deseription of the process
statistical tool. In the considered in this paper ease of imprecise data
this important feature is still valid. However, due to the imprecise char-
acter of data necessary computations beeome mieh wore iuvolved. The
proposed algovithim for the calculation of a a-cuts of the fuzzy Kendall's
statistic 7, 1s rather simple hat it may give only approximate valnes of
the o-cut limits,

Further investigations of the Kendall fuzzy control chart shonld ad-
dress such problems as the efficient computations of the precise limits
of a-cuts, This problem is really hinportant as the pumber of obser-
aations that is necessary for good diserimination between independent
and dependent (antocorrelated) processes may be qguite arge. Thus,
the optimization problems defined by (10} (11) may require significant
compntational tinies. Another interesting and important problen which
is still waiting for its solution is the influence of fuzziness of data on im-
portant characteristics of 4 control chart. such as e, the average run
length ARL (the average time to sigual).
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